This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2013-216750 filed on Oct. 17, 2013.
The present invention relates to an image forming apparatus.
According to an aspect of the invention, there is provided an image forming apparatus comprising a conveying device which conveys a recording medium; a droplets ejecting device for ejecting droplets onto the recording medium being conveyed by the conveying device; a drying unit for drying the droplets that have been ejected on the recording medium being conveyed by the conveying device; and a varying unit for varying a conveyance path length from the droplets ejecting device to the drying unit in accordance with at least one of a conveyance speed of the recording medium and an ejected droplets permeation characteristic of the recording medium.
The left part of each of
The left part of each of
An image forming apparatus according to a first exemplary embodiment of the present invention will be described below.
<Overall Configuration>
First, the overall configuration of the image forming apparatus will be described. The image forming apparatus 10 shown in
The image forming apparatus 10 is equipped with an image forming unit 30 which forms images on a portion of continuous paper P1, a preprocessing unit 12 which houses a source part of the continuous paper P1 to be supplied to the image forming unit 30, and a post-processing unit 14 which houses an image-formed part of the continuous paper P1 that is ejected from the image forming unit 30.
The image forming unit 30 of the image forming apparatus 10 is equipped with a control unit 20, which performs various controls for the entire image forming apparatus 10. A buffer unit for controlling the conveyance amount etc. of the continuous paper P1 may be disposed between the preprocessing unit 12 and the image forming unit 30 and between the image forming unit 30 and the post-processing unit 14.
The continuous paper P1 is wound on plural conveying rolls 42 and a movable roll 100 and is conveyed along a conveyance path 50 which is formed inside the image forming unit 30. The movable roll 100, which is disposed between a droplets ejecting device 72 and a dryer 60, serves to returns the continuous paper P1. A part, between the droplets ejecting device 72 and the dryer 60, of the conveyance path 50 is called a return path portion 56. As described later, the movable roll 100 is made movable in the left-right direction in
The droplets ejecting device 72 is disposed inside the image forming unit 30. The droplets ejecting device 72 has four droplets ejecting heads 70K, 70C, 70M, and 70Y of four colors (black (K), cyan (C), magenta (M), and yellow (Y)) which eject ink droplets onto the continuous paper P1 being conveyed along the conveyance path 50. In the following description, the droplets ejecting heads will be denoted by numeral 70 followed by K, C, M, and Y when they need to be discriminated from each other in terms of color; if not, these suffixes will be omitted.
The droplets ejecting heads 70 of the droplets ejecting device 72 are opposed to an upper flat path portion 52 which is part of the conveyance path 50. The droplets ejecting heads 70K, 70C, 70M, and 70Y are arranged in this order in a continuous paper conveyance direction indicated by arrow K.
Each droplets ejecting head 70 is long in the direction that is perpendicular to the continuous paper conveyance direction K. The image forming area of each droplets ejecting head 70 is set greater than the width of the continuous paper P1.
Each droplets ejecting head 70 is configured so as to be supplied with ink of the corresponding color from an ink tank (not shown). In this exemplary embodiment, water-based pigment inks are used in each of which a pigment G (see
There are no limitations on the method by which each droplets ejecting head 70 ejects ink droplets. Any of known techniques of the thermal type, piezoelectric type, etc. can be used.
Inside the image forming unit 30, the dryer 60 (described later) is disposed downstream of (under (see
The preprocessing unit 12 is equipped with a supply roll 16 around which a source part of the continuous paper P1 to be supplied to the image forming unit 30 is wound. The supply roll 16 is supported by a frame member (not shown) so as to be rotatable in the direction indicated by arrow N.
On the other hand, the post-processing unit 14 is equipped with a takeup roll 18 for taking up an image-formed part of the continuous paper P1. As the takeup roll 18 is rotated in the direction indicated by arrow N receiving rotational force from a motor (not shown), the continuous paper P1 is conveyed along the conveyance path 50. The continuous paper conveyance speed can be varied by varying the rotation speed of the motor (not shown). The conveyance speed is in a range of 30 to 200 m/min.
<Image Forming Operation>
Next, an image forming process according to which the image forming apparatus 10 forms images on the continuous paper P1 will be outlined.
The takeup roll 18 of the post-processing unit 14 is rotated, whereby the continuous paper P1 is given tension in the conveyance direction K and thereby conveyed along the conveyance path 50.
