Image forming apparatus

Information

  • Patent Grant
  • 7245311
  • Patent Number
    7,245,311
  • Date Filed
    Friday, July 16, 2004
    20 years ago
  • Date Issued
    Tuesday, July 17, 2007
    17 years ago
Abstract
A photosensitive body has a photosensitive layer. An optical scanning device has a deflector deflecting a light flux emitted from a light source, and scans the surface of the photosensitive body by the thus-deflected light flux. A dot is formed at a center between adjacent light fluxes as a result of the adjacent light fluxes being overlapped with one another in a sub-scan direction. A ratio of a static beam-spot diameter Ws in the sub-scan direction on the surface of the photosensitive body defined by 1/e2 of the maximum value in the exposure distribution of the beam spot to an interval L between adjacent scan lines satisfies the following formula: 1.2
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention generally relates to an image forming apparatus which forms an image on a surface of a photosensitive body through an optical scanning device, and, in particular, to an image forming apparatus by which, even employing a device having a low resolution, an apparatus having an apparently high resolution is provided.


2. Description of the Related Art


Recently, improvement in resolution of an image forming apparatus has been demanded as in an LBP (laser beam printer) and so forth.


In order to render high resolution without increasing the printing speed of an LBP, {circle around (1)} the speed of rotation of a deflector such as a polygon scanner may be increased, {circle around (2)} the number of light sources may be increased and thereby scanning is rendered with a plurality of scan lines at once, or the like.


However, {circle around (1)} when the speed of rotation of a deflector such as a polygon scanner is increased, not only the polygon scanner itself becomes expensive, but also the durability thereof becomes degraded, the noise therefrom increases, the power consumption thereof increases, and so forth.


Further, when {circle around (2)} the number of light sources is increased and thereby scanning is rendered with a plurality of scan lines at once, a configuration for composing a plurality of beams becomes complicated, the number of parts/components increases, thereby costs increasing, and assembling accuracy of the mounted parts/components cannot be maintained because of complexity of the device.


Further, improvement of resolution only in a main scan direction (the same as a deflection direction of a deflector) can be rendered by increasing a modulation frequency of a light source. However, by this method, it is not possible to improve resolution in a sub-scan direction.


As a method of solving the above-mentioned problems, and improving resolution in a main scan direction and also in a sub-scan direction, TrueRes technology is proposed in a document ‘technology of improving resolution of page printer—TrueRes Interface January/February, 1996’. This method has also been put into practice.


The TrueRes technology is to utilize a characteristic in that a toner-adhering amount of toner adhering to a surface of a photosensitive body with respect to an exposure time for which the photosensitive body is exposed by a beam is determined by an accumulation of the exposure time (exposure distribution).



FIG. 1 shows a characteristic of an exposure time and a toner-adhering amount.


In FIG. 1, in a range in that the exposure time ‘t’ is not longer than t3 (t≦t3), a reaction critical value has not been exceeded, and the toner-adhering amount TM is substantially zero.


In a range in that the exposure time falls between t3 and t4 (t3<t<t4), the reaction critical value has been exceeded. Then, in a range in that the exposure time t is equal to or longer than t4 (t≧t4), the toner-adhering amount TM becomes TM0, and is saturated.


Because the toner-adhering amount is thus determined by accumulation of the exposure time, the toner-adhering amount becomes TM0 by four times of exposure each rendered for the interval t1, and, this is the same as the toner-adhering amount rendered by once of exposure rendered for the interval t4.


Similarly, in a case where exposure is rendered for the interval t2, the toner-adhering amount reaches TM0 by twice of the exposure.



FIG. 2 shows an image of improving resolution employing the TrueRes technology.


In FIG. 2, G11 through G13 represent dots formed on a scan line L1, G21 through G23 represent dots formed on a scan line L2, and, for each of them, exposure is rendered for an interval equal to or longer than t4 in the characteristic shown in FIG. 1, and, thereby, the toner-adhering amount is TM0.


