1. Field of the Invention
The present invention relates to an image forming apparatus that uses an electrophotographic recording process, such as a laser printer, a copier, or a facsimile machine.
2. Description of the Related Art
Conventionally, toner discharge is known as a technology for electrophotographic image forming apparatuses. The toner discharge is, for example, an operation for forcedly discharging toner from a developing device on a regular basis and supplying the discharged toner to a cleaning blade for a photosensitive drum. The toner discharge needs to be executed from a developing roller for the following reason. That is, in a case of printing a large number of images having a low printing ratio, toner supplied from a toner container to a developing roller position remains within the developing device without being transferred, and degraded toner accumulates on a developing roller part. If the image forming (printing) is not performed for a certain period while the accumulated toner is left on the developing roller part, an adhesive force of toner may rise to cause toner fusion with respect to the developing roller and generate a defect image with lines caused by fixed toner in a toner-fused part. Therefore, an image forming apparatus needs a processing for forcedly discharging and removing toner on a regular basis in order to remove the toner remaining on the developing roller. In other words, it is necessary to discharge toner corresponding to one round of the developing roller.
Further, in a case where printing continues at a low printing ratio, a case where printing continues with small-size paper, a case where printing continues at high temperature and humidity, and other such cases, a cleaning blade for the photosensitive drum raises the following problems. That is, the cleaning blade may curl up, an edge portion of the cleaning blade may chip, or the cleaning blade may chatter (cause stick-slip). If curling up, the cleaning blade becomes unable to clean, and if the edge portion chips or chatters, toner runs through. As a measure against this phenomenon, Japanese Patent Application Laid-Open No. H09-034243 discloses a technology in which toner for discharge is distributed and supplied to each of cleaning blades and used as a lubricant to thereby prevent the cleaning blade from curling up and the edge portion from chipping or chattering.
As described above, the toner discharge has an object to clean out the degraded toner and perform maintenance of the cleaning blade. However, from the viewpoint of effective use of a toner resource, the toner consumed in the toner discharge does not play an original role of being formed as an image. Therefore, there is a demand that the toner consumed in the toner discharge be effectively used as an image.
A purpose of the present invention is to solve at least one of the above-mentioned problems and other such problems. The object of the present invention is to allow effective use of toner consumed in toner discharge as, for example, a toner image involved in color deviation detection.
A purpose of the present invention is to provide an image forming apparatus comprising image forming sections provided for respective colors, wherein each of the image forming sections includes an electrophotosensitive member, a developing unit that develops a toner image on the electrophotosensitive member, a transfer unit that applies a transfer bias and transfers the toner image formed on the electrophotosensitive member onto a belt for transferring the toner image formed on the electrophotosensitive member, and an electrophotosensitive member cleaning unit that removes toner remaining on the electrophotosensitive member, said image forming apparatus including a detection unit that detects the toner image transferred onto the belt by the image forming section, and a toner discharge unit that forcedly discharges toner from the developing unit and forms the toner image on said electrophotosensitive member, the transfer unit applies a first transfer bias with a predetermined transfer efficiency with respect to the belt, for a predetermined area part of the toner image, and applies a second transfer bias whose transfer efficiency is at least smaller than the predetermined transfer efficiency of the first transfer bias, for a part excluding the predetermined area part of the toner image.
The present invention allows effective use of the toner consumed in the toner discharge as, for example, the toner image involved in the color deviation detection.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Hereinafter, embodiments of the present invention are described in detail with reference to the accompanying drawings. However, constitutional elements described in the embodiments are mere examples, and unless otherwise specified, the scope of this invention is not to be limited only thereto.
(First Embodiment)
(Overall Construction)
A first embodiment is described by taking a color electrophotographic image forming apparatus as an example.
In this embodiment, an organic photo-conductive (OPC) photosensitive drum having a diameter of 25 mm and having a negatively charging characteristic is used as each of the photosensitive drums 1, and the respective photosensitive drums 1 are each driven to rotate at a peripheral velocity (process speed) of 180 mm/sec during image forming thereof. The photosensitive drum 1 is uniformly charged to a predetermined polarity/potential by the charging roller 2 in the course of rotation. Then, electrostatic latent images corresponding to the first to fourth color component images (yellow, magenta, cyan, and black component images) of respectively desired color images are formed on the photosensitive drums 1 subjected to image exposure by the exposure device 7. The charging roller 2 is driven to rotate in conformity to rotation of the photosensitive drum 1. The exposure device 7 used in this embodiment is a polygon scanner using a laser diode, images a laser beam modulated according to image information on the photosensitive drum 1, and forms the electrostatic latent image. Writing laser exposure light is performed from a positional signal (BD signal) within the polygon scanner for each scan line in a main scanning direction (direction perpendicular to a transport direction of a transfer material) while being delayed by a predetermined time. Further, during the image forming on the transfer material, the writing is performed at predetermined intervals between the process stations in a sub-scanning direction (transport direction of the transfer material). According to this configuration, the exposure is always performed in the same position on the photosensitive drums 1 of the first to fourth process stations Y, M, C, and K to thereby suppress a color deviation. The electrostatic latent images formed on the photosensitive drums 1 are developed by the developing rollers 3 of the first to fourth process stations Y, M, C, and K. The developing roller 3 causes toner of each of the colors to adhere to the electrostatic latent image on the photosensitive drum 1 so as to be developed as a toner image. The toner within each developing device is non-magnetic one-component toner and is negatively charged, and the development of the electrostatic latent image is performed by a non-magnetic one-component contact developing method. The developing rollers 3 each rotate at a process speed of 100% in a forward direction with respect to the photosensitive drum 1 and have a diameter of 12 mm. A developing bias is applied to the developing roller 3 by a developing bias power source (not shown), thereby performing the development.
