This Nonprovisional application claims priority under 35 U.S.C. §119(a) on Patent Application No. 2011-191276 filed in Japan on Sep. 2, 2011, the entire contents of which are hereby incorporated by reference.
The present invention relates to an electrophotographic image forming apparatus provided with a pre-transfer charger.
Some electrophotographic image forming apparatuses are provided with an image bearing element, a primary transfer element, an intermediate transfer element, and a secondary is transfer element. On the surface of the image bearing element, an electrostatic latent image is formed by using image data, and the electrostatic latent image is developed into a toner image. The primary transfer element primarily transfers the toner image formed on the image bearing element to the intermediate transfer element. The secondary transfer element secondarily transfers the toner image from the intermediate transfer element onto a sheet of paper.
A device as disclosed in Japanese Patent Laid-Open Publication No. 2010-14995 as the conventional image reading device is provided with a pre-transfer charger. The pre-transfer charger applies applied voltage with a polarity opposite to a polarity of a charged toner image to the intermediate transfer element. The charged state of the toner image that has been primarily transferred to the intermediate transfer element is stabilized to improve secondary transfer efficiency, thus preventing the toner from remaining on the secondary transfer element, which can become a cause for dirt on the reverse side of a sheet of paper during subsequent image forming processes.
However, the image forming apparatus disclosed in Japanese Patent Laid-Open Publication No. 2010-14995 cannot stabilize the charged state of the toner image formed on the intermediate transfer element corresponding to a portion to which the residual toner adheres when the residual toner adheres to the pre-transfer charger. In the portion in which the charged state of the toner image is not stable, a white streak is formed in the sheet of paper that has been subjected to an image forming process because the toner image is not transferred to the portion. The white streak is not easily visible, so that a user will often miss that the pre-transfer charger is dirty.
In view of the foregoing, an object of the present invention is to provide an image forming apparatus capable of detecting the presence of dirt of a pre-transfer charger, as well as a cleaning method of the pre-transfer charger.
An image forming apparatus according to the present invention is provided with an image bearing element, an intermediate transfer element, a primary transfer element, a pre-transfer charger, and a control portion. The pre-transfer charger is located downstream of the primary transfer element and upstream of the secondary transfer element in a revolving direction, faces the outer peripheral surface of the intermediate transfer element along a perpendicular direction perpendicular to the revolving direction, and charges the intermediate transfer element when voltage is applied. The control portion, at time when determination is made as to the necessity of cleaning the pre-transfer charger, secondarily transfers a cleaning assessment toner image by switching between a state in which the voltage is applied to the pre-transfer charger and a state in which the voltage is not applied to the pre-transfer charger, the cleaning assessment toner image being in a uniform density.
The foregoing and other features and attendant advantages of the present invention will become more apparent from the reading of the following detailed description of the invention in conjunction with the accompanying drawings.
As shown in
The image forming portion 113 is provided with image forming units 10A to 10D, an intermediate transfer unit 60, a secondary transfer unit (which is equivalent to the secondary transfer element defined by the present invention) 30, and a fixing unit 70.
The image forming units 10A to 10D form a black toner image, a cyan toner image, a magenta toner image, and a yellow image on the surfaces of the photoreceptor drums (which are equivalent to the image bearing element defined by the present invention) 3A to 3D, respectively, according to the electrophotographic image forming process.
The intermediate transfer unit 60 has an intermediate transfer belt (which is equivalent to the intermediate transfer element defined by the present invention) 61, a driving roller 62, a driven roller 63, primary transfer rollers (which are equivalent to the primary transfer element defined by the present invention) 64A to 64D, a pre-transfer charger 7, and a counter roller 66.
The intermediate transfer belt 61 is stretched over the driving roller 62, the driven roller 63, and the counter roller 66, and moves along a circulation route that passes the image forming units 10D, 10C, 10B, and 10A in this order. Each of the primary transfer rollers 64A to 64D are disposed to face the photoreceptor drums 3A to 3D, with the intermediate transfer belt 61 held between the rollers and the drums, and the toner images formed on the peripheral surfaces of the respective photoreceptor drums 3A to 3D are primarily transferred onto the surface of the intermediate transfer belt 61.
In the color image forming process, a yellow toner image, a magenta toner image, a cyan toner image, and a black toner image are sequentially transferred onto the surface of the intermediate transfer belt 61 in an overlaying manner while the intermediate transfer belt 61 moves along the circulation route. In the monochrome image forming process, only a black toner image is transferred onto the surface of the intermediate transfer belt 61 while the intermediate transfer belt 61 moves along the circulation route.