The droplets ejecting heads 70 of the respective colors of the droplets ejecting device 72 eject ink droplets Q onto the portion, being conveyed along the upper flat path portion 52, of the continuous paper P1, whereby an image is formed on that portion of the continuous paper P1 (see
As a portion of the continuous paper P1 is conveyed along a lower flat path portion 54, the dryer 60 dries the ink droplets, that is, evaporates the water contained therein, and thereby fuses the ink droplets on that portion of the continuous paper P1 (see
Since the continuous paper conveyance speed is variable, the control unit 20 adjusts the ink droplets ejecting frequency of each droplets ejecting head 70 in accordance with the conveyance speed. Where the productivity increases as the continuous paper conveyance speed increases, a slow conveyance speed is advantageous in terms of conveyance stability and contributes to increase in image quality. Therefore, the user sets the conveyance speed as appropriate by manipulating a control panel (not shown) according to a purpose of printing.
<Moving Mechanism>
Next, a description will be made of the moving mechanism 150 which is disposed adjacent to the return path portion 56 which is the part, between the droplets ejecting device 72 and the dryer 60, of the conveyance path 50. The moving mechanism 150 moves the movable roll 100 on which the continuous paper P1 is wound.
As shown in
As shown in
The ball screw 120 includes a screw shaft 122, a nut 124 (see
The shaft 110 extends in the X direction parallel with the screw shaft 122 of the ball screw 120 and fixed to a body or the like (not shown) at both ends.
As shown in
As shown in
When the motor 140 (see
As shown in
The motor 140 (see
<Dryer>
Next, the dryer 60 will be described. As shown in
The output power of the infrared heaters 62 is variable and controlled by the control unit 20.
The infrared heaters 62 is cooled by a fan (not shown), and high-humidity air that is produced by evaporation of water from ink droplets is discharged by a ventilator (not shown).
<Workings>
Next, a description will be made of how the image forming apparatus 10 according to the exemplary embodiment works.
(Relationship between Image and the Degree of Permeation of Ink Droplets into Continuous Paper)
The left part of each of
The right part of
On the other hand, in the case where as shown in the right part of
In the case where as shown in the right part of
(Relationship between Image and Drying)
The left part of each of
A fine image is obtained if ink droplets are dried properly as shown in
On the other hand, in the case where as shown in the right part of
In the case where as shown in the right part of
(Control of Varying the Conveyance Path Length from Droplets Ejecting Device to Dryer)
As shown in
In the image forming apparatus 10 according to the exemplary embodiment, the continuous paper conveyance speed is variable. Therefore, if the conveyance path length of the return path portion 56 were fixed, the time taken by ink droplets to pass the return path portion 56 would vary depending on the conveyance speed. Therefore, the ink droplets permeation time, and hence the degree of permeation, would vary depending on the continuous paper conveyance speed. That is, the permeation might would become insufficient (right part of
In view of the above, in the exemplary embodiment, the control unit 20 moves the movable roll 100 in the X direction using the moving mechanism 150 shown in
More specifically, as shown in
As a result, the ink droplets permeation time falls within the predetermined range, that is, the degree of permeation of ink droplets Q falls within an allowable range, irrespective of the continuous paper conveyance speed. Thus, the occurrence of an image failure (e.g., offsetting or smudging of pigment particles G or image density reduction) that may occur because the permeation of ink droplets Q into the continuous paper P1 is improper when they are dried by the dryer 60 can be suppressed.
Furthermore, in the exemplary embodiment, the control unit 20 controls the output power of the infrared heaters 62 of the dryer 60 so that the drying energy that the continuous paper P1 receives in the dryer 60 falls within a predetermined range.
More specifically, as shown in
As a result, the drying energy that the continuous paper P1 receives in the dryer 60 falls within the predetermined range and hence the degree of drying of ink droplets does not vary much irrespective of the continuous paper conveyance speed. Thus, the occurrence of an image failure due to improper drying of ink droplets can be suppressed.
An image forming apparatus according to a second exemplary embodiment of the invention will be described below. Components having the same ones in the first exemplary embodiment will be given the same reference symbols as the latter, and will not be described redundantly.
