The present invention relates to an image forming apparatus, such as a copying machine or a printer, for forming an image on a sheet.
In recent years, in the image forming apparatus, such as the copying machine or the printer, for forming the image on the sheet, in order to meet a demand for downsizing, component parts are provided inside a casing of the image forming apparatus so as not to form a dead space. As a result, a sheet feeding passage is disposed in the neighborhood of a center of the casing of the image forming apparatus, and when the sheet jams in the feeding passage in the neighborhood of the center of the casing of the image forming apparatus, it becomes difficult for an operator to put his (her) hand(s) into a spacing to the neighborhood of the center of the casing of the image forming apparatus.
Therefore, in an image forming apparatus disclosed in Japanese Laid-Open Patent Application (JP-A) 2001-253585, a constitution in which a feeding guide forming a feeding passage in the neighborhood of a center of a casing of the image forming apparatus is provided so as to be capable of being pulled out to an outside of the casing of the image forming apparatus has been proposed. As a result, the feeding guide is pulled out to the outside of the apparatus casing and thus an operation region is ensured in the outside of the apparatus casing, so that the sheet can be removed.
Further, in the image forming apparatus, such as the copying machine or the printer, for forming the image on the sheet, a constitution in which a stacking portion for stacking the sheet on which the image is formed is provided movably at an upper portion of the image forming apparatus with respect to a vertical direction has been known (JP-A 2014-106294). The image forming apparatus disclosed in JP-A 2014-106294 includes the stacking portion for stacking the sheet on which the image is formed, and the stacking portion is formed in an independent unit in the image forming apparatus and is provided movably so that the independent unit is capable of being connected to and moved away from a part of the image forming apparatus. Further, the part of the image forming apparatus includes a first discharging portion for discharging the sheet to the upper portion of the independent unit and a second discharging portion for discharging the sheet toward a processing portion provided inside the independent unit and below the stacking portion.
The independently movable unit in the image forming apparatus is capable of being connected to the first and second discharging portions or is capable of being moved away from the first and second discharging portions. At a position where the independent unit is connected to the first and second discharging portions, the sheet discharged through the first discharging portion can be stacked on the stacking portion and the sheet discharged through the second discharging portion can be fed to the processing portion.
In the above-described image forming apparatus, in the case where the sheet jammed in a feeding passage in the neighborhood of each of a connecting portion between the independent unit and the first discharging portion and a connecting portion between the independent unit and the second discharging portion, there is a need to perform a jam clearance operation for removing the jammed sheet. In this case, there is a need to perform an operation in which the feeding passage is opened by moving the independent unit is moved in a direction of being moved away from the first discharging portion and the second discharging portion.
A principal object of the present invention is to provide an image forming apparatus capable improving operativity of a process of removing a sheet jammed in the neighborhood of a connecting portion between a discharging portion and a movable stacking portion which are provided to the image forming apparatus.
According to an aspect of the present invention, there is provided an image forming apparatus comprising: an image forming portion configured to form an image on a sheet; a feeding portion configured to feed the sheet on which the image is formed; a stacking portion including a stacking tray configured to stack the sheet discharged from the feeding portion and a sheet feeding passage along which the sheet fed from the feeding portion is fed, and movable between a first position where the sheet feed from the feeding portion is feedable to the sheet feeding passage and a second position away from the first position; and a movable member movable to a space, between the feeding portion and the stacking portion, generating with movement of the stacking portion from the first position to the second position in interrelation with the movement of the stacking portion from the first position to the second position.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a) and (b) of
Parts (a), (b) and (c) of
Parts (a), (b) and (c) of
Parts (a), (b) and (c) of
Embodiments according to the present invention will be specifically described with reference to the drawings. However, dimensions, materials, shapes and relative arrangement of constituent elements described in the following embodiments are not intended such that the scope of the present invention is limited only thereto unless otherwise particularly specified.
With reference to
[General Structure of Image Forming Apparatus]
As shown in
(Image Forming Portion)
The image forming portion 101 forms an image on a sheet and includes process cartridges 3Y, 3M, 3C and 3K, an intermediary transfer belt unit 10, a secondary transfer portion 15 and a fixing device 18 which are described below.
The image forming apparatus 100 shown in
In the intermediary transfer belt unit 10, an intermediary transfer belt 12 is stretched by a driving roller 13 and tension roller 14. The tension roller 14 applies tension to the intermediary transfer belt 12 in an arrow T direction. The respective photosensitive drums 1Y, 1M, 1C and 1K rotate in the clockwise direction, and the intermediary transfer belt 12 rotates in the counterclockwise direction. Further, to the photosensitive drums 1Y, 1M, 1C and 1K, primary transfer rollers 11Y, 11M, 11C and 11K are provided opposed, respectively, inside the intermediary transfer belt 12, and a transfer bias is applied to the primary transfer rollers by an unshown bias applying means.
By applying the bias to the primary transfer rollers 11Y, 11M, 11C and 11K, the toner images are successively primary transferred from the respective photosensitive drums onto the intermediary transfer belt 12, so that the four color toner images are fed to a secondary transfer portion 15 in a superposed state.
The toners remaining on surfaces of the photosensitive drums 1Y, 1M, 1C and 1K after toner image transfer are removed by cleaning blades 8Y, 8M, 8C and 8K. Further, the toner remaining on the intermediary transfer belt 12 after the secondary transfer onto a sheet S is removed by an intermediary transfer belt cleaning device 21 and is collected by a waste toner collecting container 22.