An intermediate transfer belt unit includes an intermediate transfer belt 8, a drive roller 9, and a secondary transfer opposing roller 10. Further, a primary transfer roller 6 is disposed inside the intermediate transfer belt 8 so as to oppose each of the photosensitive drums 1, and is configured to have a primary transfer bias of a positive polarity applied thereto by a primary transfer bias power source (not shown). Note that in a sense of forming toner images that have been primarily transferred on a belt, the primary transfer rollers 6 and the above-mentioned process stations are referred to collectively as the image forming section. The drive roller 9 is caused to rotate by a motor (not shown) to thereby cause the intermediate transfer belt 8 to loop and the secondary transfer opposing roller 10 to rotate accordingly. In this embodiment, the drive roller 9 has a diameter of 30 mm. The intermediate transfer belt 8 exhibits a rotation speed of 180 mm/sec. The photosensitive drums 1 are each caused to rotate in a direction indicated by the arrow, the intermediate transfer belt 8 is caused to rotate in a direction indicated by the arrow A, and the primary transfer bias of a positive polarity is applied to the primary transfer roller 6. Accordingly, the toner images on the photosensitive drum 1 are primarily transferred onto the intermediate transfer belt 8 (onto a belt) in order from the toner image on the photosensitive drum 1Y. After that, the overlaid toner images of the four colors are transported to a secondary transfer roller 11. The cleaning blade 4 for the photosensitive drum 1 is in press contact with the photosensitive drum 1, and removes residual toner remaining on a front surface of the photosensitive drum 1 without being transferred onto the intermediate transfer belt 8 and other residues on the photosensitive drum (onto the electrophotosensitive member).
A feed/transport device 12 includes a sheet feed roller 14 for feeding a transfer material P from within a sheet feed cassette 13 for receiving the transfer material P and a transport roller pair 15 for transporting the fed transfer material P. Then, the transfer material P transported from the feed/transport device 12 is transported to the secondary transfer roller 11 by a registration roller pair 16. In the transfer from the intermediate transfer belt 8 onto the transfer material P, a bias of a positive polarity is applied to the secondary transfer roller 11 to thereby transfer the toner images of the four colors on the intermediate transfer belt 8 onto the transported transfer material P (hereinafter, referred to as “secondary transfer”). The transfer material P onto which the toner images have been transferred are transported to a fixing device 17, and have the toner images fixed to the front surface by being heated and pressurized by a fixing film 18 and a pressure roller 19. The fixed transfer material P is delivered by a delivery roller pair 20.
In the image forming apparatus including the above-mentioned intermediate transfer belt 8, toner remaining on and adhering to a front surface of the intermediate transfer belt 8 becomes a cause for a smudge on the back of the transfer material P or a stained image. Specific examples of the residual toner include toner remaining on the intermediate transfer belt 8 after the secondary transfer onto the transfer material P and fogging toner adhering to jammed paper or a non-image portion. In addition, examples of the residual toner include toner image for color deviation detection (also referred to as “test pattern image”) that has been transferred from the photosensitive drum 1 so as to be used for color deviation detection for color deviation control. Those kinds of toner remaining on and adhering to the intermediate transfer belt 8 are removed by a transfer belt cleaning blade 21, and accumulated in a container 22 for collection. Note that the image forming apparatus according to this embodiment includes a color deviation detection sensor 41 between the registration roller pair 16 and the secondary transfer roller 11.
(Control Block Diagram)
Note that respective functions of the printer control section 101 may be implemented by the CPU executing various control programs, or a dedicated circuit for a specific purpose (ASIC) may be caused to perform part or all of the functions.
(Color Deviation Detection Sensor and Color Deviation Correction)
As illustrated in
In the image forming apparatus including the color deviation detection sensor 41, by a known technology, a patch pattern (test pattern image) for the color deviation detection is formed on the intermediate transfer belt 8 during the standby of the image forming apparatus. Then, the formed patch pattern is detected by the color deviation detection sensor 41, the color deviation from a reference color in the sub-scanning direction (loop direction of the intermediate transfer belt 8) of the respective process stations is detected, and the color deviation therefrom in the main scanning direction (direction perpendicular to the sub-scanning direction) is detected. Then, the printer control section 101 performs color deviation correction control for notifying the controller 103 of color deviation information input from the color deviation sensor light receiving section 114. The controller 103 subjects the bitmap data to an electrical correction based on the color deviation information that has been notified, and performs control for suppressing the color deviation on the transfer material P. The information of which the printer control section 101 notifies the controller 103 includes, as information regarding the sub-scanning direction, information indicating by how many scan lines a laser beam light emitting timing (TOP signal output timing) of the other colors are delayed with reference to the laser beam light emitting timing of the reference color (Y). The notified controller 103 delays the timing to transmit the bitmap data to the printer control section 101 according to the information that has been notified of. Further, the information regarding the main scanning direction includes information indicating how much the laser beam light emitting timing of the other colors is progressed or delayed with reference to the laser beam light emitting timing of the reference color (K) in the main scanning direction. The notified controller 103 adjusts the timing to transmit the bitmap data to the printer control section 101 according to the information that has been notified.
