This application is based on Japanese Patent Application No. 2011-261895 filed in Japan Patent Office on Nov. 30, 2011 and Japanese Patent Application No. 2012-056984 filed in Japan Patent Office on Mar. 14, 2012, the contents of both of which are hereby incorporated by reference.
The present disclosure relates to an image forming apparatus for performing image forming processes on sheets, and particularly to an image forming apparatus provided with a plurality of substrates having electrical components.
In an image forming apparatus a plurality of substrates with electrical components are disposed in order to operate various devices disposed inside the apparatus main body. The plurality of substrates consist of a high-voltage substrate for transforming a commercial AC voltage into a predetermined high voltage and supplying the high voltage to the devices mounted inside of the image forming apparatus, a control substrate for outputting various control signals to the image forming apparatus, and other substrates.
In some cases high-frequency electromagnetic noises enter the electrical components disposed on the substrates. In order to prevent the generation of noises in the electrical components, the periphery of each substrate is shielded by a shield metal plate. In a prior art, a special shield is disposed in each of the plurality of substrates, to electrically protect the electrical components mounted on the substrates.
In the prior art, substrate surfaces of the plurality of substrates with the electrical components are oriented in different directions. Furthermore, the special shield is disposed in each of the substrates, as described above. This leads to an increase in the volume of the space that is required for surrounding the individual substrates with the shields. Moreover, the area of each metal shield increases, resulting in an increase in the cost of the apparatus.
The present disclosure was contrived in view of the foregoing problems, and an object thereof is to reduce, as much as possible, the space occupied by a plurality of substrates in an apparatus main body.
An image forming apparatus according to one aspect of the present disclosure has a chassis, an image forming section, a shield metal plate, and a plurality of substrates. The chassis has a first surface and a second surface on an opposite side to the first surface. The image forming section is disposed in an internal space formed between the first and second surfaces of the chassis and performs an image forming process on a sheet. The shield metal plate is provided vertically between the second surface and the image forming section and has a third surface facing a side of the first surface and a fourth surface facing a side of the second surface. The plurality of substrates are provided vertically on the third surface of the shield metal plate and have electrical components protruding toward the first surface.
Embodiments of the present disclosure are now described hereinafter in detail with reference to the drawings. While arrows indicating front and back, up and down, and left and right are provided in the drawings in order to describe an image forming apparatus 1 according to the present embodiment, orientations of the image forming apparatus 1 are not limited thereto.
The image forming apparatus 1 includes a main body housing (chassis) which has a chassis structure with an approximately rectangular parallelepiped shape, a paper feeding section 20 housed inside the main body housing 10, an image forming section 30, a fixing section 40, a toner container 50, a substrate unit 70, and a cooling fan 80.
A front cover 11 is provided on a front side and a rear cover 12 is provided on a rear side of the main body housing 10. Opening the front cover 11 exposes the toner container 50, as shown in
A main body frame 10A, which is exposed by removing the front cover 11, the rear cover 12, the left cover 12L, and the right cover 12R, is disposed inside the main body housing 10. The main body frame 10A is a box-shaped framework portion of the image forming apparatus 1. The main body frame 10A is made from a flame-retardant resin material. In the present embodiment, a resin material corresponding to a UL-approved flame-retardant grade (V0) is adopted for the main body frame 10A. The main body frame 10A can satisfy fire enclosure of the image forming apparatus 1. In other words, materials having flame-retardant grades lower than that of the main body frame 10A can be adopted for the front cover 11, the rear cover 12, the left cover 12L, and the right cover 12R, which are disposed farther out than the main body frame 10A. As a result, while maintaining the fire protection performance required in the image forming apparatus 1, the cost of the resin materials adopted in the image forming apparatus 1 can be lowered.
The main body frame 10A has a left frame 10L (counter wall section) and a right frame 10R (wall section) (
The paper feeding section 20 includes a paper cassette 21 that houses sheets on which an image forming process is performed (
The image forming section 30 performs an image forming process in which a toner image is formed on a sheet that is sent out from the paper feeding section 20. The image forming section 30 includes a photosensitive drum 31, and a charging device 32, an exposure device (not shown in
As the photosensitive drum 31 rotates around a shaft thereof, an electrostatic latent image and a toner image are formed on a circumferential surface thereof. A photosensitive drum made of an amorphous silicon (a-Si) based material can be used as the photosensitive drum 31. The charging device 32 uniformly charges a surface of the photosensitive drum 31 and includes a charging roller that comes into abutment with the photosensitive drum 31. The cleaning device 35 includes a cleaning roller and the like, and cleans toner attached to the circumferential surface of the photosensitive drum 31 after transfer of a toner image and conveys the toner to a recovery device (not shown). In addition, the photosensitive drum 31, the charging device 32, and the cleaning device 35 are integrally constructed as a drum unit (not shown).