Further, dots GA formed between adjacent dots can be formed through twice of exposure each rendered for the interval t2 in the characteristic shown in FIG. 1 on the positions of these adjacent dots, respectively.


For example, a new dot GA can be formed between the dots G11 and G12 on the main scan line L1 in the main scan direction, and another new dot GA can be formed between the dot G11 on the main scan line L1 and the dot G21 on the main scan line L2 in the sub-scan direction.


Thus, by employing the TrueRes technology, it is possible to improve resolution in the main scan direction and also in the sub-scan direction.


Further, in an image forming apparatus in the related art, as disclosed in Japanese Laid-Open Patent Application No. 10-250144 by the present applicant, by employing the TrueRes technology, employing a plurality of LED (light emitting diode) arrays in a light source thereof, configuring the respective LED arrays in the main scan direction of a photosensitive body, and controlling turning on/off of each diode, new dots are formed between adjacent normal dots in the main scan direction and in the sub-scan direction.


In the image forming apparatus disclosed in Japanese Laid-Open Patent Application No. 10-250144, the diameters of newly formed dots can be made to approximate those of the normal dots.


In the image forming apparatus disclosed in Japanese Laid-Open Patent Application No. 10-250144 employing the TrueRes technology, resolution of newly formed dots is determined by exposure distribution, and, also, the exposure distribution is mainly determined by a static beam-spot diameter and intervals between scan lines in the sub-scan direction. Accordingly, the resolution is not improved unless the static beam-spot diameter and intervals between scan lines in the sub-scan direction are properly set.


SUMMARY OF THE INVENTION

The present invention has been devised in order to solve such a problem, and an object of the present invention is to provide an image forming apparatus in which the static beam-spot diameter and intervals between scan lines in the sub-scan direction are properly set, and, thereby, resolution in the sub-scan direction is improved.


Another object of the present invention is to set a condition of improving resolution in the main scan direction.


According to the present invention,


a dot is formed at a center between adjacent light fluxes as a result of the adjacent light fluxes being overlapped with one another in a sub-scan direction, and


a ratio of a static beam-spot diameter Ws in the sub-scan direction on the surface of a photosensitive body defined by 1/e2 of the maximum value in the exposure distribution of the beam spot (the diameter of the area of the beam spot through which the exposure intensity is not lower than 1/e2 of the maximum value thereof, also hereinafter) to an interval L (in a center-to-center basis, also hereinafter) between adjacent scan lines satisfies the following formula:

1.2<Ws/L<4.5


Thereby, it is possible to easily form a dot at the center between adjacent scan lines, to render shortening of a diameter of each dot and stabilization of the dots and to increase resolution in the sub-scan direction. Accordingly, it is possible to form high-resolution images.


Further, a ratio of a static beam-spot diameter Wm in a main scan direction on the surface of the photosensitive body defined by 1/e2 of the maximum value in the exposure distribution of the beam spot to the static beam-spot diameter Ws in the sub-scan direction on the surface of the photosensitive body defined by 1/e2 of the maximum value in the exposure distribution of the beam spot satisfies the following formula:

Wm/Ws<1


Thereby, it is possible to increase resolution in the main scan direction, and to form high-resolution images also high in resolution in the main scan direction.


Other objects and further features of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a characteristic between exposure time and toner-adhering amount;



FIG. 2 shows an image of increasing resolution by using TrueRes technology;



FIGS. 3A and 3B show a general configuration of an image forming apparatus in each of first through tenth embodiments of the present invention;



FIG. 4 shows an image of forming a new dot for increasing resolution in a sub-scan direction according to the present invention;



FIG. 5 shows conditions of a comparison example and the first through tenth embodiments of the present invention;



FIG. 6 shows a perspective view (bird's-eye view) of exposure distribution in the comparison example;



