This application claims priority under 35 U.S.C. §119 from Japanese Patent Application No. 2013-121126 filed on Jun. 7, 2013. The entire subject matter of the application is incorporated herein by reference.
1. Technical Field
The following description relates to one or more techniques for an image forming apparatus configured to perform image formation in an electrophotographic method.
2. Related Art
An image forming apparatus is configured to, after charging a photoconductive drum by a charger, form an electrostatic latent image on the photoconductive drum, and carry a developer image on the photoconductive drum. Hence, in order to prevent deterioration of the photoconductive drum due to ozone generated by the charger, it is required to keep the ozone from staying around the photoconductive drum.
In view of the above problem, an image forming apparatus has been known that is configured to generate an air current and let ozone flow along with the air current, so as to prevent the ozone from staying around the photoconductive drum.
For instance, a color printer has been proposed, in which four process cartridges, each including a photoconductive drum and a charger, are arranged in a front-to-rear direction (an arrangement direction), and a regulating member for regulating an air current is disposed between any two adjacent process cartridges.
In the proposed color printer, since each regulating member regulates an air current between corresponding two adjacent process cartridges so as to prevent inflow of air containing ozone into an undesired space, it is possible to secure a smooth current of the air containing ozone.
However, in the proposed color printer, since each regulating member is disposed between corresponding two adjacent process cartridges, the rearmost process cartridge does not have a regulating member provided therefor.
Thus, around the rearmost process cartridge, air containing ozone might enter an undesired space, and thereby a current of the air containing ozone might be inhibited.
Aspects of the present invention are advantageous to provide one or more improved techniques, for an image forming apparatus, which make it possible to secure a smooth air current around a photoconductive drum disposed at one end in an arrangement direction in which a plurality of photoconductive drums are arranged.
According to aspects of the present invention, an image forming apparatus is provided, which includes an apparatus main body including an inner wall configured to define an accommodation portion, a plurality of photoconductive drums arranged in parallel with each other at intervals in a first direction toward a first side from a second side of the image forming apparatus, in the accommodation portion, a plurality of chargers disposed corresponding to the plurality of photoconductive drums, respectively, each charger configured to charge a corresponding photoconductive drum of the plurality of photoconductive drums, a frame body configured to support the plurality of photoconductive drums and the plurality of chargers and to be accommodated in the accommodation portion, a regulating member being a flexible member, the regulating member being disposed between the inner wall and a first-side end portion of the frame body in the first direction, the regulating member having a first end portion and a second end portion opposite to the first end portion, the first end portion of the regulating member being fixed to a first one of the first-side image forming unit and the inner wall, the second end portion of the regulating member being configured to contact a second one of the first-side image forming unit and the inner wall, the regulating member being configured to apply an urging force to the frame body and regulate an air current, and a pressing member configured to press the frame body against the urging force of the regulating member and to regulate a relative movement of the frame body with respect to the apparatus main body.
According to aspects of the present invention, further provided is an image forming apparatus including an apparatus main body including an inner wall configured to define an accommodation portion, a plurality of photoconductive drums arranged in parallel with each other at intervals in a predetermined direction toward a first side from a second side of the image forming apparatus, in the accommodation portion, a plurality of chargers disposed corresponding to the plurality of photoconductive drums, respectively, each charger configured to charge a corresponding photoconductive drum of the plurality of photoconductive drums, a frame body configured to support the plurality of photoconductive drums and the plurality of chargers and to be accommodated in the accommodation portion, a regulating member being a flexible member, the regulating member being disposed between the inner wall and a first-side end portion of the frame body in the predetermined direction, so as to define at least a part of an airflow path formed to regulate an air current, the regulating member having a first end portion and a second end portion opposite to the first end portion, the first end portion of the regulating member being fixed to a first one of the first-side image forming unit and the inner wall, the second end portion of the regulating member being configured to contact a second one of the first-side image forming unit and the inner wall, the regulating member being configured to apply an urging force to the frame body, and a pressing member configured to press the frame body against the urging force of the regulating member and to regulate a relative movement of the frame body with respect to the apparatus main body.
It is noted that various connections are set forth between elements in the following description. It is noted that these connections in general and, unless specified otherwise, may be direct or indirect and that this specification is not intended to be limiting in this respect.
Hereinafter, an embodiment according to aspects of the present invention will be described with reference to the accompanying drawings.
1. Overall Configuration of Printer
As shown in
The printer 1 includes, inside a main body casing 2, a sheet feeding unit 3 configured to feed sheets S, and an image forming unit 4 configured to form images on the sheets S fed from the sheet feeding unit 3.
(1) Main Body Casing
The main body casing 2 is formed substantially in a rectangular box shape in a side view. The main body casing 2 is configured to accommodate the sheet feeding unit 3 and the image forming unit 4. Further, the main body casing 2 includes a wall portion with an opening 5, and a front cover 6 configured to open and close the opening 5.