To the secondary transfer portion 15, the sheet S is fed by a registration roller pair 17 of a sheet feeding portion 102 described later. In the secondary transfer portion 15, by applying a bias to the secondary transfer roller 16, the four color toner images are secondary-transferred from the intermediary transfer belt 12 onto the fed sheet S.
The fixing device 18 which is a fixing portion fixes the toner images of a plurality of colors transferred on the sheet S and includes a heating roller 19 which is a fixing member heated by a heater 7 which is a heating means and includes a pressing roller 20 which is a pressing member rotating while press-contacting the heating roller 19. The sheet S is guided to an entrance guiding portion and is introduced into a fixing nip which is a press-contact portion between the heating roller 19 and the pressing roller 20. The sheet S is nipped and fed in the fixing nip, so that heat and pressure are applied to the sheet S. As a result, the toner images of the plurality of colors are welted and mixed and are fixed as a full-color image on the surface of the sheet S.
The sheet feeding portion 102 feeds the sheet S toward the image forming portion and is constituted by a sheet (paper) feeding cassette 24 which are mountable and dismountable, a sheet feeding belt 23, feeding roller pairs 42 and 43 and the registration roller pair 17.
The sheet feeding roller 23 is rotated by power of an unshown sheet feeding driving unit. The sheet feeding driving unit is fixed to the image forming apparatus 100, and a driving mechanism such as a gear is provided.
By the power of the sheet feeding driving unit, the sheets S are separated and fed one by one from the sheet feeding cassette 24, and the fed sheet S is received by the registration roller pair 17 in a rotation stop state at that time in a manner such that a leading end of the sheet S abuts against a nip of the registration roller pair 17. By this registration roller pair 17, final oblique movement correction of the sheet S, image writing at the image forming portion, and provision of timing of sheet feeding are carried out.
(Feeding Unit)
The sheet S which passed the fixing device 18 and on which the image is formed is fed by a feeding unit 103 which is a feeding portion. The feeding unit 103 includes feeding roller pairs 25 and 26, sort guiding members 28 and 29, a feeding roller pair 30, a discharging roller pair 31, a guide unit 46 which is a movable member including one feeding guide 44a, the other feeding guide 44b, and feeding roller pairs 40 and 41 for double-side printing.
The sheet S fed from the fixing device 18 is fed by the feeding roller pairs 25 and 26.
In this embodiment, the image forming apparatus 100 includes an image scanner 45, as an image reading portion (image reading device) for reading an image of an original, provided on the feeding unit 103. The image forming apparatus 100 includes a movable sheet processing device 33, which is a stacking portion, between the image forming portion and the image scanner 45 therein. The sheet processing device 33 is disposed immediately above the image forming portion 101. Here, “immediately above the image forming portion” refers to a range from one end portion 101a to the other end portion 101b of the image forming portion 101. The sheet processing device 33 includes a sheet discharge tray 27 which is a first stacking tray, at an upper surface thereof, and includes a side surface tray 34 which is a second stacking tray, at a side surface thereof.
In the case where the sheet S is discharged onto the sheet discharge tray 27 which is the first stacking tray, the sheet S is guided by the sort guiding members 28 and 29 and passes through the feeding roller pair 30 and is fed to the discharging roller pair 31. The sheet S is fed by the discharging roller pair 31 and is discharged onto the sheet discharge tray 27 at the upper surface of the sheet processing device 33. At this time, the sheet S is discharged on the sheet discharge tray 27 which is the first stacking tray while raising a full stack detecting flag 32.
Further, in the case where the sheet S is discharged onto the side surface tray 34 which is the second stacking tray, the sheet S is guided by the sort guiding member 28 and is fed to the sheet processing device 33. In the sheet processing device 33, the sheet S is guided by a feeding guide 35 forming a sheet feeding passage (second feeding passage) 35a and passes through a feeding roller pair 36. The sheet S is then fed to a discharging roller pair 37 and is discharged onto the side surface tray 34 at the side surface of the sheet processing device 33 by the discharging roller pair 37. At this time, the sheet S to be subjected to sheet processing is subjected to the processing by a sheet processing portion 38 in the sheet processing device 33. Thereafter, the sheet S subjected to the processing is fed to the discharging roller pair 37 and then is discharged on the side surface tray 34 which is the second stacking tray at the side surface of the sheet processing device 33.
Further, in the case of an operation in a double-side image formation (double-side printing) mode, feeding of the sheet S is controlled in the following manner. That is, the sheet S which has been subjected to one-side printing is guided by the sort guiding members 28 and 29 and passes through the feeding roller pair 30, and then is fed to the discharging roller pair 31. Rotation of the discharging roller pair 31 is controlled to reverse rotation at timing when a trailing end portion of the sheet S remains between the sort guiding member 29 and the discharging roller pair 31. As a result, the sheet which has been subjected to the one-side printing is fed in a switch-back manner in a direction opposite to a direction in which the sheet S is fed toward the sheet processing device 33. The sheet S fed in the switch-back manner passes through an upper side of the sort guiding member 29 and enters a feeding passage for double-side printing formed by a feeding guide 39, and then is fed successively by a first feeding roller pair 40 for double-side printing and a second feeding roller pair 41 for double-side printing. Thereafter, the sheet S is fed successively by a third feeding roller pair 42 for double-side printing and a fourth feeding roller pair 43 for double-side printing of the sheet feeding portion 102, and then is fed again toward the registration roller pair 17 in a state in which the sheet S is turned upside down.