FIG. 7 shows a perspective view (bird's-eye view) of exposure distribution in the first embodiment of the present invention;



FIG. 8 shows a perspective view (bird's-eye view) of exposure distribution in the second embodiment of the present invention;



FIG. 9 shows a perspective view (bird's-eye view) of exposure distribution in the third embodiment of the present invention;



FIG. 10 shows a perspective view (bird's-eye view) of exposure distribution in the fourth embodiment of the present invention;



FIG. 11 shows a perspective view (bird's-eye view) of exposure distribution in the fifth embodiment of the present invention;



FIG. 12 shows a perspective view (bird's-eye view) of exposure distribution in the sixth embodiment of the present invention;



FIG. 13 shows a perspective view (bird's-eye view) of exposure distribution in the seventh embodiment of the present invention;



FIG. 14 shows a perspective view (bird's-eye view) of exposure distribution in the eighth embodiment of the present invention;



FIG. 15 shows a perspective view (bird's-eye view) of exposure distribution in the ninth embodiment of the present invention;



FIG. 16 shows a perspective view (bird's-eye view) of exposure distribution in the tenth embodiment of the present invention;



FIG. 17 shows an exposure distribution of the comparison example on a section parallel to a sub-scan direction and passing through a point at which the exposure distribution has the maximum value;



FIG. 18 shows an exposure distribution of the first embodiment of the present invention on a section parallel to the sub-scan direction and passing through a point at which the exposure distribution has the maximum value;



FIG. 19 shows an exposure distribution of the second embodiment of the present invention on a section parallel to the sub-scan direction and passing through a point at which the exposure distribution has the maximum value;



FIG. 20 shows an exposure distribution of the third embodiment of the present invention on a section parallel to the sub-scan direction and passing through a point at which the exposure distribution has the maximum value;



FIG. 21 shows an exposure distribution of the fourth embodiment of the present invention on a section parallel to the sub-scan direction and passing through a point at which the exposure distribution has the maximum value;



FIG. 22 shows an exposure distribution of the fifth embodiment of the present invention on a section parallel to the sub-scan direction and passing through a point at which the exposure distribution has the maximum value;



FIG. 23 shows an exposure distribution of the sixth embodiment of the present invention on a section parallel to the sub-scan direction and passing through a point at which the exposure distribution has the maximum value;



FIG. 24 shows an exposure distribution of the seventh embodiment of the present invention on a section parallel to the sub-scan direction and passing through a point at which the exposure distribution has the maximum value;



FIG. 25 shows an exposure distribution of the eighth embodiment of the present invention on a section parallel to the sub-scan direction and passing through a point at which the exposure distribution has the maximum value;



FIG. 26 shows an exposure distribution of the ninth embodiment of the present invention on a section parallel to the sub-scan direction and passing through a point at which the exposure distribution has the maximum value; and



FIG. 27 shows an exposure distribution of the tenth embodiment of the present invention on a section parallel to the sub-scan direction and passing through a point at which the exposure distribution has the maximum value.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIGS. 3A and 3B show a general configuration of an image forming apparatus in each embodiment of the present invention.


In FIG. 3A, the image forming apparatus 1 includes a control part 2 having a microprocessor as a base and a memory, and having an operation function and a processing function, and controlling operation of the entirety of the apparatus, a driving part 3 driving an optical scanning device 4 based on a control signal and an image signal provided by the control part 2, the optical scanning device 4 having a laser diode 4A, a polygon mirror 4B and so fourth, and scanning a photosensitive body 6 having a photosensitive layer in a main scan direction thereof by a laser beam reflected by the polygon mirror 4B, and an image process part 5 provided in a paper passage 13 communicating a paper feeding device 12 containing transfer paper 11, which is recording media, with a paper ejecting part not shown in the figure.


The image process part 5 includes the photosensitive body 6 having a configuration of a photosensitive dram as a main part, and, a charging device 7, a developing device 8, a transfer device 9 and a cleaning device 10 arranged around the photosensitive body 6.