It is noted that, in the following descriptions, a side on which the front cover 6 is disposed will be defined as a front side of the printer 1, and the opposite side will be defined as a rear side thereof. Further, a left side and a right side of the printer 1 will be defined in a front view of the printer 1. Specifically, on a sheet surface of
Further, in the embodiment, a left-to-right direction is exemplified as an axial direction. The left side represents one side in the axial direction. The right side represents the other side in the axial direction. Further, a front-to-rear direction is exemplified as an arrangement direction (in which below-mentioned process units 50 are arranged). The rear side represents one side in the arrangement direction. The front side represents the other side in the arrangement direction. Further, an up-to-down direction is the vertical direction. The front-to-rear direction and the left-to-right direction are horizontal directions.
The front cover 6 is configured to swing around a lower end portion thereof, between a closed position to close the opening 5 and an open position to open the opening 5 as shown in
(2) Sheet Feeding Unit and Image Forming Unit
As shown in
The image forming unit 4 is disposed above the feed tray 7. The image forming unit 4 includes a scanning unit 10, a drawer unit 11, a transfer unit 12, and a fuser unit 13.
The scanning unit 10 is disposed at an upper end portion in the main body casing 2. As indicated by solid lines in
The drawer unit 11 is disposed below the scanning unit 10, with a small gap from the scanning unit 10. The drawer unit 11 includes a drawer frame 16 and process units 50.
As shown in
As shown in
The process units 50 are four process units provided corresponding to four colors (i.e., yellow, magenta, cyan, and black), respectively.
In the drawer frame 16, the four process units 50 are arranged in parallel with each other at intervals of a small distance in the front-to-rear direction. More specifically, the four process units 50 are arranged serially in order of a yellow process unit 50Y, a magenta process unit 50M, a cyan process unit 50C, and a black process unit 50K from front to back.
As shown in
The photoconductive drum 17 is formed substantially in a cylindrical shape extending in the left-to-right direction. The photoconductive drum 17 is disposed at a lower end portion of a corresponding process unit 50, such that a lower end portion of the photoconductive drum 17 is exposed out of the drawer frame 16. The photoconductive drum 17 is configured to rotate relative to the drawer frame 16.
The scorotron charger 18 is disposed apart from the photoconductive drum 17, at an upper rear side of the photoconductive drum 17.
The drum cleaning roller 29 is disposed behind the photoconductive drum 17. A front end portion of the drum cleaning roller 29 is in contact with the photoconductive drum 17.
The development roller 19 is disposed at an upper front side of the photoconductive drum 17. A lower front end portion of the development roller 19 is in contact with the photoconductive drum 17.
The supply roller 20 is disposed at an upper front side of the development roller 19. A lower rear end portion of the supply roller 20 is in contact with the development roller 19.
The layer thickness regulating blade 21 is formed substantially in a plate shape extending in the front-to-rear direction. The layer thickness regulating blade 21 is disposed above the development roller 19. A front end portion of the layer thickness regulating blade 21 is in contact with an upper end portion of the development roller 19.
Each process unit 50 is configured to store toner in a region higher than the development roller 19, the supply roller 20, and the layer thickness regulating blade 21.
The transfer unit 12 is configured to extend along the front-to-rear direction, above the feed tray 7 and under the plurality of photoconductive drums 17.
The transfer unit 12 includes a driving roller 22, a driven roller 23, a conveyance belt 24, and transfer rollers 25.
The driving roller 22 and the driven roller 23 are spaced apart from each other in the front-to-rear direction.
The conveyance belt 24 is wound around the driving roller 22 and the driven roller 23, such that an upper portion of the conveyance belt 24 contacts the plurality of photoconductive drums 17 from beneath. Further, the conveyance belt 24 is configured to move around in such a manner that the upper portion thereof in contact with the photoconductive drums 17 moves backward from the front, in response to rotations of the driving roller 22 and the driven roller 23.
There are four transfer rollers 25 disposed to face the four photoconductive drums 17 across the upper portion of the conveyance belt 24, respectively. In other words, each of the four transfer rollers 25 is disposed under the corresponding photoconductive drum 17 so as to pinch the upper portion of the conveyance belt 24 with the corresponding photoconductive drum 17.
The fuser unit 13 is disposed at an upper rear side of the transfer unit 12, behind the drawer unit 11. The fuser unit 13 includes a heating roller 31, and a pressing roller 32 in pressure contact with the heating roller 31.
(3) Image Forming Operation
Subsequently, an image forming operation by the printer 1 will be described. It is noted that the following image forming operation is performed under control of a controller (not shown).