(Discharge Control)
In the printer 100 according to this embodiment, the printer control section 101 causes a discharge timing determination section 120 to count a rotation number of the photosensitive drum 1 by using, for example, the counter (not shown). If a count value obtained by the discharge timing determination section 120 exceeds a fixed rotation number, control is performed so as to enter discharge control for forcedly discharging toner. The discharge timing determination section 120 counts the rotation number of the photosensitive drum 1 while the printer control section 101 is instructing the motor drive control section 110 to drive the motor (not shown) functioning to drive the photosensitive drum 1. During full-color printing, the photosensitive drums 1Y, 1M, and 1C for Y, M, and C have substantially the same rotation number, and during monochrome printing, only the photosensitive drum 1K for K is rotating. In consideration thereof, the discharge timing determination section 120 counts the rotation numbers at two stations, in other words, a Y station including the photosensitive drum 1Y and a K station including the photosensitive drum 1K.
If the discharge timing determination section 120 determines that the Y-station rotation number exceeds a predetermined threshold value during a printing operation, the printer control section 101 interrupts the printing operation at that timing. Then, the printer control section 101 causes a discharge execution section 121 to execute a full-color discharge operation targeted for all the colors. The discharge timing determination section 120 clears the counter values of both the Y-station rotation number and the K-station rotation number when the full-color discharge operation is completed. Further, if the discharge timing determination section 120 determines that the K-station rotation number exceeds a predetermined threshold value during the printing operation, the printer control section 101 interrupts the printing operation at that timing. Then, the printer control section 101 causes the discharge execution section 121 to execute a monochrome discharge operation targeted for the K station. The discharge timing determination section 120 clears the counter value of the K-station rotation number when the monochrome discharge operation is completed.
(Details of Discharge Control)
In this embodiment, in the full-color discharge operation, by making use of the fact that the toner images of all the colors are created, the sub-scanning direction color deviation between the respective stations is detected, and an execution timing of the color deviation correction control is determined. This allows the toner consumed in the toner discharge to be effectively used as, for example, the toner image involved in the color deviation detection, which also leads to reduction of an execution frequency of the color deviation correction control.
The description is performed with reference to the flowchart of
In S103, as a preparation for detection of the reflected light from the discharge toner on the intermediate transfer belt 8, the printer control section 101 instructs the color deviation sensor LED emission section 113 to turn on the light emitting element 51 of the color deviation detection sensor 41 (T100). In S104, the printer control section 101 waits until the timing T101 at which an exposure device 7K finishes an operation for forming the electrostatic latent image to the transfer material P at the K station. In S105, the printer control section 101 starts the discharge execution section 121. In S105, the discharge execution section 121 instructs the exposure control section 112 to instruct the exposure devices 7 at all the color stations to simultaneously start forced light emission of an entire image area (all color laser exposure: ON). This light emission start timing is synchronized with the BD signal within the polygon scanner. If the forced light emission start timing at each station is an arbitrary timing in the main scan line, there is a fear that a color deviation corresponding to one line may occur between the stations to prevent the color deviation between the stations from being correctly detected, and hence the forced light emission is started in synchronization with the BD signal. In S106, the discharge execution section 121 performs the following processing when determining that a timing (T102) (light emission end timing) at which the exposure has been performed by a predetermined discharge toner width in a peripheral direction has been reached. That is, the discharge execution section 121 instructs the exposure control section 112 to instruct the exposure devices 7 at all the color stations to simultaneously end forced light emission of the entire image area (all color laser exposure: OFF). This end timing of the laser exposure is also synchronized with the BD signal within the polygon scanner. Note that in the discharge operation, an image having a lateral belt shape is exposed in a rotation direction (peripheral direction or circumferential direction) of the photosensitive drum 1 over an entire range of the width direction and visualized by the developing roller 3 to thereby create a toner image. As the developed image, a solid image (image having a maximum image density) is formed.
