This application is based on Japanese Patent Application No. 2010-042226 filed on Feb. 26, 2010, the content of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to an image forming apparatus, and particularly relates to an image forming apparatus that forms an image by means of toner.
2. Description of Related Art
In an image forming apparatus, toner stored in a development unit decreases in volume under its own weight when it is left unstirred for a long period of time. When the volume of the toner decreases as thus described, a charge amount of the toner might become insufficient. It consequently becomes difficult to obtain a sufficient toner adhering amount upon forming a toner image.
As an image forming apparatus for solving the above problem, there is known, for example, an image forming apparatus described in Japanese Patent Laid-Open Publication No. H08-62984. In the image forming apparatus described in Japanese Patent Laid-Open Publication No. H08-62984, a stirring roller is rotated at a higher rate than usual when the development unit has been stopped for a predetermined time or longer. This can lead to recovery of the volume of the toner, and to recovery of the charge amount of the toner.
However, the image forming apparatus described in Japanese Patent Laid-Open Publication No. H08-62984 may stir the toner unnecessarily. More specifically, the charge amount of the toner does not depend only upon the volume of the toner. Therefore, even when the toner has been left unstirred for a long period of time and the volume of the toner has decreased, a sufficient charge amount may be obtainable. In such a case, rotating the stirring roller is not necessary. However, in the image forming apparatus described in Japanese Patent Laid-Open Publication No. H08-62984, the stirring roller is rotated on only a condition that the development unit has been stopped for a predetermined time or longer. Consequently, the image forming apparatus described in Japanese Patent Laid-Open Publication No. H08-62984 may execute unnecessary stirring.
An image forming apparatus according to an embodiment of the present invention comprises: an image carrier; an electrostatic latent image forming device that forms an electrostatic latent image on the image carrier; a development device having a housing section that stores toner therein, a stirring device for stirring the toner inside the housing section, and a toner carrier that develops the electrostatic latent image into a toner image by imparting the toner to the image carrier; a voltage applying device that applies a development bias voltage between the image carrier and the toner carrier; a control device that makes the electrostatic latent image forming device and the development device form a test toner image on the image carrier; and a sensing device that senses a toner adhering amount of the test toner image; wherein the control device determines whether to make the stirring device stir the toner based upon a relation between the toner adhering amount of the test toner image and the development bias voltage that was applied by the voltage applying device for formation of the test toner image.
This and other features of the present invention will be apparent from the following description with reference to the accompanying drawings, in which:
Hereinafter, an image forming apparatus according to an embodiment of the present invention is described with reference to the drawings.
An image forming apparatus 1 is an electrophotographic color printer of a tandem type, which is configured so as to synthesize an image of four colors, namely, Y (yellow), M (magenta), C (cyan) and K (black). The image forming apparatus 1 has a function of forming an image on paper (print medium) based upon image data read by a scanner, and includes a printing section 2, a paper feeding section 15, a fixing unit 20, a paper discharge tray 21, a control section 30, a voltage applying section 32, and a sensor 34.
The paper feeding section 15 serves to feed paper piece by piece, and includes a paper tray 16 and a paper feeding roller 17. In the paper tray 16, a plurality of pieces of paper in a pre-printed state is stacked and placed. The paper feeding roller 17 takes out the paper from the paper tray 16 piece by piece.
The printing section 2 forms a toner image on paper being fed from the paper feeding section 15. The printing section 2 includes: image forming sections 22Y, 22M, 22C, 22K; transfer sections 8Y, 8M, 8C, 8K; an intermediate transfer belt 11; a driving roller 12, a driven roller 13, a secondary transfer roller 14, and a cleaning unit 18. Further, the image forming sections 22Y, 22M, 22C, 22K include: photosensitive drums (image carriers) 4Y, 4M, 4C, 4K; chargers 5Y, 5M, 5C, 5K; exposure units 6Y, 6M, 6C, 6K; development units 7Y, 7M, 7C, 7K; cleaners 9Y, 9M, 9C, 9K, and erasers 10Y, 10M, 10C, 10K. It is to be noted that, hereinafter, in the case of collectively naming the photosensitive drums, the chargers, the exposure units, the development units, the transfer units, the cleaners, the erasers and the image forming sections, those are simply described respectively as a photosensitive drum 4, a charger 5, an exposure unit 6, a development unit 7, a transfer unit 8, a cleaner 9, an eraser 10 and an image forming section 22. In the case of indicating the individual photosensitive drums, chargers, exposure units, development units, transfer units, cleaners, erasers and image forming sections, those are respectively described as the photosensitive drums 4Y, 4M, 4C, 4K, the chargers 5Y, 5M, 5C, 5K, the exposure units 6Y, 6M, 6C, 6K, the development units 7Y, 7M, 7C, 7K, the transfer units 8Y, 8M, 8C, 8K, the cleaners 9Y, 9M, 9C, 9K, the erasers 10Y, 10M, 10C, 10K and the image forming sections 22Y, 22M, 22C, 22K.