(3-1) Development
Each supply roller 20 supplies the corresponding development roller 19 with toner in the corresponding process unit 50. The supply roller 20 and the development roller 19 positively charge the toner therebetween in a frictional manner.
Next, when the development roller 19 rotates, the layer thickness regulating blade 21 regulates a thickness of the toner supplied to the development roller 19. Thereby, the toner supplied to the development roller 19 is carried as a thin layer of a constant thickness, on a surface of the development roller 19.
Meanwhile, the scorotron charger 18 evenly charges a surface of the photoconductive drum 17. Thereafter, the scanning unit 10 exposes the surfaces of the charged photoconductive drums 17 based on predetermined image data. Thereby, an electrostatic latent image based on the image data is formed on the surface of each photoconductive drum 17.
When rotating, each development roller 19 supplies the toner carried thereon to the electrostatic latent image on the circumferential surface of the corresponding photoconductive drum 17. Thereby, a toner image is formed on the circumferential surface of the photoconductive drum 17.
(3-2) Sheet Feeding
A feed roller 8 is disposed at an upper front side of the feed tray 7. The feed roller 8, when rotating, feeds the sheets S placed on the feed tray 7 upward to between two registration rollers 9, on a sheet-by-sheet basis. Subsequently, the two registration rollers 9, when rotating, convey the sheet S toward the image forming unit 4 at predetermined timing, so as to supply the sheet S between the conveyance belt 24 and the photoconductive drums 17.
Next, the conveyance belt 24 conveys the sheet S supplied between the conveyance belt 24 and the photoconductive drums 17, backward from the front. At this time, the photoconductive drums 17 and the transfer rollers 25 sequentially transfer the toner images of the different four colors onto the sheet S passing between the photoconductive drums 17 and the transfer rollers 25. Thereby, a color image is formed on the sheet S.
(3-3) Toner Fixing and Sheet Ejection
Next, when the conveyance belt 24 moves around, the sheet S with the color image formed thereon reaches between the heating roller 31 and the pressing roller 32. The heating roller 31 and the pressing roller 32 heat and press the sheet S which is passing therebetween. Thereby, the color image transferred on the sheet S is thermally fixed onto the sheet S.
After that, various rollers convey the sheet S so as to cause the sheet to U-turn toward an upper front side, and eject the sheet S onto a catch tray 33 formed on an upper surface of the main body casing 2.
2. Details of Main Body Casing
As shown in
As shown in
As shown in
The duct frame 70 includes a duct main body 74 and a lip portion 75.
The duct main body 74 is disposed above the fuser unit 13 and on an upper rear side of a below-mentioned rear beam 87. Namely, the duct main body 74 is disposed higher than the below-mentioned rear beam 87 and behind the drawer frame 16 (downstream relative to the drawer frame 16 in a direction from the other side to the one side in the arrangement direction).
As shown in
There are two filer openings 76 arranged in the left-to-right direction in a front wall of the duct main body 74. Each filter opening 76 is formed substantially in a rectangular shape extending in the left-to-right direction in a front view. Each filter opening 76 penetrates the front wall of the duct main body 74 in the front-to-rear direction.
The fan opening 77 is disposed at a right wall of the duct main body 74. The fan opening 77 is formed substantially in a round shape in a side view. The right side wall of the main body casing 2 includes an outlet (not shown) at a portion facing the fan opening 77. Thereby, an internal space of the duct main body 74 communicates with an outside of the printer 1 via the fan opening 77 and the outlet (not shown).
As shown in
As shown in
The fan 72 is disposed at a right end portion in the duct main body 74, on a left side of the right wall of the duct main body 74 (more specifically, on a left side of the fan opening 77).
The fan 72 includes rotary blades 78. The rotary blades 78 are configured to rotate relative to the duct main body 74, and let air in the duct main body 74 flow rightward from the left when rotating.
Each of the ozone filters 73 is an air-permeable filter configured to capture volatile organic compounds (VOD) contained in the air passing through the ozone filter 73, and decompose and remove ozone. The ozone filters 73 are two that correspond to the two filter openings 76, respectively.
Each ozone filter 73 is formed in a plate shape extending in the left-to-right direction. Each ozone filter 73 is disposed at a front end portion in the duct main body 74, so as to be located behind the filter opening 76 facing the ozone filter 73. Thereby, a front face of each ozone filter 73 is exposed out of the duct main body 74 via the corresponding filter opening 76.
The toner filter 93 is an air-permeable filter configured to capture contaminants (such as toner and paper powder) contained in the air passing through the toner filter 93. The toner filter 93 is provided corresponding to the fuser inlet port 94, and is fitted into the fuser inlet port 94.
The duct-side regulating member 71 is made of flexible material, more specifically, a resin film such as polyethylene terephthalate (PET). Therefore, the duct-side regulating member 71 is configured to be elastically deformed. Further, the duct-side regulating member 71 is formed substantially in a rectangular shape extending in the left-to-right direction in a front view, and extends in the vertical direction in a side view.
