Image forming apparatuses such as a liquid electrophotography printing apparatus form images on media. Images may be transferred from a photoconductive member to an image transfer blanket. Subsequently, the images may be transferred from the image transfer blanket to a media being transported between an impression roller and the image transfer blanket.
Non-limiting examples of the present disclosure are described in the following description, read with reference to the figures attached hereto and do not limit the scope of the claims. In the figures, identical and similar structures, elements or parts thereof that appear in more than one figure are generally labeled with the same or similar references in the figures in which they appear. Dimensions of components and features illustrated in the figures are chosen primarily for convenience and clarity of presentation and are not necessarily to scale. Referring to the attached figures:
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is depicted by way of illustration specific examples in which the present disclosure may be practiced. It is to be understood that other examples may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims.
Image forming apparatuses such as a liquid electrophotography printing apparatus (LEP) may include an impression roller having a gripping device including gripper units. The gripper units selectively grip media and the impression roller rotates to transport the media to contact an image transfer blanket of an intermediate transfer member to transfer images to the media. The rotation of the impression roller in response to media misfeed due to, for example, insufficient gripping by the gripper units, skewing of the media, misfeed events, and the like, may cause damage to the image transfer blanket. Consequently, the cost per page and the downtime of the image forming apparatus may be increased.
In examples, the image forming apparatus includes, amongst other things, an intermediate transfer member having an image transfer blanket thereon to transfer images to media and an impression roller including a gripping device to receive the media. The impression roller may move the gripping device to transport the media in a media advancement direction to press the media against the image transfer blanket. The gripping device may include gripper units to removably hold a length of media. The image forming apparatus may also include a scanning device including a plurality of sensors (e.g., a first set of sensors and a second set of sensors) arranged across from the impression roller to respectively detect the media. The image forming apparatus may also include a determination module to determine the length of the media held by the gripper units based on respective detections of the first set and second set of sensors. The image forming apparatus may also include a control module to initiate recovery actions based on respective determinations by the determination module. Accordingly, the determination of media misfeed in response to the respective detections of the first and second sensors disposed across from the impression roller and, for example, not in contact with the media may reduce damage to the image transfer blanket and media abrasion. Consequently, the cost per page, the downtime of the image forming apparatus and image quality defects may be decreased.
In some examples, the ink applicator unit 13 may include a plurality of BIDs in which each BID may correspond to a respective color ink such as black ink, cyan ink, yellow ink, and magenta ink. The ink may be liquid toner, for example, ElectroInk, trademarked by Hewlett-Packard Company. The ink applicator unit 13 applies the ink to the electrostatic and/or latent image to form an ink image on the photoconductive member 18 to be transferred to an image transfer blanket 15a of an intermediate transfer member (ITM) 15. The image transfer blanket 15a is configured to receive the ink image from the photoconductive member 18 and transfer the ink image to the media S. During the transfer of the ink image from the image transfer blanket 15a to the media S, the media S is pinched between the image transfer blanket 15a and an impression roller 19. A media processing roller 17 flattens the media S transported by the feed unit 11 in a media receiving direction dr prior to the ink image being transferred from the image transfer blanket 15a to the media S. Once the ink image has been transferred to the media S, the media S can be transported to the output unit 14b.
In some examples, the sensors 27 are infrared sensors and are spaced apart from the media. That is, in some examples, the sensors 27 do not contact the media and emit an optical beam toward the gripping device 24 and/or impression roller 19 to detect the presence of media. The sensors 27 may detect a difference in an optical parameter such as color variation, for example, between a white surface and a black surface, and the like. In some examples, the sensors 27 may detect a leading edge and/or portions of the media. The determination module 28 may include a length module 28a to determine the length of the media held by the at least one gripper unit 25a based on respective detections of the first and second set of sensors 29a and 29b. The length module 28a may also determine whether the length of the media is one of equal to and greater than a predetermined value. For example, the predetermined value may correspond to a sufficient gripping length. In some examples, the determination module 28 may also determine whether the media is outside of the gripper units (e.g., no length of media is gripped by the gripper units 25) based on the respective detections of the first and second set of sensors 29a and 29b.
Referring to
The determination module 28 may determine whether the respective lengths of the media held by the gripper units 25 are one of equal to and greater than a predetermined value. The predetermined value may correspond to a minimal length of media to allow a sufficient grip by the gripper units 25 to adequately hold the media, for example, during transportation of media in the media advancement direction dm. The determination module 28 may determine whether a media orientation is within a predetermined orientation range based on respective detections of the first and second sensors 29a and 29b. For example, the first set of sensors 29a may respectively detect a leading edge of the media and the second set of sensors may respectively detect portions of the media. In some examples, a predetermined orientation may be the media positioned in a non-skewed manner.