The charging device 7 charges a surface of the photosensitive body 6 to one polarity (for example, a minus (−) polarity) uniformly through charging by a roller charging method.


When the optical scanning device 4 applies a laser beam to the photosensitive body 6, an electrostatic latent image (beam spot) is formed at a portion at which the laser beam is applied to. When the laser beam is deflected as the polygon mirror 4B rotates, shown in FIG. 3B, the electrostatic latent image is formed in the main scan direction of the photosensitive body 6.


The developing device 8 causes toner having an electric-potential difference with respect to the electrostatic latent image to adhere to the electrostatic latent image formed on the photosensitive body 6. Thereby, the electrostatic latent image is visualized.


The transfer device 9 attracts the thus-visualized toner image from the photosensitive body 6 by an electric-potential difference, and transfers the toner image onto the transfer paper 11.


The cleaning device 10 removes the toner remaining on the photosensitive body 6 after the transfer, by a method of scraping or the like, and, thus, cleans the photosensitive body 6.


A fixing device 14 is disposed on the downstream side of the transfer device 9 in the paper passage 13, heats and presses the un-fixed toner adhering to the transfer paper 11 having passed through the transfer device 9, and, thus, fixes the toner onto the transfer paper 11.


The control part 2 modulates an image signal through the driving part 3, controls light-emitting intensity or light-emitting time of the laser beam like a pulse according to resolution (for example, 600 dpi. 1200 dpi, or the like) of the apparatus emitted from the laser diode 4A, and controls the rotation of the polygon mirror 4B.


Further, the control part 2 controls the rotation of the drum of the photosensitive body 6, and, when scanning one scan line the surface of the photosensitive body 6 is finished, rotates the drum for a scan-line interval L, so that the laser beam scans a subsequent scan line.


Further, the control part 2 controls operation and timing of the charging device 7, developing device 8, transfer device 9 and cleaning device 10 of the image process part 5 other than the photosensitive body 6.



FIG. 4 shows an image of forming new dots for improving resolution in the sub-scan direction.


When beam spots are formed at the scan-line interval L, the resolution in the sub-scan direction is 1/L (dpi). However, by forming a dot at a position at which beam spots 15 and 16 overlap with one another, it is possible to improve the resolution in the sub-scan direction.


In FIG. 4, the beam spot 15 is a beam spot formed on a main scan line 1 and the beam spot 16 is a beam spot formed on a main scan line 2.


The new dot 17 (hatched in the figure) is formed at the position at which the beam spots 15 and 16 overlap with one another in the sub-scan direction between the main scan line 1 and main scan line 2.


However, unless the static beam-spot diameter and interval between scan lines in the sub-scan direction are properly set, not only the resolution is not improved, but also it is not possible to reproduce image information precisely, and it may even result in degradation in image quality.


A condition for improving the resolution in the sub-scan direction without degrading the image quality is that a ratio of the static beam-spot diameter Ws in the sub-scan direction on the surface of the photosensitive body defined by 1/e2 of the maximum value in the exposure distribution of the beam spot to the interval L between adjacent scan lines in the sub-scan direction is set so that the following formula (1) is satisfied:

1.2<Ws/L<4.5  (1)


When the ratio Ws/L in the above formula (1) is not larger than the lower limit 1.2, no new dot is formed at a center between the two adjacent scan lines in overlapped exposure distributions of the two beam spots, but two dots separate in the sub-scan direction are newly formed.


When Ws/L in the above formula (1) is not smaller than the upper limit 4.5, the diameter of the static beam spot is too large with respect to the scan-line interval L, and the new dot is too large and/or is unstable. Thereby, it is not possible to render high resolution.