The duct-side regulating member 71 is supported by the duct portion 68, as an upper end portion of the duct-side regulating member 71 is fixed to a lower end portion of the front wall of the duct main body 74. Further, as shown in
Thereby, the duct-side regulating member 71 is elastically deformed and bent rearward from the front, in such a curved shape as to lean rearward.
Therefore, the duct-side regulating member 71 is configured to urge the drawer frame 16 toward a lower front side via the below-mentioned rear beam 87.
An urging force F1 of the duct-side regulating member 71 can be decomposed into an urging force component C1 to urge the drawer frame 16 forward and an urging force component C2 to urge the drawer frame 16 downward.
As shown in
As shown in
Each shaft accepting groove 80 is a concave portion recessed outward from the inside of the corresponding pressing member 69 in the left-to-right direction. As shown in
The two pressing members 69 are configured to move in conjunction with a swing motion of the front cover 6 by a known interlocking mechanism. Specifically, when the front cover 6 is in the open position, the two pressing members 69 are retracted toward an upper front side along a moving direction X connecting the upper front side and a lower rear side. Meanwhile, when the front cover 6 is in the closed position, the two pressing members 69 are moved toward the lower rear side along the moving direction X.
Further, when the front cover 6 is in the closed position, and each pressing member 69 is moved toward the lower rear side, the pressing surface 81 of each pressing member 69 presses a corresponding end portion of a drum-side reference shaft 89 in the left-to-right direction, toward a lower rear side.
3. Details of Process Units
As described above, the drawer unit 11 includes the drawer frame 16.
As shown in
The two side walls 85 are spaced apart from each other in the left-to-right direction. Each side wall 85 is formed substantially in a rectangular plate shape extending in the front-to-rear direction in a side view. Further, as shown in
As shown in
Further, as shown in
The rear beam 87 is formed substantially in a rectangular plate shape extending in the left-to-right direction in a rear view, so as to bridge a distance between rear end portions of the two side walls 85. Namely, the rear beam 87 is a rear end portion of the drawer frame 16, i.e., an end portion of the drawer frame 16 in the arrangement direction.
Further, the rear beam 87 is configured to support a drawer-side regulating member 90.
The drawer-side regulating member 90 is made of flexible material, more specifically, a resin film such as polyethylene terephthalate (PET). Therefore, the drawer-side regulating member 90 is configured to be elastically deformed. Further, the drawer-side regulating member 90 is formed substantially in a rectangular shape extending in the left-to-right direction in a plane view, and extends along the front-to-rear direction in a side view.
The drawer-side regulating member 90 is supported by the drawer frame 16, as a rear end portion of the drawer-side regulating member 90 is fixed to a lower end portion of the rear beam 87.
Further, as shown in
Thereby, the front end portion of the drawer-side regulating member 90 is elastically deformed along the first extended wall 57, in such a curved shape as to lean upward. Therefore, the drawer-side regulating member 90 is configured to urge the first extended wall 57 of the below-mentioned black drum unit 14K toward a lower front side.
An urging force F2 of the drawer-side regulating member 90 can be decomposed into an urging force component C3 to urge the drawer frame 16 forward and an urging force component C4 to urge the drawer frame 16 downward.
Further, as described above, the drawer frame 16 is configured to support the plurality of process units 50.
Each process unit 50 includes a drum unit 14 and a development cartridge 15. In other words, in the same manner as the process units 50, there are four drum units 14 provided corresponding to the four colors, i.e., yellow, magenta, cyan, and black, respectively. Additionally, there are four development cartridges 15 provided corresponding to the four colors, i.e., yellow, magenta, cyan, and black, respectively.
More specifically, the four drum units 14 are arranged sequentially in order of a yellow drum unit 14Y, a magenta drum unit 14M, a cyan drum unit 14C, and a black drum unit 14K from front to back. Namely, the black drum unit 14K is the rearmost one of the plurality of drum units 14, and is disposed at an end portion in the arrangement direction of the plurality of drum units 14. Further, the black drum unit 14K is disposed the closest to the fuser unit 13, among the plurality of drum units 14.
Additionally, the development cartridges 15 are arranged in parallel with each other at intervals, sequentially in order of a yellow development cartridge 15Y, a magenta development cartridge 15M, a cyan development cartridge 15C, and a black development cartridge 15K from front to back.
The plurality of drum units 14 are arranged in parallel with each other at intervals in the front-to-rear direction, under the plurality of process units 50, respectively, between lower portions of the two side walls 85.