The pre-transfer charger 7 is a corona discharge device, and is disposed downstream of the photoreceptor drum 3A and upstream of the secondary transfer unit 30 in the moving direction of the intermediate transfer belt 61. The pre-transfer charger 7 is configured to apply, to the toner image on the intermediate transfer belt 61, electric charges with the same polarity as the polarity of the charged toner prior to the secondary transfer. The counter roller 66 is disposed downstream of the primary transfer roller 64D and upstream of the driving roller 62 in the moving direction of the intermediate transfer belt 61. The pre-transfer charger 7 and the counter roller 66 are disposed to face each other, with the intermediate transfer belt 61 held between the pre-transfer charger and the counter roller.
The secondary transfer unit 30 is provided with a secondary transfer roller 31 and a secondary transfer belt 32. The secondary transfer belt 32 is stretched over a plurality of rollers including the secondary transfer roller 31, and moves along a predetermined circulation route. The secondary transfer roller 31 is disposed to face the driving roller 62, with the secondary transfer belt 32 and the intermediate transfer belt 61 held between the secondary transfer roller and the driving roller. The secondary transfer unit 30 secondarily transfers the toner image of the surface of the intermediate transfer belt 61 to the sheet of paper that has been fed between the intermediate transfer belt 61 and the secondary transfer belt 32.
The fixing unit 70 heats and pressurizes the sheet of paper onto which the toner image has been transferred, and firmly fixes the toner image transferred onto the sheet of paper on the surface of the sheet. The sheet of paper which has passed the fixing unit 70 is output to a paper output tray 91.
As shown in
The housing 51 has a rectangular parallelepiped shape with an opening 511 formed on the housing. The housing 51 is disposed so that the opening 511 faces the surface of the intermediate transfer belt 61 in a state in which the longitudinal direction of the housing corresponds to the axial direction of the counter roller 66.
The corona wire 52 is a discharge wire such as a tungsten wire with gold plating and is stretched over the inside of the housing 51 along the longitudinal direction. The corona wire 52 is connected to a direct current power source, and is applied with a voltage of 3.5 to 8 kV. Preferably, the voltage to be applied to corona wire 52 is 4.0 to 5.5 kV, with the current value at that time being 300 to 1000 μA. The discharge region of the corona wire 52 corresponds to the transfer range of the toner image on the intermediate transfer belt 61 in the axial direction of the counter roller 66.
The cleaning element 53 consists of a feed screw 531 and a cleaning pad 532. The feed screw 531 has a rod-like structure provided with a threaded portion, and is rotatably supported in the housing 51, being in parallel with the corona wire 52. The threaded portion of the feed screw 531 is screwed into a non-illustrated screw hole of the cleaning pad 532.
The cleaning pad 532 is pressed against the outer peripheral surface of the corona wire 52, and is disposed in the housing 51 with the rotation of the cleaning pad regulated. The cleaning pad 532 moves, by rotation of the feed screw 531, between the home position P located at an end on the front side and a return position Q located at an end on the rear side of the image forming apparatus 100. The cleaning pad 532 is located at each of the both ends of the corona wire 52 corresponding to the home position P and the return position Q. The sensor 54 detects the cleaning pad 532 in the home position P.
The encoder 55 is an encoder that measures movement in a rotary parallel direction of the feed screw 531, and measures a moving distance of the cleaning pad 532 from the home position P. The motor 56 selectively supplies rotations in a forward direction and in a backward direction to the worm gear 57.
The worm gear 57 consists of a worm 571 and a worm wheel 572. The worm 571 is fixed on the rotating shaft of the motor 56. The worm wheel 572 is fixed to the feed screw 531. The worm gear 57 decelerates the rotation of the motor 56, and transmits the rotation to the feed screw 531.
The cleaning pad 532 moves in the direction from the home position P to the return position Q when the motor 56 rotates forward, and moves in the direction from the return position Q to the home position P when the motor 56 rotates backward.
As shown in
The CPU 201 executes programs that are written in the ROM 202 in advance to comprehensively control each portion of the image forming apparatus 100. The data output and input during the execution of the programs is stored in the RAM 203. In the ROM 202, cleaning assessment data as well as the programs which regulate the control operation of the CPU 201 is stored.