The gripping device 24 may include a gripping shaft member 44, a plurality of gripper units 25a, 25b, 25c, 25d, 25e and 25f (collectively 25), and a plurality of positioning members 39 having respective positioning surfaces 39a to position media within the gripper units 25. Each one of the positioning surfaces 39a may correspond to at least one of the gripper units 25. In some examples, each one of the positioning surfaces 39a corresponds to a plurality of gripper units 25. The gripper units 25 may be coupled to the gripping shaft member 44. Each one of the gripper units 25 may hold a respective length of the media in response to the gripping device 24 receiving the media S.
The scanning device 26 may also include a sensor frame 42 and a feed unit 11. The sensor frame 42 may include a plurality of sensors such as a first set of sensors 27a, 27c, and 27e (collectively 29a) and a second set of sensors 27b, 27d, and 27f (collectively 29b) attached thereto. In some examples, the sensors 27 are infrared sensors spaced apart from the media. In some examples, the sensors 27 are not in contact with the media. The sensors 27 may detect a difference in an optical parameter such as color variation, for example, between a white surface and a black surface, and the like. In some examples, the sensors 27 may detect a leading edge and/or portions of the media. The sensor frame 42 may be movable with respect to the impression roller 19 to move the sensors 27 toward the impression roller 19 to place the sensors 27 in a sensing position (
For example, in a sensing position, each one of the first set of sensors 29a directs an optical beam along an optical axis oa toward a different location sa, sc, and se of the impression roller 19 to detect the leading edge of the media. For example, in a sensing position, each one of the second set of sensors 29b directs an optical beam along an optical axis oa toward a different location sb, sd, and sf of the impression roller 19 to respectively detect whether respective portions of the media are present proximate to leading edges 65d of the respective blade members 65b of corresponding gripper units 25 illustrated in
Referring to
For example, each of the sensors 27 may emit an optical beam toward different locations sa, sb, sc, sd, se and sf of the gripping device 24 and/or impression roller 19 as illustrated in
The length module 28a may determine the respective lengths of media, for example, held by the respective gripper units 25. For example, respective lengths may correspond to an amount of time that passes between the detection of the leading edge of the media and the corresponding detection of the respective portion of the media. The length module 28a may also determine whether the respective lengths held by the gripper units 25 are one of equal to and greater than a predetermined value. The control module 41, for example, may determine whether the media misfeed exists, the type of media misfeed, and/or an appropriate recovery action to initiate based on the determinations by the length module 28a. In some examples, the scanning device 26 may include more or less than two pairs of sensors 27. For example, the scanning device 26 may include three pairs of sensors 27.
Referring to
In some examples, the determination module 28 may determine whether the respective lengths of the media held by the gripper units 25 are one of equal to and greater than a predetermined value. For example, the predetermined value may correspond to a sufficient gripper length such as a respective distance A illustrated in
In some examples, the orientation of the gripping device 24 with respect to the first and second set of sensors 29a and 29b and the timing of detecting, acquiring and/or determining media positional information from particular locations of the gripping device 24 and/or the impression roller 19 may be in sync and occur at predetermined time periods corresponding to the rotation of the impression roller 19. In some examples, one sensor 27a and 27c of a respective pair detects the leading edge of the media and initiates a sensing operation, for example, after a predetermined time period of an other sensor 27b and 27d of the respective pair to determine whether a respective portion of the media is proximate to a leading edge 65d of a respective blade member 65b of the corresponding gripper unit 25a and 25b.
Referring to
The orientation module 48b may determine whether a media orientation is within a predetermined orientation range based on the respective detections of the first and second set of sensors 29a and 29b. In some examples, the orientation module 48b may determine that the media orientation is within the predetermined orientation range based on a determination that the leading edge of the media received by the gripper unit 25a is approximately parallel to the positioning surface 39a of the positioning member 39. The orientation module 48b may also determine that the media orientation is within the predetermined orientation range when the respective lengths of the media held by the respective gripper units 25 are approximately equal to each other.