Each drum unit 14 includes the aforementioned photoconductive drum 17 and a drum subunit 51. Therefore, the photoconductive drums 17 are arranged in parallel with each other at intervals in the front-to-rear direction, in the accommodation portion 40 of the main body casing 2.
Each photoconductive drum 17 is supported by the drawer frame 16, as a left end portion and a right end portion of the photoconductive drum 17 are rotatably supported by the two side walls 85, respectively. Thereby, as shown in
As shown in
Each sub frame 52 includes a first frame 53, a second frame 54, and a cover member 55.
Each first frame 53 is disposed at an upper rear side of the corresponding photoconductive drum 17. Each first frame 53 includes a charge supporting wall 56, a first extended wall 57, and a second extended wall 58.
The charge supporting wall 56 is formed in a rectangular tube shape extending in the left-to-right direction. Further, the charge supporting wall 56 includes openings 59 (an upper opening 59 and a lower opening 59) formed in an upper wall and a lower wall of the charge supporting wall 56, respectively. Each opening 59 is formed in a rectangular shape extending in the left-to-right direction in a plane view (not shown). Further, the openings 59 are formed to penetrate the upper wall and the lower wall of the charge supporting wall 56, respectively.
The first extended wall 57 is formed substantially in such a plate shape as to extend toward a lower rear side continuously from a substantially middle portion of a rear wall of the charge supporting wall 56 in the vertical direction, and to extend over an entire length of the rear wall of the charge supporting wall 56 in the left-to-right direction.
The second extended wall 58 extends toward an upper front side continuously from a lower end portion of a front wall of the charge supporting wall 56, and thereafter is bent and extends toward an upper rear side. Further, the second extended wall 58 extends over an entire length of the front wall of the charge supporting wall 56 (although the feature is not shown in any drawings).
The second frame 54 is disposed behind the corresponding photoconductive drum 17, and below the first extended wall 57. The second frame 54 is formed substantially in an arc shape open toward an upper front side. Further, the second frame 54 extends in the left-to-right direction. The second frame 54 is disposed such that an upper end portion thereof is located below and adjacent to a rear end portion of the first extended wall 57. Thereby, a roller accommodation space 61 configured to accommodate the drum cleaning roller 29 is formed and defined (demarcated) by the first extended wall 57, the second frame 54, and a rear part of a circumferential surface of the photoconductive drum 17.
The cover member 55 is formed substantially in a rectangular plate shape extending in the left-to-right direction in a plane view. The cover member 55 is configured to cover the charge supporting wall 56 and the second extended wall 58 from above. Further, as shown in
Thereby, an airflow path 60 configured to supply air to the scorotron charger 18 is formed and defined (demarcated) by the second extended wall 58, the charge supporting wall 56, and the cover member 55. The airflow path 60 is formed to penetrate the sub frame 52 in the left-to-right direction.
The scorotron charger 18 is fitted into the charge supporting wall 56. Thereby, a lower end portion of the scorotron charger 18 is exposed via the lower opening 59. The scorotron charger 18 is disposed apart from the corresponding photoconductive drum 17, at an upper rear side of the corresponding photoconductive drum 17.
The drum cleaning roller 29 is disposed in the roller accommodation space 61. A front end portion of the drum cleaning roller 29 is in contact with the corresponding photoconductive drum 17.
A left end portion and a right end portion of the first frame 53 of each sub frame 52 are supported by the two side walls 85, respectively. Thereby, the plurality of drum units 14 are supported by the drawer frame 16. In other words, the drawer frame 16 supports the plurality of scorotron chargers 18 via the plurality of sub frames 52.
Further, as shown in
Further, each development cartridge 15 is disposed at an upper portion of the corresponding process unit 50 and at an upper front side of the corresponding drum unit 14. Thereby, the plurality of development cartridges 15 are arranged in parallel with each other at intervals in the front-to-rear direction, between upper portions of the two side walls 85.
As shown in
Further, in the printer 1, when the drawer frame 16 is in the first position, as shown in
More specifically, the airflow path 99 is formed and defined (demarcated) by an upper face of the sub frame 52 of the black drum unit 14K (upper faces of the first extended wall 57 and the cover member 55), a rear face of the black development cartridge 15K, a front face of the rear beam 87, inner faces of the two side walls 85 in the left-to-right direction, a front face of the duct-side regulating member 71, an upper face of the drawer-side regulating member 90, and a front face of the duct main body 74. Namely, the airflow path 99 is configured to communicate with the internal space of the duct main body 74 via the filter openings 76.
4. Pulling Out the Drawer Frame from the Main Body Casing and Setting the Drawer Frame into the Main Body Casing
Subsequently, referring to
(1) Movement of the Drawer Frame from the First Position to the Second Position (Pulling-Out Operation)
In order to move the drawer frame 16 from the first position to the second position, firstly, as shown in
At this time, as shown in
Next, when the user pulls out the drawer frame 16 via the opening 5, as shown in
Subsequently, when the user further pulls out the drawer frame 16 forward, the drawer frame 16 passes through the opening 5, and moves forward in a sliding manner.