Further, in order to make resolution equal between the main scan direction and sub-scan direction, beam spots apart by the half of the scan-line interval (L/2) in a center-to-center basis are made separate as far as possible for the main scan direction while the part at which two beam spots with the scan-line interval L overlap with one another is utilized for the sub-scan direction.


At this time, it is necessary that the ratio of the static beam-spot diameter Wm in the main scan direction defined by 1/e2 of the maximum value in the exposure distribution of the beam spot on the surface of the photosensitive body to the static beam-spot diameter Ws in the sub-scan direction defined by 1/e2 of the maximum value in the exposure distribution of the beam spot on the surface of the photosensitive body satisfies the following formula (2):

Wm/Ws<1  (2)


When Wm/Ws in the formula (2) is not smaller than the upper limit 1, the beam-spot diameter Wm in the main scan direction is too large with respect to the dot interval in the main scan direction, and, thereby, dots are thickened, and/or, unstable. Accordingly, it is not possible to render high resolution.


Reasons why the above-mentioned formulas (1) and (2) are reasonable will now be described based on a comparison example and the embodiments of the present invention.



FIG. 5 shows conditions of the comparison example and embodiments of the present invention.


In each of the comparison example and embodiments 1 through 10, a new dot formed in the sub-scan direction is formed from overlapping, with one another, two beam spots on main scan lines adjacent in the sub-scan direction with the scan-line interval of L.


Further, the beam spot moves in the main scan direction while the light source (laser light) is turned on, and each moving distance is assumed to be ¼ of the scan-line interval L (L/4).


Further, the shape of a static beam spot is assumed to be of an ideal Gaussian distribution.


Further, each of Wm and Ws is a diameter of a beam spot in a stationary state defined by 1/e2 of the maximum value in the exposure distribution of the beam spot.



FIGS. 6 through 16 show perspective views of the exposure distributions in intensity of the comparison example and 1 through 10 embodiments of the present invention, and FIGS. 17 through 27 show the exposure distributions in intensity each on a section passing through the point at which the exposure distribution has the maximum value in intensity and in parallel to the sub-scan direction.


In each figure, the intensity of exposure distribution is normalized so that the maximum value is 100, and, it is assumed that, when the exposure intensity exceeds 50% of the maximum value, a new dot is formed there.


In the comparison example shown in FIGS. 6 and 17, two dots are separate, and the exposure intensity at the center between adjacent scan lines is far smaller than 50% of the maximum value. Accordingly, no new dot cannot be formed there.


In this comparison example, Ws/L=1, and, thus, the condition of the formula (1) is not satisfied.


In each of the embodiment 1 shown in FIGS. 7 and 18, and the embodiment 6 shown in FIGS. 12 and 23, there is no peak at the center between adjacent scan lines. However, the exposure intensity at the center exceeds 50% of the maximum value. Accordingly, a new dot can be formed at the center.


In each of the embodiments 1 and 6, Ws/L=1.21. Thus, this value is very near to the lower limit 1 of the formula (1).


As described above, when the exposure intensity exceeds 50% of the maximum value at the center between adjacent scan lines, a new dot can easily be formed at the center between the adjacent scan lines, and, Ws/L is equal to the lower limit value 1 when the exposure intensity at the center of the adjacent scan lines is 50% of the maximum value.


In each of the embodiment 5 shown in FIGS. 11 and 22 and the embodiment 7 shown in FIGS. 13 and 24, Ws/L=1.40, and there is no peak at the center between adjacent scan lines. However, the exposure intensity at the center exceeds 50% of the maximum value, and, also, is higher than those in the embodiments 1 and 6. Accordingly, a new dot can be formed at the center more positively.


In each of the embodiment 2 shown in FIGS. 8 and 19 and the embodiment 8 shown in FIGS. 14 and 25, Ws/L=1.81. Accordingly, a new dot can be formed at the center between adjacent scan lines far more positively.