—Length Between Both Ends of the Discharge Toner Image—
In this embodiment, the length of the discharge toner in the rotation direction of the intermediate transfer belt 8 is defined as follows. As already known, a cycle unevenness in speed of a roller related to carrying of the toner image affects a color deviation detection accuracy. In the construction according to this embodiment, the cycle unevenness in the speed of the photosensitive drum 1 affects the color deviation. Therefore, in this embodiment, as illustrated in
First, the developing roller 3 has a diameter of 12 mm and a cycle of approximately 37.68 mm. Further, the photosensitive drum 1 that affects the cycle unevenness has a diameter of 25 mm and a half cycle of approximately 39.25 mm. In order to prevent toner fusion, it is necessary to perform discharge for one round (one rotation cycle) of the developing roller 3. For this reason, here, the length of the discharge toner image is decided to be 39.25 mm (half rotation cycle of the electrophotosensitive member) corresponding to the half cycle of the photosensitive drum 1, which is longer than the cycle (one rotation cycle) of the developing roller 3. Accordingly, a time between an exposure start timing (T101) and an exposure end timing (T102) is approximately 218 (=39.25/180×1,000) msec. In this embodiment, for the sake of the construction according to the embodiment, the time is set to one half cycle of the cycle unevenness, but may be set to an odd multiple of the one half cycle which can cancel the cycle unevenness (odd multiple of the half rotation cycle of the electrophotosensitive member). In order to cancel the cycle unevenness in a color deviation detection value, the color deviation detection may be performed in a relationship of opposite phase, and detection results for color deviations may be averaged. A position in which the cycle unevenness exhibits an opposite phase with respect to a given color deviation detection point includes a position reached after progress of a half cycle and positions reached after further progress of integral multiples of one cycle. In other words, the positions of two points spaced apart from each other by a distance of an odd multiple of a half cycle are in the relationship of opposite phase in terms of the cycle unevenness, and by equalizing the color deviation detection results obtained in those positions, it is possible to cancel the cycle unevenness.
Subsequently, the discharge toner is transferred to the intermediate transfer belt 8. Up to now, an application bias to the primary transfer roller 6 is set to 0 V (second transfer bias). This is because the discharge toner is distributed and supplied to the cleaning blade 4 for the photosensitive drum 1 and the transfer belt cleaning blade 21 for the intermediate transfer belt 8. That is, assuming that the primary transfer bias is 0 V, half of the toner amount remains on the photosensitive drum 1, and half of the toner amount is transferred onto the intermediate transfer belt 8. Note that in order to prevent the toner traveling toward the transfer belt cleaning blade 21 from staining the secondary transfer roller 11, a secondary transfer bias having a negative polarity is applied between the secondary transfer roller 11 and the secondary transfer opposing roller 10 during the discharge operation. However, assuming that a transfer bias is set to 0 V as in a conventional technology, the density of the discharge toner on the intermediate transfer belt 8 decreases, and an accurate position of the toner image cannot be detected by the color deviation detection sensor 41. Therefore, in this embodiment, the primary transfer bias (first transfer bias) during the printing in which a transfer efficiency with respect to the intermediate transfer belt 8 is a predetermined transfer efficiency is applied only to both edge portions (predetermined area parts), in other words, the leading edge and the trailing edge, of the discharge toner. This allows the discharge toner position to be detected by the color deviation detection sensor 41. In S105 and S106, the electrostatic latent image of the discharge toner formed on the photosensitive drum 1 by the exposure device 7 is developed with toner by the developing roller 3, and the leading edge of the toner image reaches a primary transfer portion that is a nip portion between the photosensitive drum 1 and the primary transfer roller 6. When the printer control section 101 determines in S107 that 100 msec before the timing to reach the leading edge (leading edge of the patch) (T103) has been reached, the printer control section 101 performs the following processing. That is, the printer control section 101 causes the primary transfer bias control section 111 to apply to all the stations (turn on) the primary transfer bias for transferring the toner image onto the intermediate transfer belt 8 (all color primary transfer bias: ON). Note that a startup time of the primary transfer bias power source according to this embodiment is 50 msec, and the primary transfer bias may be started up at a timing preceding by a time larger than the startup time. That is, the primary transfer bias is previously started up so as to prevent the edge of the discharge toner from being affected.
When the printer control section 101 determines in S108 that a timing (T104) at which the leading edge of the discharge toner image has been transferred onto the intermediate transfer belt 8 by a length of 5 mm in the rotation direction has been reached, the printer control section 101 performs the following processing. That is, the printer control section 101 causes the primary transfer bias control section 111 to set to 0 V (turn off) the primary transfer bias (all color primary transfer bias: OFF). Note that the timing (T104) at which the leading edge of the discharge toner image has been transferred onto the intermediate transfer belt 8 by the length of 5 mm is set as the timing at which the primary transfer bias control section 111 sets the primary transfer bias to 0 V because a measurement spot of the color deviation detection sensor 41 is 5 mm. Note that at T104, the primary transfer bias is set to 0 V outside the both edge portions (predetermined area parts) of the leading edge and the trailing edge of the discharge toner, but the present invention is not limited thereto. In a situation in which the toner supply for preventing the transfer belt cleaning blade 21 from chattering against the intermediate transfer belt 8 is unnecessary, the primary transfer bias set to 0 V may be changed to a bias having a negative polarity. In this case, substantially all the toner images outside the both edge portions return to a photosensitive drum side. Further, in contrast, in a situation in which the amount of toner supplied to the transfer belt cleaning blade 21 for the intermediate transfer belt 8 is to be increased, a weak bias having a positive polarity may be applied as the primary transfer bias, and a toner distribution ratio with respect to the photosensitive drum 1 and the intermediate transfer belt 8 may be changed as necessary. The description is directed to the case of causing the primary transfer bias control section 111 to set to 0 V (turn off) the primary transfer bias, but the present invention is not limited thereto, and has a feature that a transfer bias (second transfer bias) whose transfer efficiency is at least smaller than the first transfer bias during the printing is applied.