Thereby, as shown in
According to the aforementioned procedure, the movement of the drawer frame 16 from the first position to the second position, that is, the operation of pulling out the drawer frame 16 from the main body casing 2 is completed.
When the user detaches a development cartridge 15 from the drawer frame 16, the user pulls the development cartridge 15 upward in the state where the drawer frame 16 is in the second position. Thereby, the development cartridge 15 is detached from the drawer frame 16. When the user attaches a development cartridge 15 to the drawer frame 16, the user inserts the development cartridge 15 into a corresponding portion of the drawer frame 16 from above in the state where the drawer frame 16 is in the second position. Thereby, the development cartridge 15 is attached to the drawer frame 16.
(2) Movement of the Drawer Frame from the Second Position to the First Position (Setting-in Operation)
An operation of moving the drawer frame 16 from the second position to the first position is performed in a procedure opposite to the aforementioned pulling-out operation.
Specifically, the user pushes the drawer frame 16 in the second position rearward. Thereby, the drawer frame 16 moves rearward in a sliding manner.
Subsequently, when the user further pushes the drawer frame 16 rearward, as shown in
Further, the rear beam 87 of the drawer frame 16 reaches a lower portion of the front wall of the duct main body 74, and an upper end portion of the rear beam 87 of the drawer frame 16 comes into contact with a lower end portion of the duct-side regulating member 71 from the front (from the other side to the one side along the arrangement direction). Thereby, the duct-side regulating member 71 is elastically deformed in such a curved shape as to lean rearward, so as to urge the rear beam 87 of the drawer frame 16 toward a lower front side.
According to the aforementioned procedure, the movement of the drawer frame 16 from the second position to the first position is completed, and the drawer frame 16 is set in the accommodation portion 40 of the main body casing 2.
Next, the user turns (swings) the front cover 6 from the open position to the closed position.
At this time, as shown in
Thereby, the pressing surfaces 81 of the pressing members 69 come into contact with the end portions of the drum-side reference shaft 89 in the left-to-right direction from an upper front side, so as to press the drum-side reference shaft 89 toward a lower rear side. Thus, the pressing members 69 press the drawer frame 16 toward a lower rear side via the drum-side reference shaft 89.
At this time, a pressing force F3 of the pressing members 69 can be decomposed into a pressing force component C5 to press the drawer frame 16 rearward and a pressing force component C6 to press the drawer frame 16 downward.
Therefore, when the pressing members 69 press the end portions of the drum-side reference shaft 89 in the left-to-right direction toward the lower rear side, the pressing force component C5 of the pressing members 69 presses the drawer frame 16 toward the main-body-side reference shaft 67, against the urging force component C1 of the duct-side regulating member 71 and the urging force component C3 of the drawer-side regulating member 90.
Further, the pressing force component C5 is set to be more than a summation of the urging force component C1 of the duct-side regulating member 71 and the urging force component C3 of the drawer-side regulating member 90.
Namely, the pressing members 69 press the drawer frame 16 toward the drum-side reference shaft 89, against the urging force component C1 and the urging force component C3, so as to regulate (and restrict) the relative movement of the drawer frame 16 with respect to the main body casing 2.
5. Exhaust Operation of Printer
In the above image forming operation, each scorotron charger 18 is supplied with air via the airflow path 60 of the corresponding sub frame 52.
Specifically, the air, after passing through the airflow path 60, is supplied to the scorotron charger 18 via the upper opening 59, and then flows toward the photoconductive drum 17, and is discharged via the lower opening 59.
The air discharged from the scorotron charger 18 in the aforementioned manner contains ozone generated due to discharge by scorotron charger 18.
At this time, air inside the duct main body 74 is discharged by rotation of the fan 72, out of the main body casing 2 via the fan opening 77 and one or more openings (not shown). Thus, air inside the main body casing 2 is introduced into the duct main body 74 via the filter openings 76 and the ozone filters 73.
Thereby, air inside the airflow path 99 is introduced into the duct main body 74, and the air flows in the airflow path 99 to generate an air current “a” (see
In response to generation of the air current “a” in the airflow path 99, the air containing ozone, discharged from the scorotron charger 18 of the black process unit 50K, flows into the airflow path 99, e.g., via a gap between the black development cartridge 15K and the black drum unit 14K. Then, the air containing ozone that has flowed into the airflow path 99 joins the air current “a,” and flows toward the filter openings 76 (see
At this time, the drawer-side regulating member 90 regulates and restricts the air current a from entering between the black drum unit 14K and the rear beam 87. In addition, the duct-side regulating member 71 regulates and restricts the air current “a” from entering between the rear beam 87 and the duct main body 74.