The exposure device has a laser light source and an optical system device such as a mirror or a lens. The exposure device irradiates the circumferential surface of the photosensitive drum 31 with laser light modulated based on image data supplied from an external device such as a personal computer in order to form an electrostatic latent image. The developing device 33 supplies toner to the circumferential surface of the photosensitive drum 31 in order to develop the electrostatic latent image on the photosensitive drum 31 to form a toner image. The developing device 33 includes a developing roller 331 that carries toner to be supplied to the photosensitive drum 31, and a first conveying screw 332 and a second conveying screw 333 that circulate and convey a developer while agitating the developer inside a development housing (not shown).
The transfer roller 34 is a roller for transferring the toner image formed on the circumferential surface of the photosensitive drum 31 onto a sheet, and forms a transfer nip section together with the photosensitive drum 31. A transfer bias with a reverse polarity to the toner is applied to the transfer roller 34.
The fixing section 40 performs a fixing process for fixing the transferred toner image onto a sheet. The fixing section 40 includes a fixing roller 41 provided with an internal heat source and a pressure roller 42 that is pressed against the fixing roller 41 and forms a fixing nip section together with the fixing roller 41. When a sheet onto which the toner image is transferred is sent to the fixing nip section, the toner image is fixed onto the sheet by heat applied by the fixing roller 41 and pressure applied by the pressure roller 42.
The toner container 50 stores toner that is replaced in the developing device 33. The toner container 50 includes a container main body 51 that is a primary storage location of toner, a cylindrical section 52 that protrudes from a lower part of one side surface of the container main body 51, a lid member 53 that covers the other side surface of the container main body 51, and a rotating member 54 that is housed inside the container and conveys toner. When the rotating member 54 is driven to rotate, the toner stored inside the toner container 50 is supplied to the inside of the developing device 33 through a toner outlet 521 provided on a lower surface of a tip of the cylindrical section 52. The toner container 50 is provided at a position that is above and immediately to the right (inward) of the left frame 10L (
A main conveying path 22F and a reverse conveying path 22B are provided inside the main body housing 10 for conveying sheets. The main conveying path 22F extends from the sheet feeding section 21A of the paper feeding section 20 to a paper outlet 14 provided so as to oppose the paper ejecting section 13 on the upper surface of the main body housing 10 via the image forming section 30 and the fixing section 40. The reverse conveying path 22B is a conveying path that is used when performing duplex printing on a sheet in order to return a sheet printed on one side to an upstream position along the main conveying path 22F with respect to the image forming section 30.
A resist roller pair 23 is disposed on an upstream side of the transfer nip section constituted by the photosensitive drum 31 and the transfer roller 34 along the main conveying path 22F. A sheet is stopped by the resist roller pair 23, subjected to skew correction, and is then sent out to the transfer nip section at a predetermined image transfer timing. A plurality of conveying rollers for conveying sheets are disposed at appropriate locations along the main conveying path 22F and the reverse conveying path 22B. For example, a discharge roller pair 24 is disposed in the vicinity of the paper outlet 14.
The reverse conveying path 22B is formed between an outer surface of a reversing unit 25 and an inner surface of the rear cover 12 of the main body housing 10. Moreover, the transfer roller 34 and one of the rollers of the resist roller pair 23 are mounted on an inner surface of the reversing unit 25. The rear cover 12 and the reversing unit 25 are respectively rotatable around an axis of a fulcrum section 121 provided at lower ends of the rear cover 12 and the reversing unit 25. When a sheet jam occurs along the reverse conveying path 22B, the rear cover 12 is opened. When a sheet jam occurs along the main conveying path 22F or when removing a unit of the photosensitive drum 31 or the developing device 33 to the outside, the reversing unit 25 is opened in addition to the rear cover 12.