When the printer control section 101 determines in S109 that a timing (T105) approximately 78 msec before the timing at which the trailing edge of the discharge toner image (trailing edge of the patch) reaches the primary transfer roller 6 has been reached, the printer control section 101 performs the following processing. That is, the printer control section 101 causes the primary transfer bias control section 111 to again apply (turn on) the primary transfer bias during the printing (all color primary transfer bias: ON). Note that the timing T105 is a timing preceding by a time corresponding to a measurement spot of 5 mm of the color deviation detection sensor 41 and the startup time of the primary transfer bias, in other words, a timing preceding by approximately 78 (=5/180×1,000+50) msec. In S110, at a time point (T106) at which the transfer of the discharge toner is finished, the printer control section 101 causes the primary transfer bias control section 111 to turn off the primary transfer bias (all color primary transfer bias: OFF).
As described above, the printer control section 101 controls the primary transfer bias to thereby enable the color deviation detection sensor 41 to detect the discharge toner. Further, it is possible to supply the toner as a lubricant to the cleaning blade 4 for the photosensitive drum 1 and the transfer belt cleaning blade 21 for the intermediate transfer belt 8. Note that it is confirmed that effects against the problem of the curling up of the blade or other such problems have been achieved, while the toner amount supplied to the cleaning blade 4 for the photosensitive drum 1 is reduced compared to the conventional technology. The discharge toner of the respective colors according to this embodiment forms such a pattern as illustrated in
Note that with regard to pattern of
After causing the discharge execution section 121 to form discharge toner patches of the respective colors, the printer control section 101 causes the color deviation detection sensor 41 to detect a passage timing of the discharge toner. In S111, the discharge execution section 121 uses the color deviation sensor interruption control section 122 to detect passage timings of the leading edge and the trailing edge of the discharge toner of the respective colors based on a change of a digital signal obtained by binarizing the reflected light value of the light receiving element 52 of the color deviation detection sensor 41. The respective timings are as illustrated in
In S112, the discharge execution section 121 makes the color deviation sensor LED emission section 113 turn off the light emitting element 51 of the color deviation detection sensor 41 at a timing (T110) at which the passage timings of all the colors have been detected without fail. In S113, in order to clean up the toner on the intermediate transfer belt 8, the discharge execution section 121 subjects the intermediate transfer belt 8 to idling rotation for a time necessary for the discharge toner to pass through the transfer belt cleaning blade 21 twice. The intermediate transfer belt 8 is subjected to the idling rotation because the residual toner on the intermediate transfer belt 8 is cleaned up without fail after the discharge toner formation. After the cleaning of the intermediate transfer belt performed in S113 is finished, in S114, a discharge color deviation calculation section 125 calculates a sub-scanning direction color deviation amount according to the following procedure.
—Calculation of Sub-Scanning Direction Color Deviation Amount—
In this embodiment, the start and the end of the exposure are simultaneously carried out at all the color stations, and hence timings at which the discharge toner patches of the respective colors pass through the color deviation detection sensor 41 are shifted from each other by approximately a distance between the stations. A theoretical difference from the distance between the stations can be assumed as the color deviation from a theoretical writing position, and by comparing the difference with the results of the color deviation correction control, it is possible to calculate the color deviation at a time point at which the discharge control is carried out.
Hereinafter, the method of color deviation calculation is described. First, the middle point of the discharge toner of each color is calculated.
Tk1R=(Tk1—1R+Tk1—2R)/2 [Ex. 1]
Tc1R=(Tc1—1R+Tc1—2R)/2 [Ex. 2]
Tm1R=(Tm1—1R+Tm1—2R)/2 [Ex. 3]
Ty1R=(Ty1—1R+Ty1—2R)/2 [Ex. 4]
Then, the resultants are converted in terms of Y, which is the reference color for the sub-scanning direction color deviation.
Tk—yR=Ty1R−Tk1R [Ex. 5]
Tc—yR=Ty1R−Tc1R [Ex. 6]
Tm—yR=Ty1R−Tm1R [Ex. 7]
As the image forming apparatus of this embodiment is 600 dpi, the time per line is [ms]=1 (inch)/600/180×1000≈0.235185, and the number of lines is changed based on this time.
YkR[line]=Tk—yR/(time per line) [Ex. 8]
YcR[line]=Tc—yR/(time per line) [Ex. 9]
YmR[line]=Tm—yR/(time per line) [Ex. 10]
Up to this point, because the calculated value is that of one side of the color deviation detection sensor 41R, the results of the calculation of both sides is averaged.