When the air current “a” passes through the ozone filters 73, the ozone filters 73 capture volatile organic compound (VOC) contained in the air carried by the air current “a,” and decompose and remove the ozone.
Further, as shown in
In response to generation of the air current “b,” air containing ozone that has been discharged from the scorotron charger 18 of each of the yellow process unit 50Y, the magenta process unit 50M, and the cyan process unit 50C flows upward from a gap between the development cartridge 15 and the drum unit 14. Thereafter, the air passes upward through a gap between adjacent development cartridges 15. Thereby, the air containing ozone that has been discharged from the scorotron charger 18 of each of the yellow process unit 50Y, the magenta process unit 50M, and the cyan process unit 50C reaches the space between the drawer unit 11 and the scanning unit 10, joins the air current “b,” and flows toward the filter openings 76. The, in the same manner as described above, when the air current “b” passes through the ozone filters 73, the ozone filters 73 captures VOC, and decomposes and removes ozone.
Further, when the fan 72 rotates, air around the fuser unit 13 is introduced into the duct main body 74 via the fuser inlet port 94 and the toner filter 93. Thereby, an air current toward the fuser inlet port 94 is generated around the fuser unit 13, so as to radiate heat generated from the fuser unit 13. Thereby, the fuser unit 13 is cooled. Then, when the air current for radiating the heat generated from the fuser unit 13 passes through the toner filter 93, the toner filter 93 captures contaminants (such as toner and paper powder) contained in the air carried by the air current.
Subsequently, when rotating, the fan 72 sucks the air introduced into the duct main body 74, and lets the air flow rightward from the left in the duct main body 74. After that, the fan 72 discharges the air out of the duct main body 74 via the fan opening 77 and one or more openings (not shown). Namely, the duct main body 74 is configured to discharge the air in the main body casing 2 outside.
6. Operations and Advantageous Effects
(1) In the printer 1, as shown in
Therefore, around the rear beam 87 of the drawer frame 16, it is possible to regulate and restrict the air containing ozone generated by the scorotron chargers 18 from entering an undesired space, by the duct-side regulating member 71.
Consequently, it is possible to secure a smooth current of the air containing ozone, around the rear beam 87 of the drawer frame 16, that is, around the rearmost photoconductive drum 17 (disposed at a rear end portion) of the plurality of photoconductive drums 17.
Further, since the duct-side regulating member 71 urges the drawer frame 16, even though the drawer frame 16 begins to rattle, it is possible to cause the duct-side regulating member 71 to follow the rattling of the drawer frame 16. Therefore, it is possible to prevent generation of a gap between the rear beam 87 of the drawer frame 16 and the duct-side regulating member 71, and certainly regulate the air current by the duct-side regulating member 71.
Meanwhile, when the duct-side regulating member 71 urges the drawer frame 16, there might be a case where the accuracy of the relative position of the drawer frame 16 with respect to the main body casing 2 becomes lower.
However, as the pressing members 69 regulates (and restricts) the relative movement of the drawer frame 16 with respect to the main body casing 2 against the urging force of the duct-side regulating member 71, it is possible to prevent deterioration in the accuracy of the relative position of the drawer frame 16 with respect to the main body casing 2.
Therefore, according to the printer 1, it is possible to secure a smooth air current around the rearmost photoconductive drum 17 of the plurality of photoconductive drums 17. Thus, even though the drawer frame 16 begins to rattle, it is possible to certainly regulate the air current by the duct-side regulating member 71, and also prevent deterioration in the accuracy of the relative position of the drawer frame 16 with respect to the main body casing 2.
(2) Further, in the printer 1, as shown in
Therefore, it is possible to certainly position the drawer frame 16 relative to the main body casing 2 via the main-body-side reference shaft 67. Consequently, it is possible to enhance the accuracy of the relative position of the drawer frame 16 with respect to the min body casing 2. Further, it is possible to enhance the relative position accuracy between the rear beam 87 of the drawer frame 16 and the duct main body 74 of the duct portion 68. Thus, it is possible to certainly dispose the duct-side regulating member 71 between the rear beam 87 of the drawer frame 16 and the duct main body 74 of the duct portion 68.
(3) Further, as shown in
Therefore, as the duct-side regulating member 71, in an elastically deformed state, is brought into contact with the rear beam 87 of the drawer frame 16, the duct-side regulating member 71 urges the drawer frame 16.
As a result, it is possible to achieve a smaller number of components than when a separate member is employed to urge the duct-side regulating member 71 toward the drawer frame 16.
(4) Further, as shown in
Therefore, with a simple configuration, it is possible to more certainly dispose the duct-side regulating member 71 between the rear beam 87 of the drawer frame 16 and the duct main body 74.