Then, similarly as in the case of the one-side printing mode, the sheet S is subjected to the oblique movement correction by the registration roller pair 17, the image writing at the image forming portion and the provision of timing of the sheet feeding, and thereafter, the four color toner images are secondary-transferred at the secondary transfer portion 15. Then, the sheet S is introduced into the fixing device 18 again, and then the sheet S which has been subjected to printing on both the first surface and the second surface is discharged onto the sheet discharge tray 27 or the side surface tray 34.
[Sheet Processing Device]
As described above, the sheet processing device 33 which is the stacking portion is provided as an independent unit in the image forming apparatus 100 so as to be slidable (movable) in an arrow direction shown in
The sheet processing device 33 is provided in the image forming apparatus 100 so as to be slidable (movable) in the horizontal direction as shown in parts (a) and (b) of
The feeding unit 103 which is the feeding portion is provided with a discharge opening 103a for permitting discharge of the sheet fed by the feeding roller pair 26 and guided by the sort guiding member 28. The sheet processing device 33 which is the stacking portion is provided with a feeding (supplying) opening 33a, for receiving the sheet discharged through the discharge opening 103a, at a position opposing the discharge opening 103a of the feeding unit 103. Further, when the sheet processing device 33 is in the position shown in part (a) of
[Periphery of Sheet Discharge Tray]
At a periphery of the sheet discharge tray 27, there are provided the discharging roller pair 31 for discharging the sheet on the sheet discharge tray 27 and the full stack detecting flag 32 for detecting passing of the sheet through the discharging roller pair 31 and a height of the sheet(s) stacked on the sheet discharge tray 27. Below the discharging roller pair 31, there is provided a stacking wall 50 which is a supporting wall for supporting a trailing end of the sheet stacked on the sheet discharge tray 27, which is an upstream-side end portion of the sheet with respect to a sheet feeding direction. The stacking wall 50 in this embodiment is constituted by a part 51 of the image forming apparatus 100 and a part 52 of the sheet processing device 33. A sheet stacking surface of the sheet discharge tray 27 forms an inclined surface ascending from the stacking wall 50 toward a downstream side with respect to a sheet discharging direction so that a preceding sheet discharged early is not pushed out by the sheet currently discharged through the discharging roller pair 31.
The discharging roller pair 31 feeds the sheet, and therefore, a relative position thereof with an upstream feeding passage 44 (first feeding passage) with respect to the sheet feeding direction becomes important. The feeding passage 44 is a sheet feeding passage formed by one feeding guide 44a which is a feeding guide for guiding the sheet and the other feeding guide 44b opposing the feeding guide 44a. By supporting the discharging roller pair 31 by the image forming apparatus 100 including a driving source (not shown) to the feeding roller pair 30, it is possible to efficiently input drive (driving force) to the discharging roller pair 31 in a small number of component parts. For that reason, the discharging roller pair 31 is provided in the image forming apparatus 100.
The full stack detecting flag 32 detects passing of the sheet through the nip of the discharging roller pair 31 and thus has a function as a feeding sensor for notifying an unshown controller of the image forming apparatus 100 of stagnation and delay of the sheet. Further, the full stack detecting flag 32 detects the passing of the sheet through the nip of the discharging roller pair 31 and thus has a function as a full state detecting sensor for preventing overloading (excessive stack) by detecting a height of the sheet(s) stacked on the sheet discharge tray 27. As regards the full stack detecting flag 32, a relative relationship between itself and the discharging roller pair 31 is important, and therefore, the full stack detecting flag 32 is supported rotatable relative to the image forming apparatus 100 including the discharging roller pair 31.
The stacking wall 50 supports the trailing end of the sheet stacked on the sheet discharge tray 27 at the upper surface of the sheet processing device 33 and extends from the sheet stacking surface of the sheet discharge tray 27 to immediately below the discharging roller pair 31.
When the trailing end of the sheet discharged through the discharging roller pair 31 is caught by the stacking wall 50, a position of the sheet descending on the sheet discharge tray 27 is disordered, so that an alignment property of the stacked sheet(s) becomes worse. Further, the trailing end of the sheet leans on the stacking wall 50, so that although only sheets in a small number are stacked, the full stack detecting flag 32 recognizes that sheets in a predetermined amount are stacked and then a printing operation is stopped in some instances. For this reason, a positional relationship between a lower roller of the discharging roller pair 31 and the stacking wall 50 with respect to the sheet feeding direction is an important item (factor).
When a gap (spacing) between the stacking wall 50 and the lower roller 31a of the discharging roller pair 31 with respect to an up-down direction is excessively large, there is a possibility that when the sheets are stacked on the sheet discharge tray 27 to a full state, an uppermost sheet of the stacked sheets contacts the lower roller and is pulled into an apparatus main assembly of the image forming apparatus. When the gap between the stacking wall 50 and the lower roller 31a of the discharging roller pair 31 with respect to the up-down direction is excessively small, noise is generated by contact therebetween. For this reason, a positional relationship between the lower roller 31a of the discharging roller pair 31 and the stacking wall 50 with respect to the up down-direction also becomes important.