<Overall Configuration>
The image forming apparatus 11 shown in
The image forming apparatus 11 is equipped with an image forming unit 31 which forms images on cut sheets P2, a preprocessing unit (not shown) which houses cut sheets P2 to be supplied to the image forming unit 31, and a post-processing unit (not shown) which houses cut sheets P2 that are ejected from the image forming unit 31. The image forming unit 31 of the image forming apparatus 11 is equipped with a control unit 20, which performs various controls for the entire image forming apparatus 11.
A cut sheet P2 is conveyed by plural conveying rolls 43 and a conveying belt 200 along a conveyance path 51 which is formed inside the image forming unit 31.
Droplets ejecting heads 70 of a droplets ejecting device 72 are opposed to an upper flat path portion 53, that is, an upper flat portion of the conveying belt 200. Inside the image forming unit 31, a dryer 60 is disposed downstream of (under (see
A cut sheet P2 is conveyed as the conveying belt 200 is moved in the conveyance direction K receiving rotational force from a motor (not shown) in a state that the cut sheet P2 is stuck to it as a result of operation of a sticking means (not shown). The conveyance speed of a cut sheet P2 being conveyed by the conveying belt 200 can be varied by varying the movement speed of the conveying belt 200 by varying the rotation speed of the motor (not shown).
<Conveying Belt Moving Mechanism>
Next, a description will be made of a conveying belt moving mechanism 150. The conveying belt 200 is wound on plural rolls 202, a movable roll 204, and a movable drum 210. The movable roll 204 and the movable drum 210 are moved in an X direction by a mechanism with a ball screw which is similar to the moving mechanism 150 used in the first embodiment (see
When the movable roll 204 and the movable drum 210 are moved in the X direction, the conveyance path length of a return path portion 57 which is a part, between the droplets ejecting device 72 and the dryer 60, of the conveyance path 51 is varied. More specifically, the conveyance path length of the return path portion 57 is increased when the movable drum 210 is moved in the +X direction and the movable roll 204 is moved in the −X direction accordingly. The conveyance path length of the return path portion 57 is shortened when the movable drum 210 is moved in the −X direction and the movable roll 204 is moved in the +X direction accordingly.
The movable drum 210 and the movable roll 204 are controlled by the control unit 20. That is, the control unit 20 performs a control of varying the conveyance path length of the return path portion 57 between the droplets ejecting device 72 and the dryer 60.
<Workings>
Next, a description will be made of how the image forming apparatus 11 according to the exemplary embodiment works.
In this exemplary embodiment, as in the first exemplary embodiment, the control unit 20 moves the movable drum 210 and the movable roll 204 in the X direction and thereby varies the conveyance path length of the return path portion 57 so that the time during which ink droplets permeate into a cut sheet P2 falls within a predetermined range.
More specifically, when the conveyance speed is high, the control unit 20 moves the movable drum 210 in the +X direction and thereby increases the conveyance path length of the return path portion 57. When the conveyance speed is low, the control unit 20 moves the movable drum 210 in the −X direction and thereby shortens the conveyance path length of the return path portion 57.
As a result, the ink droplets permeation time falls within the predetermined range, that is, the degree of permeation of ink droplets Q falls within an allowable range, irrespective of the cut sheet conveyance speed. Thus, the occurrence of an image failure (e.g., offsetting or smudging of pigment particles G or image density reduction) that may occur because the permeation of ink droplets Q into a cut sheet P2 is improper when they are dried by the dryer 60 can be suppressed.
Furthermore, in this exemplary embodiment, as in the first exemplary embodiment, the control unit 20 controls the output power of infrared heaters 62 of the dryer 60 so that the drying energy that a cut sheet P2 receives in the dryer 60 falls within a predetermined range.
More specifically, when the cut sheet conveyance speed is high, the control unit 20 increases the output power of the infrared heaters 62 of the dryer 60. When the cut sheet conveyance speed is low, the control unit 20 lowers the output power of the infrared heaters 62 of the dryer 60. As a result, the drying energy falls within the predetermined range and hence the degree of drying of ink droplets does not vary much, whereby the occurrence of an image failure due to improper drying of ink droplets can be suppressed.