The charger 5 charges the peripheral surface of the photosensitive drum 4. The exposure unit 6 applies laser by control of the control section 30. Thereby, an electrostatic latent image is formed on the peripheral surface of the photosensitive drum 4. That is, the charger 5 and the exposure unit 6 serve as an electrostatic latent image forming device that forms an electrostatic latent image on the peripheral surface of the photosensitive drum 4.
As shown in
The intermediate transfer belt 11 is extended between the driving roller 12 and the driven roller 13, and the toner image formed on the photosensitive drum 4 is primarily transferred. The transfer section 8 is arranged so as to face to the inner peripheral surface of the intermediate transfer belt 11. The transfer section 8 is impressed with a primary transfer voltage and serves to transfer the toner image formed on the photosensitive drum 4 to the intermediate transfer belt 11 (primary transfer). The cleaner 9 serves to collect toner that remains on the peripheral surface of the photosensitive drum 4 after the primary transfer. The driving roller 12 is rotated by an intermediate transfer belt driving section (not shown in
The secondary transfer roller 14 is opposed to the intermediate transfer belt 11 so as to form a nip section N. The secondary transfer roller 14 transfers the toner image that has been carried by the intermediate transfer belt 11 to paper that has been delivered from the paper feeding section 15 and is passing through the nip section N (secondary transfer). The cleaning unit 18 removes toner that remains on the intermediate transfer belt 11 after the secondary transfer of the toner image to the paper.
The paper with the toner image transferred thereto is delivered to the fixing unit 20. The fixing unit 20 performs a heat treatment and a pressure treatment on the paper to fix the toner image to the paper. In the paper discharge tray 21, printed paper is placed.
Next, a control configuration of the image forming apparatus 1 is described with reference to the drawings.
Next, tests performed by the present inventors are described. The present inventors performed the following tests in order to ensure that a sufficient toner adhering amount on paper is not obtained when toner is left unstirred for a long period of time. Specifically, using toner left unstirred and toner not left unstirred for a long period of time, the present inventors made the image forming apparatus 1 print toner images of a solid pattern on paper, while changing the development bias voltage. Next, the present inventors checked a transmission density of the paper with the toner image printed thereon. The transmission density indicates a degree of interception of light incident to the paper by the toner image. When the transmission density is high, it indicates that a transmitted amount of light is small, and a large amount of toner has adhered. When the transmission density is low, it indicates that a transmitted amount of light is large, and a small amount of toner has adhered. That is, the transmission density is synonymous with the toner adhering amount.
According to
Next, the present inventors performed the following tests for ensuring whether or not the toner always insufficiently adheres to paper in the case of using the toner left unstirred. Specifically, using the toner left unstirred and the toner not left unstirred, the present inventors made the image forming apparatus 1 perform stabilizing operation, to form a toner image of a test pattern as the solid pattern on the intermediate transfer belt 11. Then, the sensor 34 was used to sense a toner adhering amount of the test pattern formed on the intermediate transfer belt 11.
According to
Hereinafter, the operation of the image forming apparatus 1 is described with reference to the drawings.
The control section 30 checks whether or not a predetermined time has elapsed since the control section 30 made the stirring roller 76 stir the toner most recently (Step S1). The predetermined time is the minimum time during which the toner is left unstirred to cause a decrease in volume of the toner and insufficient charge amount of the toner. An example of the predetermined time is the order of twelve hours. When the predetermined time has elapsed, the process goes to Step S2. When the predetermined time has not elapsed, the process is completed.
When the predetermined time has elapsed, the control section 30 makes the printing section 2 execute the stabilizing operation (Step S2). Specifically, the control section 30 makes the charger 5, the exposure unit 6 and the development unit 7 form the toner image of the test pattern on the peripheral surface of the photosensitive drum 4. Further, the control section 30 makes the transfer section 8 transfer the test pattern from the photosensitive drum 4 to the intermediate transfer belt 11. The control section 30 then makes the intermediate transfer belt driving section drive the intermediate transfer belt 11. Moreover, the control section 30 obtains a toner adhering amount of the test pattern which is outputted from the sensor 34. It should be noted that in the stabilizing operation, the control section 30 makes the voltage applying section 32 apply a plurality of different development bias voltages to obtain a plurality of different toner adhering amounts. That is, in the stabilizing operation, the control section 30 obtains a development characteristic curve (as shown in
Next, referring to the development characteristic curves shown in
It is to be noted that for example, a least-square method can be adopted to calculate the average inclination. Further, as shown in
In the case of executing stirring, the process goes to Step S4. In the case of not executing stirring, the process is completed.