The sheet processing device 33 including the sheet discharge tray 27 is configured to be slidable (movable) in the sheet discharging direction in a jam clearance operation described later. Further, as described above, the discharging roller pair 31 and the full stack detecting flag 32 are provided to the image forming apparatus 100 in view of a relationship thereof with the feeding passage 44. For this reason, the stacking wall 50 of which positional relationship with the discharging roller pair 31 is important is divided into upper and lower portions with respect to the vertical (up-down) direction. That is, the stacking wall 50 comprises an upper stacking wall 51 which is a first supporting wall provided on an upper side with respect to the vertical direction and a lower stacking wall 52 which is a second supporting wall provided on a lower side with respect to the vertical direction.
The upper stacking wall 51 of which positional relationship with the discharging roller pair 31 is important is provided to the guide unit 46 including one feeding guide 44a forming the feeding passage 44 to the discharging roller pair 31. The guide unit 46 provided with the upper stacking wall 51 is provided rotatable relative to the image forming apparatus 100. On the other hand, the lower stacking wall 52 on a side lower than the upper stacking wall 51 with respect to the vertical direction is provided on the sheet processing device 33. Specifically, the lower stacking wall 52 is provided at a rear end portion which is an upstream-side end portion of the sheet discharge tray 27 with respect to the sheet feeding direction. The lower stacking wall 52 is provided on the sheet discharge tray 27 of the sheet processing device 33, so that even when the sheet processing device 33 is slid in a state in which sheets to some extent are stacked on the sheet discharge tray 27, a stacking state of the sheets is not disordered.
A divided position of the upper stacking wall 51 and the lower stacking wall 52 of the stacking wall 50 is lower than a free end of the full stack detecting flag 32 with respect to the vertical direction. Specifically, an upper end of the lower stacking wall 52 is lower than the free end of the full stack detecting flag 32 with respect to the vertical direction. As a result, even when the sheet processing device 33 is slid, the sheet processing device 33 can be moved with no interference between the full stack detecting flag 32 and the lower stacking wall 52.
Further, a positional relationship among the lower roller 31a of the discharging roller pair 31, the upper stacking wall 51 and the lower stacking wall 52 of the stacking wall 50 with respect to the sheet feeding direction is as shown in
Further, a positional relationship between the lower roller 31a of the discharging roller pair 31 and the upper stacking wall 51 of the stacking wall 50 with respect to the up-down direction is as shown in
[Interrelation Between Sheet Processing Device and Feeding Unit]
Next, interrelation between the sheet processing device 33 and the guide unit 46 which is a movable member when the sheet S is jammed in the feeding passage 44 for permitting sheet discharge onto the sheet discharge tray 27 will be described.
In this embodiment, the guide unit 46 which is the movable member interrelates with movement of the sheet processing device 33. A state in which only the sheet processing device 33 is slid (moved) is shown in parts (a) and (b) of
The guide unit 46 constitutes the feeding unit 103 which is the feeding portion for feeding the sheet on which the image is formed, and includes one feeding guide 44a of the guide forming the feeding passage 44 to the discharging roller pair 31 and one roller 30a of the feeding roller pair 30. The guide unit 46 is the movable member provided rotatable relative to the image forming apparatus 100 about a rotation shaft, as a rotation sheet processing device, of the lower roller 31a of the discharging roller pair 31. Accordingly, the feeding passage 44 can be opened by rotating the guide unit 46 about the rotation shaft of the lower roller 31a in a direction in which the guide unit 46 is moved away from the other feeding guide 44b opposing the feeding guide 44a and the other roller 30b of the shaft roller pair 30. The rotation shaft of the lower roller 30a which is the rotation supporting point of the guide unit 46 is provided above the upstream-side end portion of the sheet discharge tray 27 with respect to the sheet feeding direction. Herein, the upstream-side end portion of the sheet discharge tray 27 with respect to the sheet feeding direction is an upper end portion of the lower stacking wall 52 described later. The guide unit 46 includes an engaging pin 62 engaged with the sheet processing device 33 including the sheet discharge tray 27. The engaging pin 62 is provided on an end portion side opposite from the rotation shaft side of the guide unit 46 and is positioned below the upstream-side end portion of the sheet discharge tray 27 with respect to the sheet feeding direction at an operation position of the sheet processing device 33.
