This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2016-035399 filed Feb. 26, 2016.
The present invention relates to an image forming assembly and an image forming apparatus.
According to an aspect of the invention, there is provided an image forming assembly including:
a first assembly that includes an image holding member which rotates by receiving a rotational driving force to a first rotation shaft extending in a first direction and holds a toner image after an electrostatic latent image is formed thereon by exposure and the toner image is formed by development and a supporting member which supports the image holding member;
a second assembly that includes a developing member which is disposed adjacent to the image holding member, rotates by receiving a rotational driving force to a second rotation shaft extending in the same direction as the first direction, and transports a toner to a developing region facing the image holding member and a toner holding member which holds the toner and supplies the toner to the developing member; and
a connection member that includes a pressing member in which a first through hole which the first rotation shaft penetrates and a second through hole which the second rotation shaft penetrates are formed and which presses the second rotation shaft in a second direction intersecting the first direction and that is fixed to the supporting member.
Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
Hereinafter, an exemplary embodiment of the invention will be described.
A printer 10 shown in
An image signal representing an image that is created in a different device from the printer 10 is input via a signal cable (not shown) into the printer 10. The printer 10 is provided with a controller 11 that controls operation of each configuration element in the printer 10 and the image signal is input to the controller 11. Image formation is performed based on the image signal under control according to the controller 11 in the printer 10.
Two sheet trays 21 are accommodated at the lower side of the printer 10. Sheets P of a different size and thickness for each sheet tray 21 in these sheet trays 21 are accommodated in a state of being piled respectively. Each sheet tray 21 is configured to be freely pulled out for replenishment of the sheets P.
The paper P is fed by a pickup roller 22 from the sheet tray accommodating the designated sheet P of the two sheet trays 21. The fed sheets P are separated one by one by a separation roller 23. The separated one sheet of the sheets P is transported upward, and a leading edge of the sheet P reaches a standby roller 24. The standby roller 24 plays a role of adjusting a timing of subsequent transportation and feeding the sheet P. The sheet P which reaches at the standby roller 24 is further transported by the timing of subsequent transportation being adjusted by the standby roller 24.
The printer 10 is provided with a photoconductor drum 12 rotating in a direction indicated by an arrow A on the upper side of the standby roller 24. A charging unit 13, an exposure device 14, a developing device 15, a transfer unit 16 and a photoconductor cleaner 17 are disposed around the photoconductor drum 12. The photoconductor drum 12, the charging unit 13 and the photoconductor cleaner 17 are integrally assembled among these devices to constitute a photoconductor unit 100. In the same way as this, the developing device 15 is also unitized. The photoconductor unit 100 and the developing device 15 are integrally connected by an input shaft side connection member 50 and a non-input shaft side connection member 60 (refer to
The photoconductor drum 12 includes a cylindrical shape and extends in the depth direction of
The charging unit 13 is provided with a charging roller 131 rotating in contact with the surface of the photoconductor drum 12, and charges the surface by applying the electric charge to the surface of the photoconductor drum 12 by the charging roller 131. As the charging unit 13, in addition to the charging roller 131, a non-contact corona discharger with a photoconductor may also be adopted.
The exposure device 14 (refer to
The photoconductor drum 12 is exposed by the exposure light and the electrostatic latent image formed on the surface thereof is developed by the developing device 15. A replenishing toner accommodating unit 42 is connected to the developing device 15 via a toner supply path 41, as shown in
The above-described standby roller 24 feeds the sheet P so that the sheet P reaches a transfer position in accordance with the timing at which the toner image on the photoconductor drum 12 reaches the transfer position facing the transfer unit 16. The toner image on the photoconductor drum 12 is transferred on the sheet P which is fed out thereof by receiving the action of a transfer bias applied to the transfer unit 16.
The toner remaining on the photoconductor drum 12 after the transfer of the toner image is removed from the photoconductor drum 12 by the photoconductor cleaner 17.
The sheet P which received the transfer of the toner image moves further in the direction of the arrow B, and receives heat and pressure when passing through a fixing position sandwiched between a heater 31 and a pressurizer 32 constituting the fixing machine 30. In this manner, the toner image is fixed onto the sheet P. As a result, the image which includes the fixed toner image is formed on the sheet P.
The sheet P which has passed the fixing machine 30 moves in the direction of the arrow C toward an exit roller 18 and is further transported in the direction of the arrow D by the exit roller 18 to be ejected on a paper ejection tray 19.