The cleaning assessment data is image data used for determination of the necessity of the cleaning process of the pre-transfer charger 7. The cleaning assessment data, as shown in
The controller 204 inputs operation data of a key switch in the operating portion 300 into the CPU 201 while supplying, to the operating portion 300, display data for display which the CPU 201 has prepared. The motor driver 207 drives the motor 56 based on the driving data output from the CPU 201.
A detection signal of the cleaning pad 532 detected by the sensor 54 and a detection signal of the rotation of the feed screw 531 detected by the encoder 55 are input into the CPU 201 through each of the interfaces 205 and 206.
The following describes a determination process to determine as to the necessity of cleaning the pre-transfer charger 7 with reference to the flow chart as shown in
As shown in
The CPU 201 starts the primary transfer of the toner image from the photoreceptor drum 3A to the intermediate transfer belt 61 (S13), and then, before starting the secondary transfer to the toner image from the intermediate transfer belt 61 to the sheet of paper, applies voltage to the pre-transfer charger 7 (S14). The CPU 201 further starts the secondary transfer (S15), and then before the secondary transfer ends, stops applying the voltage to the pre-transfer charger 7 (S16). The CPU 201, when the secondary transfer ends (S17), outputs the sheet on which the image based on the cleaning assessment data is formed (S18).
As shown in
In a case where dirt adheres to a portion of the corona wire 52 of the pre-transfer charger 7, a white streak W is is formed in the first image SA along the direction Y. A user can easily visually recognize the white streak W formed in the first image SA by contrast with the second image SB, and can easily determine the necessity of cleaning the pre-transfer charger 7.
Subsequently, the cleaning process of the pre-transfer charger 7 will be described with reference to the flow chart as shown in
As shown in
The CPU 201 specifies a cleaning start position CS and a cleaning end position CE on the corona wire 52 corresponding to the position of the white streak in the first image SA when the m white streak is generated on the first image SA (S24). As shown in
Here, the CPU 201 calculates the first number of rotations and the second number of rotations which are the number of rotations of the feed screw 531, necessary to move the cleaning pad 532 from the home position P to the cleaning start position CS and from the home position P to the cleaning end position CE (S25).
To begin with, the CPU 201 rotates the motor 56 forward until such time that the encoder 55 detects the number of rotations to be equal to the second number of rotations, and moves the cleaning pad 532 positioned in the home position P as shown in
Next, the CPU 201 rotates the motor 56 backward until such time that the encoder 55 detects the number of rotations to be equal to the differential number of rotations obtained by subtracting the second number of rotations from the first number of rotations, and then moves the cleaning pad 532 to the cleaning start position CS as shown in
Further, the CPU 201 rotates the motor 56 forward until such time that the encoder 55 detects the number of rotations to be equal to the differential number of rotations, and again moves the cleaning pad 532 to the cleaning end position CE as shown in
The CPU 201 repeats the processes S27 and S28 for a predetermined N times (S29), then moves the motor 56 backward until the sensor 54 detects the cleaning pad 532, and moves the cleaning pad 532 to the home position as shown in
Through the above processes, the CPU 201 determines the presence of the dirt which adheres to the corona wire 52 from the sheet S of paper that is output at the time of the determination process, and cleans only the dirty portion in the corona wire 52. Therefore, the corona wire 52 can be cleaned efficiently, and also the wear to the cleaning pad 532 can be minimized.
It should be understood that while in the foregoing embodiments the first image SA and the second image SB were formed on one sheet S of paper, the images may be formed on separate sheets. In this case, images are sequentially read from a sheet on which the first image SA is formed, and a sheet on which the second image SB is formed.
In addition, as cleaning assessment data, image data including scale data DR may be used as shown in
Furthermore, the cleaning assessment data need not necessarily be image data that forms toner images both of the two regions of rectangle ranges DA and DB. Even under a situation where image data is for forming a toner image with uniform density in a single rectangular range, the CPU 201 can perform the same process by detecting the presence of a white streak within the full length in the direction perpendicular to the longitudinal direction of the corona wire 52. In this case, secondary transfer need not be performed in a state where the application of the voltage to the pre-transfer charger is stopped.
The above described embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined not by above described embodiments but by the claims. Further, the scope of the present invention is intended to include all modifications that come within the meaning and scope of the claims and any equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
2011-191276 | Sep 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5392099 | Kusumoto et al. | Feb 1995 | A |
Number | Date | Country |
---|---|---|
6-161222 | Jun 1994 | JP |
2003-241541 | Aug 2003 | JP |
2008-176099 | Jul 2008 | JP |
2010-14995 | Jan 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20130058678 A1 | Mar 2013 | US |