Further, the sheet processing device 33 which is the stacking portion is connected with the image forming apparatus main assembly via an unshown rail unit between the image forming portion 101 and the image scanner 45 in the image forming apparatus 100. Here, the image forming apparatus main assembly refers to a portion excluding, of constituent elements of the image forming apparatus 100, the sheet processing device 33, the image scanner 45, the process cartridges and the sheet feeding unit which constitute the image forming apparatus 100. The sheet processing device 33 is configured so as to be slidable (movable) relative to the image forming apparatus main assembly along rails. The sheet processing device 33 is movable between the position shown in part (a) of
The sheet processing device 33 which is the stacking portion is provided with an arm portion 61, which is a connecting member having a cam groove 60 which is a guiding portion, on an outside of a sheet feeding region with respect to the widthwise direction perpendicular to the sheet feeding direction. The cam groove 60 engages with the engaging pin 62 and guides the engaging pin side of the guide unit 46 so as to move about the rotation shaft from below toward above with movement of the sheet processing device 33 from the first position to the second position. The engaging pin 62 of the guide unit 46 and the cam groove 60 of the sheet processing device 33 are provided on the outside of the sheet feeding region and on a rear side of the apparatus main assembly with respect to the widthwise direction perpendicular to the sheet feeding direction as shown in
In the case where the sheet jammed in the neighborhood of the feeding passage 44 which is a periphery of a connecting portion between the feeding opening 33a of the sheet processing device 33 and the discharge opening 103a of the feeding unit 103 is removed, the sheet processing device 33 is moved in the following manner. That is, the sheet processing device 33 is slid (moved) from an operation position which is the first position shown in part (a) of
Next, a process in which the sheet processing device 33 is slid (moved) from the operation position to the jam clearance position in a state in which the sheets are stacked on the sheet discharge tray 27 so as to be over the lower stacking wall 52 will be described using
As shown in
As shown in
Further, by movement of the sheet processing device 33 toward the jam clearance position, the sheets stacked on the sheet discharge tray 27 so as to be over the lower stacking wall 52 move toward the guide unit 46 in some instances. Even in such a case, as described above, the engaging pin side of the guide unit 46 positioned below the upper end of the lower stacking wall 52 moves from below toward above about the rotation shaft of the lower roller 31a developed above the upper end of the lower stacking wall 52. That is, the engaging pin side of the guide unit 46 rotates from below toward above so as to close an upper portion of a space formed between itself and the feeding unit 103 by the movement of the sheet processing device 33. For this reason, the sheets stacked on the sheet discharge tray 27 so as to be over the lower stacking wall 52 also contact the guide unit 46 and stop similarly as the uppermost sheet S1.
As shown in
Thus, according to this embodiment, the guide unit 46 as the movable member moving in interrelation with the movement of the sheet processing device 33 moves so as to close the upper portion of the space formed by the movement of the sheet processing device 33. As a result, the sheets stacked on the sheet discharge tray 27 so as to be over the lower stacking wall 52 are, even when the sheets move toward the space, scooped up by the guide unit 46 moving, toward the space, from below toward above the lower stacking wall 52. For this reason, even in the case where the sheet processing device 33 is moved in a state in which the sheets are stacked on the sheet discharge tray 27, the sheets stacked on the sheet discharge tray 27 can be prevented from dropping in the jam clearance space formed by the retraction of the sheet processing device 33. For this reason, when the sheet jammed in the feeding passage 44 on the inside of the feeding unit 103 is removed, the sheet processing device 33 including the sheet discharge tray 27 on which the sheets are still fully stacked can be moved, so that operativity of the jam clearance can be improved.
In the above-described embodiment, a constitution in which the guide unit 46 as the movable member is provided in the feeding unit 103 of the image forming apparatus 100 was described as an example, but in this embodiment, a constitution in which a movable wall as a movable member is provided on a sheet processing device will be described as an example. The constitution in which the movable wall as the movable member is provided on the sheet processing device will be described using
In this embodiment, as shown in
The movable wall 72 includes an engaging pin 73 engaged with the image forming apparatus 100. The image forming apparatus 100 includes a cam groove 80 which is a guiding portion engaging with the engaging pin 73 of the movable wall 72.
The cam groove 80 guides the engaging pin 73 so that the bent portion side of the movable wall 72 moves about the shaft 70, which is a rotation center, from below toward above with movement of the sheet processing device 33 from the operation position being the first position to a retracted position being a second position.
When the sheet processing device 33 is moved from the operation position being the first position to the retracted position (jam clearance position) being the second position, the engaging pin 73 of the movable wall 72 opens the cam groove 80 and is guided along the cam groove 80, so that the movable wall 72 is rotated so as to raise the bent portion 71 from below to above. That is, the movable wall 72 is moved, in interrelation with the movement of the sheet processing device 33 from the operation position to the jam clearance position which is the retracted position, about the shaft 70 which is the rotation center of one end portion from below toward above the lower stacking wall 52 on the bent portion side.
As shown in
The guide unit 46 constitutes, similarly as in the above-described embodiment, the feeding unit 103 which is the feeding portion for feeding the sheet on which the image is formed, and includes one feeding guide 44a of the guide forming the feeding passage 44 to the discharging roller pair 31 and one roller 30a of the feeding roller pair 30. The guide unit 46 is the movable member provided rotatable relative to the image forming apparatus 100 about a rotation shaft, as a rotation sheet processing device, of the lower roller 31a of the discharging roller pair 31. Accordingly, the feeding passage 44 can be opened by rotating the guide unit 46 about the rotation shaft of the lower roller 31a in a direction in which the guide unit 46 is moved away from the other feeding guide 44b opposing the feeding guide 44a and the other roller 30b of the shaft roller pair 30. The rotation shaft of the lower roller 30a which is the rotation supporting point of the guide unit 46 is provided above the upstream-side end portion of the sheet discharge tray 27 with respect to the sheet feeding direction. Herein, the upstream-side end portion of the sheet discharge tray 27 with respect to the sheet feeding direction is an upper end portion of the lower stacking wall 52 described later. The guide unit 46 includes the engaging pin 73 projected on one side (the rear side of the apparatus main assembly) with respect to the widthwise direction perpendicular to the sheet feeding direction. The engaging pin 73 is engaged with the sheet processing device 33 including the sheet discharge tray 27. The engaging pin 73 is provided on an end portion side opposite from the rotation shaft side of the guide unit 46.