Both end portions of the photoconductor drum 12 in the longitudinal direction are supported by the input shaft side connection member 50 and the non-input shaft side connection member 60 via bearings 121 and 122. The input shaft side connection member 50 is fixed to a supporting member 123 positioned by positioning pins 123c and 123d, and the non-input shaft side connection member 60 is fixed to the supporting member 123 positioned by the positioning pins 123e and 123f. The input shaft side connection member 50 among the input shaft side connection member 50 and the non-input shaft side connection member 60 corresponds to an example of the connection member according to the exemplary embodiment of the invention. A through hole 51 that the rotation shaft 61 which is driven to rotate the photoconductor drum 12 penetrates is formed in the input shaft side connection member 50. The rotation shaft 61 is a member extending from a main body of the printer 10 to the inside of the photoconductor drum 12, and is connected to the photoconductor drum 12 in an inner side of the photoconductor drum 12. The through hole 51 disposed in the input shaft side connection member 50 is in the hole of a larger diameter than the diameter of the rotation shaft 61, and the rotation shaft 61 penetrates the through hole 51 in a non-contact manner with a wall surface of the through hole 51.
Both end portions of the photoconductor drum 12 are rotatable with the bearings 121 and 122 and are supported by the input shaft side connection member 50 and the non-input shaft side connection member 60. The input shaft side connection member 50 and the non-input shaft side connection member 60 are fixed to the supporting member 123. An axial deflection by the rotary drive is sufficiently suppressed to be small for both an input shaft side and a non-input shaft side in the photoconductor drum 12 by this configuration.
The developing roller 154 as shown in
The rotation shaft 1541a extending from the developing sleeve 1541 is stretched on the input shaft side. The rotation shaft 1541a penetrates the other through hole 52 disposed on the input shaft side connection member 50, and is connected to a driving shaft 62 which is driven to rotate the developing roller 154 on the outer side of the accommodating unit 151 (refer to
Here, both end portions of the developing sleeve 1541 are supported by the magnet structure 1542 via the bearings 1543 and 1544. Since the non-input shaft side of the magnet structure 1542 is fixed to the non-input shaft side connection member 60, the non-input shaft side is a structure strong against vibration. Additionally, although the developing sleeve 1541 and the magnet structure 1542 are supported by each other via the bearing 1543 on the input shaft side, when the vibration from the driving shaft 62 side is transmitted, the developing sleeve 1541 and the magnet structure 1542 are integrally vibrated. The developer pulled by magnetic force of the magnet structure 1542 is attached to the developing sleeve 1541. The attached developer is transported to a developing region 1545 which is facing the photoconductor drum 12, by the rotation of the developing sleeve 1541. The electrostatic latent image formed in the photoconductor drum 12 is developed by the toner in the developer in the developing region 1545. For this reason, it is effective for the image-forming of good image quality to maintain a gap between the photoconductor drum 12 and the developing sleeve 1541 in the developing region 1545 to be constant.
In the exemplary embodiment, the gap between the photoconductor drum 12 and the developing sleeve 1541 in the developing region 1545 is maintained to be constant by devising the input shaft side connection member 50.
Hereinafter, with reference to the sectional view shown in
The rotation shaft 1541a extending from the developing sleeve 1541 is in contact with the wall surface of the through hole 52 of the input shaft side connection member 50 via a sliding bearing 1546. The through hole 52 is a long hole extending in a direction that comes in contact with and separates from the rotation shaft 61 which drives the photoconductor drum 12. In the exemplary embodiment, a attachment section 521 in which a pressing member 53 is attached is disposed at the position farthest from the rotation shaft 61 of the through hole 52 and the pressing member 53 is attached in the attachment section 521 thereof. The pressing member 53 includes a contact member 531 having the same material as the input shaft side connection member 50 which is in contact with the sliding bearing 1546, and a spring member 532 which is pressed against the contact member 531 thereof on the sliding bearing 1546. In the exemplary embodiment, the rotation shaft 1541a of the developing roller 154 is normally pressed in a direction to approach the rotation shaft 61 which is driven to rotate the photoconductor drum 12 by the pressing member 53. For this reason, the width of the developing region 1545, that is, the gap between the photoconductor drum 12 and the developing sleeve 1541 in the developing region 1545 is stabilized, and the image with high-quality is formed.
Here, a state is shown where the rotation shaft 1541a of the developing sleeve 1541 is progressively inserted into the through hole 52 of the input shaft side connection member 50.
The sliding bearing 1546 is mounted on the rotation shaft 1541a and the rotation shaft 1541a is inserted into the through hole 52 of the input shaft side connection member 50 in a state where the sliding bearing 1546 is mounted. At this time, the contact member 531 constituting the pressing member 53 is pressed by the spring member 532 to be in a state where the distance from the portion facing the pressing member 53 of the wall surface of the through hole 52 is narrower than the diameter of the sliding bearing 1546. As shown in
In the vicinity of the through hole 52 which the rotation shaft 1541a of the developing roller 154 is inserted into, of the input shaft side connection member 50 shown in
As the second example shown in
Even in a case of any of the input shaft side connection members 50 shown in
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2016-035399 | Feb 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6980759 | Kanno | Dec 2005 | B2 |
7509071 | Yoshimura | Mar 2009 | B2 |
7925181 | Hattori | Apr 2011 | B2 |
8068767 | Kamimura | Nov 2011 | B2 |
8583005 | Asanuma | Nov 2013 | B2 |
Number | Date | Country |
---|---|---|
2004-271815 | Sep 2004 | JP |