The cooling fan 80 (
The substrate unit 70 is provided on an outer side (right side) of the right frame 10R (
With reference to
The shield metal plate 71 is a metal plate that defines one side surface of the substrate unit 70 and holds the plurality of substrates described above. The shield metal plate 71 has a substantially rectangular shape. The shield metal plate 71 is disposed vertically between the right cover 12R and the right frame 10R so as to be parallel to the right cover 12R and the right frame 10R (see
The power substrate 72 is constituted by a flat plate-like wiring board 72a, a plurality of electrical elements 72b (electrical components) mounted on the wiring board 72a, a coil 72c (electrical component), a first capacitor 72d (electrical component), and a second capacitor 72e (electrical component). The power substrate 72 acts as a primary power supply for the image forming apparatus 1. The power substrate 72 generates voltages of 24 V and 5 V. The voltage is supplied to the electrical equipment housed inside the image forming apparatus 1. The electrical elements 72b, the coil 72c, the first capacitor 72d, and the second capacitor 72e are fixed to the wiring board 72a in such a manner as to protrude from the wiring board 72a to the left (toward the left cover 12L). The power substrate 72 is disposed vertically, together with the other substrates, on the metal plate inner surface section 701 of the shield metal plate 71.
The high-voltage substrate 73 is constituted by a flat plate-like upper substrate 73a and a high-voltage power-supply box 73b mounted on the upper substrate 73a. The high-voltage substrate 73 transforms a commercial AC voltage into a predetermined high voltage and supplies the predetermined voltage to the internal equipment of the image forming apparatus 1. The high-voltage power-supply box 73b has a power section 73c (electrical component). The power section 73c has a substantially L-shape. The power section 73c has an electrical component therein and is provided on the upper substrate 73a in such a manner as to protrude to the left. The high-voltage substrate 73 is disposed vertically, together with the other substrates, on the metal plate inner surface section 701 of the shield metal plate 71.
The control substrate 74 is constituted by a flat plate-like supporting substrate 74a and a control box 74b (electrical component) mounted on the supporting substrate 74a. Various electrical elements are disposed in the control box 74b. The control substrate 74 outputs various control signals to the image forming apparatus 1. The control box 74b is provided on the supporting substrate 74a in such a manner as to protrude to the left. The control substrate 74 is disposed vertically, together with the other substrates, on the metal plate inner surface section 701 of the shield metal plate 71.
As shown in
In particular, in the present embodiment, the image forming section 30 is disposed in the internal space S (
Moreover, the substrate unit 70 has a connector section 95. The connector section 95 has a first connector 95a, a second connector 95b, and a third connector 95c. Each of these connectors supplies a predetermined voltage to the electrical components held in the shield metal plate 71. Each of these connectors supplies a predetermined voltage, which is generated from the electrical components on each substrate, to each device provided inside the image forming apparatus 1. The first connector 95a, the second connector 95b, and the third connector 95c are provided along a rear side (one of the sides) of the shield metal plate 71. Therefore, the connectors connected to the substrate unit 70 are focused in one section in the main body housing 10. As a result, electric wires that are connected to the plurality of substrates in the main body housing 10 are disposed as intensively as possible.
In the present embodiment, the power substrate 72, the high-voltage substrate 73, and the control substrate 74 are connected electrically to the shield metal plate 71. A ground wire, which is grounded in advance, is connected to the shield metal plate 71. As a result, the power substrate 72, the high-voltage substrate 73, and the control substrate 74 are grounded by the ground wire. This can prevent poor grounding of each substrate, allowing the image forming apparatus 1 to operate electrically stably.
Next, placements of the main body frame 10A and the substrate unit 70 are further described in detail with reference to
With reference to
The bottom surface frame 10S corresponds to a bottom surface section of the main body frame 10A. Left and right end sections of the bottom surface frame 10S are disposed in such a manner that the left frame 10L and the right frame 10R stand upright.
The rear frame 10B is disposed behind the left frame 10L and the right frame 10R. The rear frame 10B connects the left frame 10L and the right frame 10R behind the main body frame 10A.
The container top plate 50H and the front frame 10F are disposed in front of the left frame 10L and the right frame 10R. The container top plate 50H and the front frame 10F are disposed so as to be adjacent to each other in the horizontal direction. The front portions of the left frame 10L and the right frame 10R are coupled to each other by the container top plate 50H and the front frame 10F.