Further, as shown in parts (a) and (b) of
As shown in part (b) of
In the case where the sheet jammed in the neighborhood of the feeding passage 44 which is a periphery of a connecting portion between the feeding opening 33a of the sheet processing device 33 and the discharge opening 103a of the feeding unit 103 is removed, the sheet processing device 33 is moved in the following manner. That is, the sheet processing device 33 is slid (moved) from the operation position which is the first position shown in
Next, a process in which the sheet processing device 33 is slid (moved) from the operation position to the jam clearance position in a state in which the sheets are stacked on the sheet discharge tray 27 so as to be over the lower stacking wall 52 and thus the guide unit 46 is opened will be described using
When the sheet processing device 33 is moved to a position shown in
When the sheet processing device 33 is further retracted from this side in the arrow L direction, as shown in
When the sheet processing device 33 moves to the jam clearance position and does not overlap with the latch 81, as described above, the latch 81 slides and projects into the space formed by the movement of the sheet processing device 33. Thereafter, when the guide unit 46 is rotated, as described above, the engaging pin 62 of the guide unit 46 and the first inclined surface 81a of the latch 81 contact each other, so that the latch 81 is slid and retracted and thus permits rotation of the guide unit 46. When the guide unit 46 is further continuously rotated, the engaging pin 62 of the guide unit 46 passes through the latch 81 and is in a state shown in
For this reason, even when the sheet processing device 33 is moved to the jam clearance position in a state in which the sheets are stacked on the sheet discharge tray 27 of the sheet processing device 33 until a stacking state thereof is close to a full state, the stacked sheets are prevented from dropping in the space formed by the movement of the sheet processing device 33. Further, the sheet jammed in the feeding passage 44 can be easily removed.
Next, the case where the sheet processing device 33 is moved to the operation position after the sheet jammed in the feeding passage 44 is removed will be described using
As described above, according to this embodiment, the movable wall 72 as the movable member moving in interrelation with the movement of the sheet processing device 33 moves so as to close the upper portion of the space formed by the movement of the sheet processing device 33. As a result, the sheets fully stacked on the sheet discharge tray 27 of the sheet processing device 33 can be prevented from dropping in the jam clearance space formed by the movement of the sheet processing device 33. For this reason, when the sheet jammed in the feeding passage 44 on the inside of the feeding unit 103 is removed, the sheet processing device 33 including the sheet discharge tray 27 on which the sheets are still fully stacked can be moved, so that operativity of the jam clearance can be improved.
Next, with reference to
[Sheet Removing Method]
First, a sheet removing method when the sheet S is jammed in the neighborhood of a connecting portion between the feeding opening 33a of the sheet processing device 33 and the discharge opening 103a of the feeding unit 103 in this embodiment will be described. In this embodiment, the sheet removing method when the sheet S is jammed in the neighborhood of the first feeding passage 44 for permitting discharge of the sheet S to the sheet discharge tray 27 will be described.
In this embodiment, the guide unit 46 (movable member) interrelates with movement of the sheet processing device 33.
The guide unit 46 includes one feeding guide 44a of the guide forming the first feeding passage 44 for guiding the sheet on which the image is formed and includes one roller 30a of the feeding roller pair 30. The guide unit 46 is the movable member provided rotatable relative to the image forming apparatus 100 about a rotation shaft, as a rotation sheet processing device, of the lower roller 31a of the discharging roller pair 31. Accordingly, the first feeding passage 44 can be opened as shown in
The sheet processing device 33 which is the stacking portion is connected with the image forming apparatus main assembly via an unshown rail unit between the image forming portion 101 and the image scanner 45 in the image forming apparatus 100. Here, the image forming apparatus main assembly refers to a portion excluding, of constituent elements of the image forming apparatus 100, the sheet processing device 33, the image scanner 45, the process cartridges and the sheet feeding unit which constitute the image forming apparatus 100. The sheet processing device 33 is configured so as to be slidable (movable) relative to the image forming apparatus main assembly along rails. The sheet processing device 33 is movable between the position shown in part (a) of
The sheet processing device 33 includes the connecting member 50 which is a connecting portion connected to the guide unit 46 so as to be mountable to and dismountable from the guide unit 46. The connecting member 50 which is the connecting portion includes a swingable member 66 which is a movable portion and a fixing member 68 which is a fixing portion as shown in
With reference to parts (a) and (b) of
Part (a) of
Part (a) of
Part (b) of
[Operation of Connecting Member During Mounting and Dismounting of Sheet Processing Device]
With reference to
As described above, the connecting member 50 which is the connecting portion includes the swingable member 66 which is the movable portion and the fixing member 68 which is the fixing portion as shown in
The swingable member 66 is held swingable relative to the supporting member 59 in the widthwise direction perpendicular to the sheet feeding direction by inserting the supporting shaft 69 into holes 65 of the supporting member 59. Further, the swingable member 66 receives a force from one side toward the other side with respect to the widthwise direction perpendicular to the sheet feeding direction by a spring 71. That is, the swingable member 66 receives the force in a direction in which the swingable member 66 is moved away from the supporting member 59 by the spring 71. The swingable member 66 urged by the spring 71 is prevented from opening during swinging by abutment of the abutting portion 67 of the swingable member 66 against the receiving portion 70 of the fixing member 68 including the fixing wall 51 having a wall surface opposing the moving wall 53.