Yk[line]=(YkR[line]+YkL[line])/2 [Ex. 11]
Yc[line]=(YcR[line]+YcL[line])/2 [Ex. 12]
Ym[line]=(YmR[line]+YmL[line])/2 [Ex. 13]
Further, when the printer control portion 101 notifies the controller 103 via the color deviation correction control, each of the number of writing lines in the sub-scanning direction in terms of Y is Lk[line], Lc[line], and Lm[line], and the amount of color deviation of each color compared to at the time of color deviation correction control is:
Rk[line]=Yk[line]−Lk[line] [Ex. 14];
Rc[line]=Yc[line]−Lc[line] [Ex. 15]; and
Rm[line]=Ym[line]−Lm[line] [Ex. 16].
Then, the discharge color deviation calculation section 125 notifies a color deviation correction execution determination section 124 of calculation results. In S115, the color deviation correction execution determination section 124 determines whether or not the sub-scanning direction color deviation amount of each color is equal to or larger than a predetermined threshold value. When the color deviation correction execution determination section 124 determines in S115 that the sub-scanning direction color deviation amount of each color is equal to or larger than the predetermined threshold value, that is, that execution of the color deviation correction control is necessary, in S116, the color deviation correction execution determination section 124 requests the controller 103 to execute the color deviation correction control, and a color deviation correction control execution section 123 performs the color deviation correction control. The color deviation correction control execution section 123 forms a test pattern image different from the toner discharge on the intermediate transfer belt 8, and performs known color deviation correction control based on the results from detecting the test pattern image. Note that the test pattern image formed in S116 is not described in detail, but is a test pattern image which exhibits a pattern created separately at least from the toner patterns illustrated in
On the other hand, when the color deviation correction execution determination section 124 determines in S115 that the sub-scanning direction color deviation amount of each color is smaller than the predetermined threshold value, that is, that the execution of the color deviation correction control is unnecessary, the discharge control is brought to an end, and a printer operation is continued. In this embodiment, the threshold value of the sub-scanning direction color deviation amount is set to 3 (lines) as an example. Note that when the color deviation correction execution determination section 124 determines in S115 that the execution of the color deviation correction control is unnecessary, correction setting may be performed to correct the laser beam light emitting timing being the image forming condition based on the color deviation amount operated in S114.
In order to confirm stability of detection accuracy of the sub-scanning direction color deviation using the discharge toner according to this embodiment, the color deviation correction control→the color deviation detection using the discharge toner are repeatedly executed times, and
As described above, according to this embodiment, it is possible to perform the color deviation detection by using the discharge toner. By reflecting the color deviation detection results on the execution timing of the color deviation correction control, the color deviation correction control can be executed at a more appropriate timing than the conventional technology, and it is possible to reduce the execution frequency of the color deviation correction control. Further, in contrast, in a case of an abrupt occurrence of the color deviation, a request for the color deviation correction control can be made after detecting the color deviation, and hence it is also possible to suppress the color deviation. Further, it is possible to achieve the original object of the discharge control, that is, the object to prevent the toner fusion of the developing roller 3 and to supply toner to the cleaning blade 4 for the photosensitive drum 1 and the transfer belt cleaning blade 21. Further, the color deviation can be detected within a time of the original discharge, and hence the color deviation can be detected without newly extending a user's waiting time. That is, according to this embodiment, the toner consumed in the toner discharge can be effectively used as, for example, the toner image involved in the color deviation detection. This leads to the reduction of the execution frequency of the color deviation correction control.
(Second Embodiment)
A construction of an image forming apparatus according to a second embodiment and a schematic configuration of a control system thereof are the same as those of the first embodiment. Therefore, description thereof is omitted, and the following description is made by using the same reference symbols. The first embodiment describes the case where the focus is placed on the cycle unevenness of the photosensitive drum 1. However, the actual image forming apparatus may be affected by the cycle unevenness of the drive roller 9 (second rotary member) in addition to the photosensitive drum 1 (first rotary member) as the cycle unevenness that affects the color deviation detection results. In this embodiment, a construction and configuration that can also cancel the cycle unevenness of the drive roller 9 is proposed. Note that, the present invention is not limited to the photosensitive drum 1 and the drive roller 9 as the cycle unevennesses of interest, and the embodiment may be targeted at the rotary member involved in various kinds of image forming that exerts a cycle unevenness exhibiting a given cycle.