In each of the embodiment 3 shown in FIGS. 9 and 20, the embodiment 4 shown in FIGS. 10 and 21, the embodiment 9 shown in FIGS. 15 and 26 and the embodiment 10 shown in FIGS. 16 and 27, 2.5<Ws/L<4.5. Accordingly, the exposure distribution has a peak at the center between adjacent scan lines. Accordingly, a new dot can be formed at the center between adjacent scan lines easily.


However, when Ws/L becomes equal to or higher than the upper limit (4.5) of the formula (1), the static beam-spot diameter in the sub-scan direction with respect to the scan-line interval L is too large, and, thereby, the new dot is too large, and/or is unstable. Accordingly, it is not possible to render high resolution.


When considering to render formation of a dot at the center between adjacent two scan lines and shortening of diameter of each image dot and stability of the image dots, it is preferable that the ratio of the static beam-spot diameter Ws in the sub-scan direction on the surface of the photosensitive body defined by 1/e2 of the maximum value in the exposure distribution of the beam spot to the scan-line interval L satisfies the following formula (3):

1.8<Ws/L<3.5  (3)


Further, as shown in FIG. 5, each of the embodiments 1 through 10 satisfies the condition of the above-mentioned formula (2), and it is possible to render high resolution also in the main scan direction. However, it is preferable that the ratio of Wm to Ws satisfies the following formula:

Wm/Ws<0.85


Although the light source used in each of the embodiments of the present invention is of a single light source, it is also possible that the light source is of a combination of a plurality of light sources is employed instead.


Further, although the light source used in each of the embodiments of the present invention is a laser light source, it is also possible that the light source includes a plurality of LEDs (Light Emitting Diodes) disclosed in Japanese Laid-Open Patent Application No. 10-250144.


Furthermore, although the static beam-spot shape in each embodiment is assumed to be of an ideal Gaussian distribution, it is also possible that it is slightly different from a shape of an ideal Gaussian distribution.


The present invention is not limited to the above-described embodiments, and variations and modifications may be made without departing from the scope of the present invention.


The present application is based on Japanese priority application No. 2000-026780 filed on Feb. 3, 2000, the entire contents of which are hereby incorporated by reference.