The moving wall 53 of the swingable member 66 has a surface crossing the movement direction of the sheet processing device 33. The surface of the moving wall 53 is a first acting surface actable on the link shaft 49 so that the guide unit 46 is rotated in a direction of being moved away from the other feeding guide 44b opposing the one feeding guide 44a with an operation of moving the sheet processing device 33 from the operation position to the jam clearance position. The holding surface 72 of the swingable member 66 is a surface following the movement direction of the sheet processing device 33. The holding surface 72 holds the link shaft 49 with respect to a direction of gravitation so that the guide unit 46 is held in a state in which the first feeding passage 44 formed by the feeding guides 44a and 44b is opened. This holding surface 72 holds the link shaft 49 so that the sheet processing device 33 is movable in the direction of being further away from the jam clearance position. The holding surface 72 is inclined downwardly from one side toward the other side with respect to the widthwise direction perpendicular to the sheet feeding direction.
The inclined surface 54 of the swingable member 66 is provided below the holding surface 72 on a side downstream of the moving wall 53 having the first acting surface with respect to the movement direction of the sheet processing device 33 from the retracted position to the operation position. The inclined surface 54 is inclined downwardly toward a downstream surface with respect to the movement direction of the sheet processing device 33 from the retracted position to the operation position.
The fixing wall 51 of the fixing member 68 has a surface crossing the movement direction of the sheet processing device 33. The fixing wall 51 is provided opposed to the moving wall 53 having the first acting surface of the swingable member 66 with respect to the movement direction of the sheet processing device 33. The surface of the fixing wall 51 is a second acting surface actable on the link shaft 49 so that the guide unit 46 is rotated in a direction of being moved toward the other feeding guide 44b opposing the one feeding guide 44a with an operation of moving the sheet processing device 33 from the retracted position to the operation position.
Parts (a), (b) and (c) of
By further moving the sheet processing device 33 toward the operation position, the connecting member 50 of the sheet processing device 33 is moved from the position shown in part (b) of
That is, relative to the disconnected guide unit 46, the swingable member 66 of the connecting member 50 swings correspondingly to an amount of the movement of the sheet processing device 33, so that the connecting member 50 is capable of being connected with the link shaft 49 again.
From the connected state between the connecting member 50 and the link shaft 49 shown in part (c) of
In the case where the guide unit 46 is singly closed from this state, when the guide unit 46 is pressed down, a force is applied from the link shaft 49 to the holding surface 72 of the connecting member 50 in a downward direction. As described above, the holding surface 72 is the surface inclined from the one side toward the other side with respect to the widthwise direction perpendicular to the sheet feeding direction. For this reason, when the force is applied from the link shaft 49 to the holding surface 72 in the downward direction, the holding surface is swung clockwise as shown by an arrow Y2 indicated by the broken line. As a result, connection between the link shaft 49 and the connecting member 50 is released, so that the guide unit 46 can be closed singly. That is, the guide unit 46 can be disconnected from the connecting member 50 by only being pressed down from the state in which the first feeding passage 44 is opened during the jam clearance, so that the guide unit 46 can be closed. Incidentally, the closed guide unit 46 is held in the image forming apparatus by a toggle mechanism in a state in which the feeding passage is closed.
On the other hand, when the sheet processing device 33 is moved from the jam clearance position where the link shaft 49 is held by the holding surface 72, in a direction in which the sheet processing device 33 is further moved shaft the operation position, the link shaft 49a falls off the holding surface 72 and is disconnected from the connecting member 50. For that reason, the sheet processing device 33 can be dismounted without performing an operation such that connection between the guide unit 46 and the sheet processing device 33 is independently eliminated.
[Connecting Mechanism of Sheet Processing Device with Guide Unit]
Next, using
As shown in
A toggle plate 58 which is a toggle member is provided swingable relative to the rear side plate 47 with a caulking pin 64 as a supporting point. A toggle spring 57 is connected between the toggle plate 58 and the rear side plate 47, so that a tensile force of the toggle spring 57 acts on the toggle plate 58. The toggle plate 58 is pressed by the tensile force of the toggle spring 57 and includes a pressing portion 60 for abutting the link shaft 49 of the guide unit 46 against the abutment portion 61.
The guide unit 46 is held so that the link shaft 49 thereof is sandwiched between the pressing portion 60 of the toggle plate 58 pressed by the tensile force of the toggle spring 57 and the abutment portion 61 of the rear side plate 47. As a result, the guide unit 46 is positioned relative to the image forming apparatus as shown in
Further, the rear side plate 47 includes a second abutment portion 62 against which the toggle plate 58 abuts as shown in
Next, using
Parts (a), (b) and (c) of
The guide unit 46 is positionally held as shown in part (a) of
When the sheet processing device is slid (moved) is moved from the position (operation position) shown in part (a) of
With further movement of the sheet processing device from the position shown in part (b) of
When the sheet processing device is dismounted from the image forming apparatus, the sheet processing device is further moved from the position shown in part (c) of
Thus, only by pulling out the sheet processing device by sliding the sheet processing device relative to the image forming apparatus, the connecting member 50 acts on the link shaft 49 of the guide unit 46 and moves the guide unit 46, so that the feeding passage can be opened. Further, only by pulling out the sheet processing device through the sliding, connection of the sheet processing device with the guide unit can be released.