(Fine Patch)
In this embodiment, as illustrated in
In the same manner as the leading edge and the trailing edge of the discharge toner, the fine patch is transferred onto the intermediate transfer belt 8 by the primary transfer bias during the printing, and has the passage timing detected by the color deviation detection sensor 41. The discharge pattern on the intermediate transfer belt 8 according to this embodiment is such a pattern as illustrated in
Note that, in this embodiment, each of parts of the discharge toner patches Pk21, Pc21, Pm21, and Py21 which are transferred onto the intermediate transfer belt 8 with a low density is formed as a continuous area, but the part transferred with a low density may be formed as a non-continuous area. That is, the part transferred with a low density may be provided with a blank portion. In addition, the blank portion may be provided at regular intervals or at irregular intervals. In this embodiment, in order to detect the cycle unevennesses of the photosensitive drum 1 and the drive roller 9, a length in the loop direction from the leading edge of the discharge toner patch to the fine patch is equal to or longer than a length corresponding to one cycle of the developing roller 3. However, the discharge toner corresponding to one cycle of the developing roller 3 suffices in the discharge control. Therefore, by forming the part in which the discharge toner patch is transferred with a low density as the non-continuous area to thereby reduce the toner amount, it is possible to perform the discharge control with a minimum toner amount while detecting the color deviation amount. In addition, in order to cancel the cycle unevennesses of the photosensitive drum 1 and the drive roller 9, the interval for the discharge toner in the loop direction is set to one half cycle of the cycle unevenness, but may be set to an odd multiple or a substantially odd multiple of the one half cycle which can cancel the cycle unevenness.
(Calculation of Sub-Scanning Direction Color Deviation Amount)
The discharge color deviation calculation section 125 calculates the color deviation from the discharge toner pattern and the fine patch detection timing. First, the middle point is calculated from each color of discharge toner.
Tk21R=(Tk21—1R+Tk21—2R)/2 [Ex. 17]
Tc21R=(Tc21—1R+Tc21—2R)/2 [Ex. 18]
Tm21R=(Tm21—1R+Tm21—2R)/2 [Ex. 19]
Ty21R=(Ty21—1R+Ty21—2R)/2 [Ex. 20]
Next, the middle point of the fine patch is calculated.
Tk22R=(Tk22—1R+Tk22—2R)/2 [Ex. 21]
Tc22R=(Tc22—1R+Tc22—2R)/2 [Ex. 22]
Tm22R=(Tm22—1R+Tm22—2R)/2 [Ex. 23]
Ty22R=(Ty22—1R+Ty22—2R)/2 [Ex. 24]
The results of the discharge toner and the fine patch are averaged.
Tk2R=(Tk21R+Tk22R)/2 [Ex. 25]
Tc2R=(Tc21R+Tc22R)/2 [Ex. 26]
Tm2R=(Tm21R+Tm22R)/2 [Ex. 27]
Ty2R=(Ty21R+Ty22R)/2 [Ex. 28]
After averaging, the resultants are converted in terms of Y, which is the reference color for the sub-scanning direction color deviation.
Tk—yR=Ty2R−Tk2R [Ex. 29]
Tc—yR=Ty2R−Tc2R [Ex. 30]
Tm—yR=Ty2R−Tm2R [Ex. 31]
Then, the discharge color deviation calculation section 125 uses expressions 8 to 16 of the first embodiment to calculate sub-scanning direction color deviations Rk (lines), Rc (lines), and Rm (lines) of the respective colors.
In order to confirm stability of detection accuracy of the sub-scanning direction color deviation using the discharge toner according to this embodiment, the color deviation correction control→the color deviation detection using the discharge toner are repeatedly executed 10 times, and
As described above, according to this embodiment, the toner consumed in the toner discharge can be effectively used as, for example, the toner image involved in the color deviation detection. This leads to the reduction of the execution frequency of the color deviation correction control.
(Third Embodiment)
A construction of an image forming apparatus according to a third embodiment of the present invention and a schematic configuration of a control system thereof are the same as those of the first embodiment. Therefore, description thereof is omitted, and the description is made by using the same reference symbols. The second embodiment describes the construction and configuration that enable the color deviation to be detected during the discharge control with more accurately with the addition of the discharge toner and the fine patch. However, more toner is consumed than in normal discharge control due to the addition of the fine patch for the above-mentioned purpose. This embodiment describes a construction and configuration that can cancel the cycle unevennesses of the photosensitive drum 1 and the drive roller 9 while keeping the consumption amount of toner to a lower level than in the discharge control.
(Discharge Toner Patch)
In this embodiment, instead of being formed as one lateral belt, as illustrated in
Specifically, in the toner patch according to this embodiment, lateral belts P1 to P7 illustrated in
The discharge execution section 121 selects which of the patches to cause the primary transfer bias control section 111 to apply the primary transfer bias to and normally transfer onto the intermediate transfer belt 8. First, assuming that the leading patch P1 is transferred, the patch having a distance from P1 closest to a half cycle of the photosensitive drum 1 being 39.25 mm is P4, and the patch having the distance closest to a half cycle of the drive roller 9 being 47.1 mm is P5. Accordingly, the discharge execution section 121 is set to cause the patches P1, P4, and P5 to be normally transferred onto the intermediate transfer belt 8. With this arrangement, it is possible to discharge all the toner existing on the periphery of the developing roller, and it is also possible to substantially cancel the cycle unevennesses of the photosensitive drum 1 and the drive roller 9 in the color deviation detection.