<Modifications>
Next, modifications of the exemplary embodiments will be described below. Although the modifications will be described using the drawings (
(Modification 1)
In the exemplary embodiments, the drying energy that continuous paper P1 (or cut sheet P2) receives is set within the predetermined range by adjusting the output power of all the infrared heaters 62 (see
For example, as in a first modification shown in
Alternatively, the drying energy that continuous paper P1 (or cut sheet P2) receives may be set within the predetermined range by varying both of the output power of the infrared heaters 62 and the number of turned-on infrared heaters 62 in accordance with its conveyance speed.
(Modification 2)
In the exemplary embodiments, the conveyance path length of the return path portion 56 (or 57) is varied by moving the movable roll 100 (or movable drum 210) as shown in
For example, as in a second modification shown in
In this configuration, the movable roll 100 (or movable drum 210) is not moved (i.e., its position is fixed).
Alternatively, the conveyance path length may be varied by using both of the movement of the movable roll 100 (or movable drum 210) and the turning-on start position (drying start position) of the infrared heaters 62.
Still further, the drying energy that continuous paper P1 (or cut sheet P2) receives may be set within the predetermined range by varying both of the output power of the infrared heaters 62 and the number of turned-on infrared heaters 62.
<Other Modifications>
In the above-described exemplary embodiments and modifications, the conveyance path length from the droplets ejecting device 72 to the dryer 60 is varied in accordance with the conveyance speed of the recording medium (continuous paper P1 or cut sheet P2) so that the permeation time falls within a predetermined range (i.e., ink droplets being in the state shown in the right part of
The droplets (ink droplets) permeation speed varies depending on the permeation characteristic of the recording medium (continuous paper P1 or cut sheet P2), that is, the type of recording medium. In the case of a recording medium (continuous paper P1 or cut sheet P2) having a permeation characteristic that the permeation speed is low, a large amount of ink tends to remain on the surface of the recording medium as in the case that the permeation time is so short that the permeation becomes insufficient (see the right part of
In the case of a recording medium (continuous paper P1 or cut sheet P2) having a permeation characteristic that the permeation speed is high, only a small amount of ink tends to remain on the surface of the recording medium as in the case that the permeation time is so long that the permeation becomes excessive (see the right part of
In view of the above, the conveyance path length from the droplets ejecting device 72 to the dryer 60 may be varied in accordance with the droplets permeation characteristic of the recording medium (continuous paper P1 or cut sheet P2). In this case, conveyance path lengths that are suitable for types of recording media (continuous paper P1 or cut sheets P2), that is, permeation characteristics of recording media, are determined in advance by experiments, for example, and stored in a storage means of the control unit 20 in advance.
The user selects a type of recording medium such as continuous paper P1 or a cut sheet P2 (i.e., a permeation characteristic (permeation speed)) by manipulating a control panel (not shown). Based on the selection result, the control unit 20 varies the conveyance path length by moving the movable roll 100 or the movable drum 210 in the X direction. More specifically, the conveyance path length is increased when the droplets permeation speed of the recording medium (continuous paper P1 or cut sheet P2) is low, and is shortened when the droplets permeation speed is high.
The conveyance path length may be varied in accordance with both of the conveyance speed and the droplets permeation speed of the recording medium (continuous paper P1 or cut sheet P2).
In the above-described exemplary embodiments and modifications, droplets (ink droplets) ejected on continuous paper P1 or a cut sheet P2 are dried by evaporating water from them by radiation heating using the plural infrared heaters 62, the invention is not limited to such a case. A dryer (drying means) having any configuration may be employed as long as it has the function of drying droplets (ink droplets) by evaporating water from them.
The configuration of the image forming apparatus is not limited to the configurations described in the exemplary embodiments and the modifications but various other configurations may be employed. Furthermore, it goes without saying that the invention can be practiced in various forms without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2013-216750 | Oct 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4595279 | Kuru et al. | Jun 1986 | A |
20030189628 | Kaga et al. | Oct 2003 | A1 |
20090295894 | Hori | Dec 2009 | A1 |
20130033549 | Barton et al. | Feb 2013 | A1 |
20130293646 | Stephens et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
10-193721 | Jul 1998 | JP |
2008-110554 | May 2008 | JP |
2012-25042 | Feb 2012 | JP |
Entry |
---|
Abstract and machine translation of JP 2008-110554. |
Abstract and machine translation of JP 2012-025042. |
Abstract and machine translation of JP 10-193721. |
Number | Date | Country | |
---|---|---|---|
20150109391 A1 | Apr 2015 | US |