In some examples, the determination module 28 including the length module 28a and the orientation module 48b may be implemented in hardware, software, or in a combination of hardware and software. In some examples, the determination module 28 including the length module 28a and the orientation module 48b may be implemented in whole or in part as a computer program such as a set of machine-readable instructions stored in the image forming apparatus 100 locally or remotely. For example, the computer program may be stored in a memory such as a server or a host computing device considered herein as part of the image forming apparatus 100.
Referring to
In some examples, the control module 41 may be implemented in hardware, software, or in a combination of hardware and software. In some examples, the control module 41 may be implemented in whole or in part as a computer program such as a set of machine-readable instructions stored in the image forming apparatus 100 locally or remotely. For example, the computer program may be stored in a memory such as a server or a host computing device considered herein as part of the image forming apparatus 100.
Referring to
Referring to
In some examples, the blade member 65b and/or portions thereof may be optically distinguished from the media through color variation. For example, the blade member 65b may be black and the media may be white so that a respective optical sensor may detect the respective portions p1 and p2 of the media proximate to the leading edge 65d of the blade member 65b. For example, second set of sensors 29b may detect a transition from the black blade member 65b to the white media. In some examples, placement of the gripping device 24 through rotation of the impression roller 19 to align with a media advancement path of the media S and placement of the gripper units 25 into a respective state enables the gripper units 25 to receive and, subsequently, transport the media S. The impression roller 19 moves the gripping device 24 coupled thereto to transport the media in the media advancement direction dm.
In block S73, whether respective portions of the media are present proximate to a leading edge of respective blade members of corresponding gripper units by a second set of sensors disposed across from the impression roller is detected. In some examples, the detecting whether respective portions of the media are present proximate to the leading edge of respective blade members of corresponding gripper units by the second set of sensors disposed across from the impression roller may also include a second sensor to detect whether one portion of the media is present proximate to a leading edge of a respective blade member of the first gripper unit, and a fourth sensor to detect whether an other portion of the media is present proximate to a leading edge of a respective blade member of the second gripper unit.
In block S74, respective lengths of the media in contact with and held by a plurality of gripper units of the gripping device are determined by a determination module based on respective detections by the first and second set of sensors. Additionally, the determination module may determine whether the respective lengths are approximately equal to each other. In some examples, the method may also include whether the respective lengths of the media are within a predetermined range by the determination module. The determination module may also determine whether the media is outside of the gripper units in its entirety (e.g., no length of media is gripped by the gripper units 25) based on the respective detections of the first and second set of sensors 29a and 29b.
In some examples, the determination module may also determine whether the length of media held by the gripper units is within a predetermined range such as between a first respective distance and a second respective distance, whether the length of media is greater than the predetermined range, and/or whether the length of media is less than the predetermined range. The method may also include a feed unit to transport the media in the media receiving direction to the gripping device. Additionally, the method may also include a media processing roller to flatten the media to be provided to the gripping device. Further, the method may include a control module to control at least one of the impression roller to transport the media held by the gripping device against the image transfer blanket of the intermediate transfer member to transfer images thereon, the impression roller to disengage from the intermediate transfer member, the media processing roller to disengage from the impression roller, the feed unit to stop transporting the media in the media receiving direction, and the image forming apparatus to be placed in an inactive state.
It is to be understood that the flowchart of
The present disclosure has been described using non-limiting detailed descriptions of examples thereof and is not intended to limit the scope of the present disclosure. It should be understood that features and/or operations described with respect to one example may be used with other examples and that not all examples of the present disclosure have all of the features and/or operations illustrated in a particular figure or described with respect to one of the examples. Variations of examples described will occur to persons of the art. Furthermore, the terms “comprise,” “include,” “have” and their conjugates, shall mean, when used in the present disclosure and/or claims, “including but not necessarily limited to.”
It is noted that some of the above described examples may include structure, acts or details of structures and acts that may not be essential to the present disclosure and are intended to be exemplary. Structure and acts described herein are replaceable by equivalents, which perform the same function, even if the structure or acts are different, as known in the art. Therefore, the scope of the present disclosure is limited only by the elements and limitations as used in the claims.
Number | Name | Date | Kind |
---|---|---|---|
4127265 | Wirz et al. | Nov 1978 | A |
4292529 | Thurston | Sep 1981 | A |
5390908 | Luxem | Feb 1995 | A |
5448079 | Schulz | Sep 1995 | A |
7478806 | Buck et al. | Jan 2009 | B2 |
20060288892 | Forch et al. | Dec 2006 | A1 |
20100247116 | Wiener et al. | Sep 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20130064582 A1 | Mar 2013 | US |