The bottom surface protruding section 10S1 is disposed below the right frame 10R. The bottom surface protruding section 10S1 is disposed such that a right-side end section of the bottom surface frame 10S extends to the right (outside) further than the right frame 10R does. The front surface protruding section 10S2, the upper surface protruding section 10S3, and the rear surface protruding section 10S4 are wall portions coupled to the right frame 10R. The front surface protruding section 10S2, the upper surface protruding section 10S3, and the rear surface protruding section 10S4 are formed by projecting parts of a front-side edge, upper-side edge, and rear-side edge of the right frame 10R to the right, respectively.
In the present embodiment, the framework of the main body frame 10A is formed by the bottom surface frame 10S, and the left and right frames 10L and 10R that stand upright on the left and right end sections of the bottom surface frame 10S. The internal space S is formed between the left frame 10L and the right frame 10R. The image forming section 30 is disposed in the internal space S. With this space, the paper cassette 21 can be attached/detached and a sheet ejected from the paper ejecting section 13 can be removed, in a direction parallel to the left frame 10L and the right frame 10R (lateral direction).
With reference to
With reference to
With reference to
The substrate unit 70 mounted in the main body frame 10A is disposed in a right end section of the main body frame 10A. Of the shield metal plate 71 of the substrate unit 70, the power substrate 72, the high-voltage substrate 73, and the control substrate 74 are disposed on the metal plate inner surface section 701 side (
In this manner, the right-hand side and the left-hand side of the power substrate 72, the high-voltage substrate 73, and the control substrate 74 of the substrate unit 70 are disposed in spaces surrounded by the shield metal plate 71 and the right frame 10R respectively. The electrical components are electrically protected as a result of shielding the outside (the right side) of the electrical components mounted in each substrate, by using the shield metal plate 71. Therefore, the electrical components of the power substrate 72, the high-voltage substrate 73, and the control substrate 74 are prevented from causing malfunctions due to noise transmitted from the outside of the image forming apparatus 1. In particular, in the present embodiment, the power substrate 72, the high-voltage substrate 73, and the control substrate 74 are electrically protected by being mounted on the single shield metal plate 71. Consequently, compared to a case where each of the substrates is stored in an individual shield member, the area of the shield members that electrically protect the substrate unit 70 can be further reduced, lowering the cost of the substrate unit 70.
In addition, the right frame 10R is disposed on the inside (to the left) of each electrical component so as to be opposite thereto. The right frame 10R is made from a flame-retardant resin material. By causing the shield metal plate 71 and the right frame 10R to surround the electrical components of the substrate unit 70, the plurality of substrates having the electrical components are electrically and structurally protected, and the flame-retardant countermeasures (fire enclosure) of the electrical components are realized. Note that, in the present embodiment, the main body frame 10A is a frame portion for supporting the main body housing 10, and the image forming section 30 is housed in the internal space S (
With reference to
While the image forming apparatus 1 according to an embodiment of the present disclosure has been described, the present disclosure is not limited thereto and, for example, modifications such as described below can be adopted.
While the embodiment has described a mode in which the third unit 907 and other components are disposed in the right frame 10R in such a manner as to oppose the region Z of the metal plate inner surface section 701, the present disclosure is not limited thereto.
Although the present disclosure has been fully described by way of example with reference to the accompanying drawings, it is to be understood that various changes and modifications will be apparent to those skilled in the art. Therefore, unless otherwise such changes and modifications depart from the scope of the present disclosure hereinafter defined, they should be construed as being included therein.
Number | Date | Country | Kind |
---|---|---|---|
2011-261895 | Nov 2011 | JP | national |
2012-056984 | Mar 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5559581 | Sugiura et al. | Sep 1996 | A |
5561496 | Sugiura et al. | Oct 1996 | A |
5918089 | Malinich et al. | Jun 1999 | A |
20040095456 | Yoshihara et al. | May 2004 | A1 |
20040130700 | Ogi et al. | Jul 2004 | A1 |
20060034633 | Tsusaka et al. | Feb 2006 | A1 |
20100098451 | Tsusaka et al. | Apr 2010 | A1 |
20110205327 | Inoue | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
2001-194980 | Jan 2000 | JP |
2001-194980 | Jul 2001 | JP |
2002-99124 | Apr 2002 | JP |
2005-77639 | Mar 2005 | JP |
2006-053254 | Feb 2006 | JP |
200653254 | Feb 2006 | JP |
2006-119234 | May 2006 | JP |
2006239876 | Sep 2006 | JP |
Entry |
---|
Japanese Office Action—Jun. 17, 2014. |
Number | Date | Country | |
---|---|---|---|
20130136484 A1 | May 2013 | US |