In the case of executing stirring, the control section 30 makes the stirring roller 76 execute stirring (Step S4). Further, as in Step S2, the control section 30 executes the stabilizing operation (Step S5). Then, the process is completed.
The image forming apparatus 1 performs the stabilizing operation when toner has been left unstirred for a long period of time. Further, the image forming apparatus 1 checks whether or not a sufficient charge amount of the toner can be obtained, and stirs the toner only when the sufficient charge amount of the toner cannot be obtained. That is, even when the toner has been left unstirred for a long period of time, the image forming apparatus 1 does not stir the toner if a sufficient charge amount of the toner can be obtained. Therefore, in the image forming apparatus 1, unnecessary stirring of toner will not be executed.
The image forming apparatus 1 is not restricted to the apparatus shown in the foregoing embodiment, but can be modified within the range of its gist. The determination made by the control section 30 at Step S3 may be, for example, based upon a condition other than the average inclination of a development characteristic. Specifically, the determination may be made based upon whether or not the toner adhering amount obtained with a predetermined development bias voltage applied by the voltage applying section 32 is larger than a predetermined value. In this case, when the toner adhering amount is larger than the predetermined toner adhering amount, the control section 30 determines that stirring is unnecessary. When the toner adhering amount is not larger than the predetermined toner adhering amount, the control section 30 determines that stirring is necessary. It should be noted that the predetermined development bias voltage is a value set within the range (e.g., −100 to −200 V) of the development bias voltage where the transmission density is not saturated in
Incidentally, in the image forming apparatus 1, when the toner is left unstirred for a long period of time, the volume of the toner decreases, and accordingly, in this state, the amount of toner stored inside the development unit 7 is larger than it appears. When toner is replenished to the development unit 7 in this state, the toner inside the development unit 7 becomes larger than the capacity.
Therefore, in the image forming apparatus 1, a toner replenishing operation is performed under a control method peculiar to this image forming apparatus 1. Hereinafter, the replenishment of the toner of the image forming apparatus 1 is described with reference to the drawings.
As shown in
Herein, when the control section 30 determines that the volume of the toner inside the housing section 78 has decreased to be smaller than the predetermined value, the control section 30 next checks whether or not a predetermined time (e.g., twelve hours) or longer has elapsed since the control section 30 made the stirring roller 76 stir the toner most recently. Then, when the control section 30 determines that the predetermined time or longer has elapsed, the control section 30 makes the stirring roller 76 stir the toner while keeping the replenishment unit 100 from replenishing toner. Then, after the stirring of the toner, the control section 30 again checks whether the volume of the toner inside the housing section 78 has decreased to be smaller than the predetermined value. Then, when the control section 30 determines that the volume of the toner has not decreased to be smaller than the predetermined value, the control section 30 keeps the replenishment unit 100 from replenishing toner. This prevents the toner inside the development unit 7 from becoming larger than the capacity.
The present invention is useful for an image forming apparatus and is capable of obtaining a sufficient charge amount of toner without executing unnecessary stirring.
Although the present invention has been described in connection with the preferred embodiments above, it is to be noted that various changes and modifications are possible to those who are skilled in the art. Such changes and modifications are to be understood as being within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2010-042226 | Feb 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6055388 | Watanabe et al. | Apr 2000 | A |
Number | Date | Country |
---|---|---|
06230675 | Aug 1994 | JP |
08-062984 | Mar 1996 | JP |
09006120 | Jan 1997 | JP |
10-333421 | Dec 1998 | JP |
2006-194955 | Jul 2006 | JP |
2007-121939 | May 2007 | JP |
2010-008931 | Jan 2010 | JP |
2010008931 | Jan 2010 | JP |
Entry |
---|
Takeuchi (JP 2010-008931 A) Jan. 2010, JPO Machine Translation. |
Office Action (Notification of Reasons for Refusal) dated Jan. 24, 2012, issued in the corresponding Japanese Patent Application No. 2010-042226, and an English Translation thereof. (6 pages). |
Number | Date | Country | |
---|---|---|---|
20110211852 A1 | Sep 2011 | US |