The discharge pattern on the intermediate transfer belt 8 according to this embodiment is as illustrated in
Note that, in this embodiment, if a focus is placed on the part transferred onto the intermediate transfer belt 8 with a high density, for example, the discharge toner patch P4, the blank portions B3 and B4 are formed to be arranged on both sides thereof, but a blank part may be provided at least one of before and after the discharge toner patch P4 in the loop direction. This is because the edge of the toner patch can be detected by the color deviation detection sensor 41 if a blank portion is formed on at least one side of the part transferred with a high density. Further, the blank portions are provided at the same intervals as the discharge toner patches, but may be provided at different intervals therefrom. In this embodiment, the discharge toner is formed so that a total length of the discharge toner becomes a length corresponding to the two rounds of the developing roller 3, but the discharge toner corresponding to one round of the developing roller 3 at minimum suffices in order to perform the discharge control for the sake of the developing roller 3. However, in order to detect the cycle unevennesses of the photosensitive drum 1 and the drive roller 9, it is necessary to transfer the discharge toner patches P1, P4, and P5 (first to third predetermined area parts) in fixed positions with a high density. Therefore, the arrangement and intervals regarding the discharge toner patches P2, P3, P6, and P7 transferred onto the intermediate transfer belt 8 with a low density can be changed so that the total toner amount corresponds to one cycle of the developing roller 3, and are not limited to this embodiment. That is, the toner amount is set to correspond to one cycle of the developing roller 3 as a whole by reducing the toner amount of the part transferred onto the intermediate transfer belt 8 with a low density, and hence it is possible to perform the discharge control with a minimum toner amount while enabling the detection of the color deviation amount.
(Calculation of Amount of Sub-Scanning Direction Color Deviation)
The discharge color deviation calculation section 125 calculates the color deviation based on this timing. The discharge color deviation calculation section 125 calculates the middle point of each color of each patch. In the case where the K station patch is calculated:
Tk31R=(Tk31—1R+Tk31—2R)/2 [Ex. 32];
Tk34R=(Tk34—1R+Tk34—2R)/2 [Ex. 33]; and
Tk35R=(Tk35—1R+Tk35—2R)/2 [Ex. 34].
All the color calculations are carried out in the same manner in the discharge color deviation calculation section 125, and the C station patch Tc31R, Tc34R, Tc35R, the M station patch Tm31R, Tm34R, Tm35R, and the Y station patch Ty31R, Ty34R, Ty35R are calculated.
Next, in order to cancel the speed unevenness (cycle unevenness) of the photosensitive drum 1, the discharge color deviation calculation section 125 averages the first patch and the fourth patch.
Tk314R=(Tk31R+Tk34R)/2 [Ex. 35]
Further, in order to cancel the speed unevenness (cycle unevenness) of the drive roller 9, the discharge color deviation calculation section 125 averages the first patch and the fifth patch.
Tk315R=(Tk31R+Tk35R)/2 [Ex. 36]
Further, the two pieces of data are averaged.
Tk3R=(Tk314R+Tk315R)/2 [Ex. 37]
Calculation is performed on all colors, and the C station patch Tc3R, the M station patch Tm3R, and the Y station patch Ty3R are calculated. After averaging, the resultants are converted in terms of Y, which is the reference color for the sub-scanning direction color deviation.
Tk—yR=Ty3R−Tk3R [Ex. 38]
Tc—yR=Ty3R−Tc3R [Ex. 39]
Tm—yR=Ty3R−Tm3R [Ex. 40]
The discharge color deviation calculation section 125 uses expressions 8 to 16 of the first embodiment to calculate sub-scanning direction color deviations Rk (lines), Rc (lines), and Rm (lines) of the respective colors.
In order to confirm stability of detection accuracy of the sub-scanning direction color deviation using the discharge toner according to this embodiment, the color deviation correction control→the color deviation detection using the discharge toner are repeatedly executed times, and
As described above, according to this embodiment, the toner consumed in the toner discharge can be effectively used as, for example, the toner image involved in the color deviation detection. This leads to the reduction of the execution frequency of the color deviation correction control.
(Other Embodiments)
Note that, the description has been directed to the image forming apparatus including the intermediate transfer belt 8, but the present invention can be diverted to the image forming apparatus that employs a method of transferring the toner image developed on the photosensitive drum 1 directly onto the transfer material. That is, the same effect can also be obtained by replacing the intermediate transfer belt 8 with a transfer material transport belt (surface of a recording material bearing member) so as to form such toner patches as illustrated in
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2010-200107, filed Sep. 7, 2010, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2010-200107 | Sep 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5732310 | Hiroshima et al. | Mar 1998 | A |
7340189 | Itagaki et al. | Mar 2008 | B2 |
7373097 | Ehara | May 2008 | B2 |
7493072 | Sato et al. | Feb 2009 | B2 |
20090003865 | Endou et al. | Jan 2009 | A1 |
20090214233 | Murauchi et al. | Aug 2009 | A1 |
20100086320 | Koizumi et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
1139221 | Jan 1997 | CN |
09-034243 | Feb 1997 | JP |
2006-106069 | Apr 2006 | JP |
2007-179008 | Jul 2007 | JP |
Entry |
---|
Office Action in Chinese Application No. 201110257611.0 dated Dec. 4, 2013. |
Number | Date | Country | |
---|---|---|---|
20120057892 A1 | Mar 2012 | US |