(5) Further, as shown in
Therefore, by placing the drawer frame 16 in the second position, it is possible to smoothly perform maintenance of the photoconductive drums 17 and the scorotron chargers 18.
Further, when the drawer frame 16 is in the first position, the drawer frame 16 comes into contact with the duct-side regulating member 71 rearward from the front. Thereby, the duct-side regulating member 71 is elastically deformed and bent to lean rearward from the front. Namely, by placing the drawer frame 16 in the first position, it is possible to certainly place the duct-side regulating member 71 between the rear beam 87 of the drawer frame 16 and the duct main body 74, and certainly deform the duct-side regulating member 71 in an elastic manner.
(6) Further, as shown in
Therefore, it is possible to discharge the air containing ozone generated by each scorotron charger 18, out of the main body casing 2, all together via the duct main body 74, by letting the air flow upward and then flow rearward. Consequently, it is possible to prevent staying of ozone within the main body casing 2.
(7) Further, as shown in
Therefore, by the ozone filters 73, it is possible to remove the ozone from the air discharged out of the main body casing 2 via the duct main body 74. Consequently, it is possible to prevent the ozone from being discharged around the printer 1.
(8) Further, as shown in
Therefore, by the two side walls 85, it is possible to regulate a flow (specifically, the air current “a” as shown in
(9) Further, as shown in
Therefore, it is possible to certainly let the air containing the ozone generated by the scorotron chargers 18 flow through the airflow path 99. Consequently, it is possible to certainly secure a smooth current of the air containing the ozone, around the rear beam 87 of the drawer frame 16.
Hereinabove, the embodiment according to aspects of the present invention has been described. The present invention can be practiced by employing conventional materials, methodology and equipment. Accordingly, the details of such materials, equipment and methodology are not set forth herein in detail. In the previous descriptions, numerous specific details are set forth, such as specific materials, structures, chemicals, processes, etc., in order to provide a thorough understanding of the present invention. However, it should be recognized that the present invention can be practiced without reapportioning to the details specifically set forth. In other instances, well known processing structures have not been described in detail, in order not to unnecessarily obscure the present invention.
Only an exemplary embodiment of the present invention and but a few examples of their versatility are shown and described in the present disclosure. It is to be understood that the present invention is capable of use in various other combinations and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein. For example, the following modifications are possible.
7. Modifications
In the aforementioned embodiment, as shown in
Nonetheless, as indicated by a virtual line in
In this case, the duct-side regulating member 71 may be elastically deformed and bent toward the one side from the other side in the arrangement direction, in such a curved shape as to lean forward.
In this case as well, the duct-side regulating member 71 is disposed between the rear beam 87 and the duct main body 74. Namely, with a simple configuration, it is possible to more certainly dispose the duct-side regulating member 71 between the rear beam 87 and the duct main body 74.
Further, in the aforementioned embodiment, the duct-side regulating member 71 is disposed between the rear beam 87 and the duct main body 74. Nonetheless, the duct-side regulating member 71 may be disposed between the front beam 86 and a front end portion of the main body casing 2 (e.g., the front cover 6). In this case, the front side may correspond to the one side in the arrangement direction, and the rear side may correspond to the other side in the arrangement direction. Additionally, the front cover 6 may be exemplified as an inner wall.
Further, in the aforementioned embodiment, as shown in
Nonetheless, for instance, the drawer-side regulating member 90 may be disposed between the yellow process unit 50Y and the front beam 86. In this case, the front side may correspond to the one side in the arrangement direction, and the rear side may correspond to the other side in the arrangement direction.
Further, in the aforementioned embodiment, the duct-side regulating member 71 and the drawer-side regulating member 90 are made of flexible resin films. Nonetheless, the duct-side regulating member 71 and the drawer-side regulating member 90 may be made of elastic foam bodies such as sponges. Alternatively, the duct-side regulating member 71 and the drawer-side regulating member 90 may be shutters having urging members such as springs.
Further, in the aforementioned embodiment, the printer 1 includes the scorotron chargers 18. Nonetheless, instead of the scorotron chargers 18, the printer 1 may include known chargers such as charging rollers.
Number | Date | Country | Kind |
---|---|---|---|
2013-121126 | Jun 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20030185584 | Hirose et al. | Oct 2003 | A1 |
20090092412 | Kei | Apr 2009 | A1 |
20090297203 | Shimizu | Dec 2009 | A1 |
20100119254 | Tateishi et al. | May 2010 | A1 |
20120107009 | Yano | May 2012 | A1 |
20140363190 | Hashimoto et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
62-75657 | Apr 1987 | JP |
05-40387 | Feb 1993 | JP |
2003-287993 | Oct 2003 | JP |
2009-288597 | Dec 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20140363192 A1 | Dec 2014 | US |