Claims
  • 1. An image forming apparatus, comprising: a photosensitive body; andan optical scanning device having a deflector deflecting a light flux emitted from a light source, and scanning a surface of said photosensitive body by the thus-deflected light flux formed as a beam spot in a main scan direction along main scan lines separated from one another in a sub-scan direction on said surface of said photosensitive body,wherein said image forming apparatus is configured such that new dots are formed centered between adjacent main scan lines in areas exposed to overlapping beam spot portions when an exposure intensity exceeds 50% of a maximum value there,wherein each beam spot has a first static beam-spot diameter Ws in said sub-scan direction on said surface of said photosensitive body and a second static beam-spot diameter Wm in said main scan direction on said surface of said photosensitive body, each static beam-spot diameter being defined by 1/e2 of a maximum value in an exposure distribution of the associated beam spot,wherein a ratio of a first static beam-spot diameter Ws to an interval L between adjacent scan lines satisfies the following formula: 1.2<Ws/L<4.5, andwherein a ratio of said second static beam-spot diameter Wm to the first static beam-spot diameter Ws satisfies the following formula: Wm/Ws<1.
  • 2. An image forming apparatus, comprising: photosensitive means having a photosensitive layer; andan optical scanning means having deflecting means for deflecting a light flux emitted by light emitting means, and scanning the surface of said photosensitive means by the thus-deflected light flux formed as a beam spot in a main scan direction along main scan lines separated from one another in a sub-scan direction on said surface of said photosensitive body,wherein a dot is formed at a center between adjacent main scan lines as a result of adjacent beam spot portions being overlapped with one another in said sub-scan direction,wherein each beam spot has a first static beam-spot diameter Ws in said sub-scan direction on said surface of said photosensitive body and a second static beam-spot diameter Wm in said main scan direction on said surface of said photosensitive body, each static beam-spot diameter being defined by 1/e2 of a maximum value in an exposure distribution of the associated beam spot,wherein a ratio of said first static beam-spot diameter Ws to an interval L between adjacent scan lines satisfies the following formula: 1.2<Ws/L<4.5, andwherein a ratio of said second static beam-spot diameter Wm to the first static beam-spot diameter Ws spots satisfies the following formula: Wm/Ws<1.
  • 3. A laser beam printer which employs an image forming apparatus, comprising: a photosensitive body; andan optical scanning device having a deflector deflecting a laser beam emitted from a laser beam source, and scanning a surface of said photosensitive body by the thus-deflected laser beam as a beam spot in a main scan direction along main scan lines separated from one another in a sub-scan direction on said surface of said photosensitive body,wherein said image forming apparatus is configured such that new dots are formed centered between adjacent main scan lines in areas exposed to overlapping beam spot portions when an exposure intensity exceeds 50% of a maximum value there,wherein each beam spot has a first static beam-spot diameter Ws in said sub-scan direction on said surface of said photosensitive body and a second static beam-spot diameter Wm in said main scan direction on said surface of said photosensitive body, each static beam-spot diameter being defined by 1/e2 of a maximum value in an exposure distribution of the associated beam spot,wherein a ratio of said first static beam-spot diameter Ws to an interval L between adjacent scan lines satisfies the following formula: 1.2<Ws/L<4.5, andwherein a ratio of said second static beam-spot diameter Wm to the first static beam-spot diameter Ws satisfies the following formula: Wm/Ws<1.
  • 4. A laser beam printer which employs an image forming apparatus, comprising: photosensitive means having a photosensitive layer; andan optical scanning means having deflecting means for deflecting a laser beam emitted by laser beam emitting means, and scanning the surface of said photosensitive means by the thus-deflected laser beam as a beam spot in a main scan direction along main scan lines separated from one another in a sub-scan direction on said surface of said photosensitive means,wherein a dot is formed at a center between adjacent main scan lines as a result of adjacent beam spot portions being overlapped with one another in said sub-scan direction,wherein each beam spot has a first static beam-spot diameter Ws in said sub-scan direction on said surface of said photosensitive means and a second static beam-spot diameter Wm in said main scan direction on said surface of said photosensitive means, each static beam-spot diameter being defined by 1/e2 of a maximum value in an exposure distribution of the associated beam spot,wherein a ratio of said first static beam-spot diameter Ws to an interval L between adjacent scan lines satisfies the following formula: 1.2<Ws/L<4.5, andwherein a ratio of said second static beam-spot diameter Wm to the static beam-spot diameter Ws satisfies the following formula: Wm/Ws<1.
Priority Claims (1)
Number Date Country Kind
2000-026780 Feb 2000 JP national
Parent Case Info

This application is a Continuation of application Ser. No. 09/765,608 filed on Jan. 22, 2001 now U.S. Pat. No. 6,803,941.