Using parts (a), (b) and (c) of
When the sheet processing device is moved toward the operation position from the position shown in part (a) of
When the sheet processing device is further moved from the position shown in part (b) of
Thus, by only sliding and inserting the sheet processing device into the image forming apparatus, the connecting member 50 acts on the link shaft 49 of the guide unit 46 and moves the link shaft, so that the feeding passage can be closed. Further, although only the sheet processing device is slid (moved), the link shaft 49 can be interrelated with the toggle mechanism provided on the image forming apparatus main assembly side. As a result, the link shaft 49 can be held by a component part provided on the image forming apparatus main assembly side, so that the guide unit 46 can be accurately held.
As described above, according to this embodiment, the connecting member mountable to and dismountable from the feeding unit in the image forming apparatus is provided to the sheet processing device which is slidable (movable). As a result, only by pulling out the sheet processing device through sliding of the sheet processing device relative to the image forming apparatus, the guide unit is rotated and the feeding passage is opened, and thereafter, the guide unit and be held in the state in which the feeding passage is opened. Further, only be sliding and inserting the sheet processing device into the image forming apparatus, the guide unit is rotated and the feeding passage is closed. As a result, operativity during the jam clearance can be improved. Further, when the sheet processing device is dismounted from the image forming apparatus, only by pulling out the sheet processing device through sliding the connection thereof with the guide unit can be released, so that the mounting and dismounting of the sheet processing device can be facilitated.
Further, irrespective of the movement of the sheet processing device, relative to the image forming apparatus, the guide unit held in the closed state can be manually closed independently. Further, only by sliding and inserting the sheet processing device into the image forming apparatus, the sheet processing device is connected again with the guide unit which has been disconnected therefrom, so that the feeding passage can be closed. As a result, the operativity during the jam clearance is further improved.
In the above-described embodiments, the four process cartridges constituting the image forming portion are used, but the number of use of the process cartridges is not limited, but may only be required to be appropriately set as needed.
Further, in the above-described embodiments, as the process cartridge mountable in and dismountable from the image forming apparatus, the process cartridge in which the photosensitive drum and, as the process means actable on the photosensitive drum, the charging means, the developing means and the cleaning means are integrally assembled into a unit was described as an example. However, the process cartridge is not limited thereto. A process cartridge integrally including, in addition to the photosensitive drum, any one of the charging means, the developing means and the cleaning means may also be used.
Further, in the above-described embodiments, as the image forming apparatus, the copying machine was described as an example, but the present invention is not limited thereto. For example, other image forming apparatuses such as a printer, a facsimile apparatus and a multi-function machine having functions of these machines may also be used. Further, the image forming apparatus in which the intermediary transfer member is used and the toner images of the respective colors are successively transferred superposedly onto the intermediary transfer member and then are collectively transferred from the intermediary transfer member onto the sheet was described as an example, but the image forming apparatus is not limited thereto. An image forming apparatus in which a sheet carrying member is used and the toner images of the respective colors are successively transferred superposedly onto the sheet carried on the sheet carrying member may also be used. Of these image forming apparatuses, by applying the present invention to the image forming apparatus in which the stacking portion or the sheet processing device are provided so as to be slidable (movable), a similar effect can be achieved.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Applications Nos. 2018-197222 filed on Oct. 19, 2018 and 2018-197223 filed on Oct. 19, 2018, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
JP2018-197222 | Oct 2018 | JP | national |
JP2018-197223 | Oct 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5493380 | Saitou et al. | Feb 1996 | A |
6527267 | Kuwata et al. | Mar 2003 | B1 |
6643480 | Kuwata et al. | Nov 2003 | B2 |
6661995 | Isobe et al. | Dec 2003 | B2 |
6882823 | Matsuyama | Apr 2005 | B2 |
6912044 | Sekiyama et al. | Jun 2005 | B2 |
6973285 | Sekiyama et al. | Dec 2005 | B2 |
8191884 | Sato et al. | Jun 2012 | B2 |
8328193 | Ninomiya | Dec 2012 | B2 |
8342509 | Takiguchi et al. | Jan 2013 | B2 |
8511671 | Takiguchi et al. | Aug 2013 | B2 |
8672313 | Fukami | Mar 2014 | B2 |
9359159 | Noda et al. | Jun 2016 | B2 |
10543999 | Furukawa et al. | Jan 2020 | B2 |
20020114634 | Ahn | Aug 2002 | A1 |
20050141939 | Kayama | Jun 2005 | A1 |
20100072692 | Iida et al. | Mar 2010 | A1 |
20110062646 | Sato et al. | Mar 2011 | A1 |
20120217693 | Fukami | Aug 2012 | A1 |
20170240376 | Shirasaki | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
102020137 | Apr 2011 | CN |
102649517 | Aug 2012 | CN |
H10-095566 | Apr 1998 | JP |
2001-253585 | Sep 2001 | JP |
2011-037591 | Feb 2011 | JP |
2012-034956 | Feb 2012 | JP |
2012-035956 | Feb 2012 | JP |
2012-051685 | Mar 2012 | JP |
2014-106294 | Jun 2014 | JP |
2015-147663 | Aug 2015 | JP |
Entry |
---|
Oct. 2021 Chinese Official Action in Chinese Patent Appln. No. 201910992138.7. |
Number | Date | Country | |
---|---|---|---|
20200122951 A1 | Apr 2020 | US |