US Referenced Citations (83)
Number Name Date Kind
5134495 Frazier et al. Jul 1992 A
5193008 Frazier et al. Mar 1993 A
5270827 Kobayashi et al. Dec 1993 A
5365258 Murata et al. Nov 1994 A
5412408 Itoh et al. May 1995 A
5557448 Endo et al. Sep 1996 A
5562670 Brånemark Oct 1996 A
5570224 Endo et al. Oct 1996 A
5581392 Hayashi Dec 1996 A
5652670 Hayashi Jul 1997 A
5786594 Ito et al. Jul 1998 A
5875051 Suzuki et al. Feb 1999 A
5936756 Nakajima Aug 1999 A
5986791 Suzuki et al. Nov 1999 A
5999345 Nakajima et al. Dec 1999 A
6052211 Nakajima Apr 2000 A
6069724 Hayashi et al. May 2000 A
6081386 Hayashi et al. Jun 2000 A
6091534 Nakajima Jul 2000 A
6104522 Hayashi et al. Aug 2000 A
6141133 Suzuki et al. Oct 2000 A
6185026 Hayashi et al. Feb 2001 B1
6198562 Hayashi et al. Mar 2001 B1
6222662 Suzuki et al. Apr 2001 B1
6229638 Sakai et al. May 2001 B1
6233081 Suzuki et al. May 2001 B1
6239860 Ito May 2001 B1
6317246 Hayashi et al. Nov 2001 B1
6369927 Hayashi Apr 2002 B2
6384949 Suzuki May 2002 B1
6388792 Atsuumi et al. May 2002 B1
6400391 Suhara et al. Jun 2002 B1
6400917 Nakazato et al. Jun 2002 B2
6417509 Atsuumi et al. Jul 2002 B1
6429956 Itabashi Aug 2002 B2
6445482 Hayashi Sep 2002 B1
6448998 Suzuki et al. Sep 2002 B1
6462853 Hayashi et al. Oct 2002 B2
6485126 Kato et al. Nov 2002 B1
6496293 Kawamura Dec 2002 B2
6497474 Irinoda et al. Dec 2002 B2
6498617 Ishida et al. Dec 2002 B1
6509995 Suzuki et al. Jan 2003 B1
6573921 Hayashi Jun 2003 B2
6587245 Hayashi Jul 2003 B2
6596985 Sakai et al. Jul 2003 B2
6621512 Nakajima et al. Sep 2003 B2
6624920 Itabashi Sep 2003 B2
6657761 Suzuki et al. Dec 2003 B2
6657765 Hayashi et al. Dec 2003 B2
6690404 Shimada et al. Feb 2004 B2
6700687 Itabashi Mar 2004 B1
6704129 Sakai et al. Mar 2004 B2
6731317 Ema et al. May 2004 B2
6744545 Suhara et al. Jun 2004 B2
6747818 Ohashi et al. Jun 2004 B2
6757089 Hayashi Jun 2004 B2
6768506 Hayashi et al. Jul 2004 B2
6771296 Hayashi et al. Aug 2004 B2
6771407 Hayashi et al. Aug 2004 B2
6775041 Nakajima Aug 2004 B1
6785028 Atsuumi et al. Aug 2004 B1
6788444 Suzuki et al. Sep 2004 B2
20020051137 Ema et al. May 2002 A1
20020080428 Suzuki et al. Jun 2002 A1
20020093566 Kawamura Jul 2002 A1
20020100869 Hayashi Aug 2002 A1
20020101494 Ono Aug 2002 A1
20020101642 Masuda Aug 2002 A1
20020105707 Hayashi Aug 2002 A1
20020114051 Atsuumi Aug 2002 A1
20020122217 Nakajima Sep 2002 A1
20020131137 Suzuki Sep 2002 A1
20020171878 Nakajima Nov 2002 A1
20030053156 Satoh et al. Mar 2003 A1
20030067533 Omori et al. Apr 2003 A1
20030072066 Hayashi et al. Apr 2003 A1
20030179428 Suzuki et al. Sep 2003 A1
20030206322 Atsuumi et al. Nov 2003 A1
20030210928 Miyaguchi et al. Nov 2003 A1
20030214693 Hayashi et al. Nov 2003 A1
20040001241 Hayashi et al. Jan 2004 A1
20040246330 Hayashi et al. Dec 2004 A1
Foreign Referenced Citations (6)
Number Date Country
04-336859 Nov 1992 JP
04336859 Nov 1992 JP
06-071940 Mar 1994 JP
10-181091 Jul 1998 JP
10-250144 Sep 1998 JP
10250144 Sep 1998 JP
Related Publications (1)
Number Date Country
20040246330 A1 Dec 2004 US
Continuations (1)
Number Date Country
Parent 09765608 Jan 2001 US
Child 10892152 US