The present application claims priority to and incorporates by reference the entire contents of Japanese Patent Application No. 2009-012165 filed in Japan on Jan. 22, 2009.
1. Field of the Invention
The present invention relates to an image forming device for use in an image forming apparatus such as a printer, a facsimile, and a copier, and an image forming apparatus including the image forming device.
2. Description of the Related Art
As conventional image forming apparatuses, image forming apparatuses in which a direct recording type image forming method (hereinafter, referred to as direct recording type image forming apparatus) such as so-called toner-jet, direct toning, or toner projection is applied have been known (such as Japanese Patent Publication No. 2910019). In the image forming apparatuses of this type, unlike an electrophotographic process in which a latent image formed on a photosensitive body is developed by an image forming agent such as toner and the developed image is transferred from the photosensitive body onto a recording paper or a transfer medium, an image is directly formed on a recording paper, transfer medium, and the like, by depositing an image forming agent (toner) caused to be sprayed on the recording paper, the transfer medium, and the like.
Below the FPC 503, a counter electrode 506 placed opposite to the agent carrier 501 with the FPC 503 interposed therebetween and a recording paper 507 placed on the counter electrode 506 and conveyed by a conveying unit are arranged. In
The agent carrier 501 carries the toner T charged to a minus polarity on the surface, for example, while being grounded. When spraying voltage of plus polarity is applied to the spray electrodes 504, an electric field having a predetermined strength is applied to the toner T on the agent carrier 501 placed opposite to the spray electrodes 504, and the toner T placed near the toner T on the agent carrier 501 placed opposite to the spray electrodes 504. Due to the action of the electric field, the electrostatic force applied to the toner T exceeds the adhesive force between the toner T and the agent carrier 501. Accordingly, an aggregation of the toner T selectively caused to be sprayed from the agent carrier 501 in a dot shape, enters the holes 502. The toner T is caused to continuously be sprayed while being attracted to an electric field formed between the spray electrodes 504 and the counter electrode 506 charged to a potential higher than that of the spray electrodes 504. The toner T then passes through the holes 502, deposits on the surface of the recording paper 507, thereby forming a dot image.
The ON-OFF of the spraying voltage applied to each of the spray electrodes 504 is individually controlled by a dedicated integrated circuit (IC). In general, more chip area is required for IC, with an increase in the withstand voltage, thereby requiring a certain extent of installation space. Accordingly, the IC is fixed on an electrical substrate, which is not shown, integrally connected with the FPC 503, and the electric substrate is installed at a position a short distance away from the FPC 503.
To obtain high quality images in which the density and resolution of dot images is enhanced in the direct recording method, a toner supply gap that is an interval between the agent carrier 501 and the FPC 503 must be set and maintained with high accuracy.
In the image forming apparatus disclosed in Japanese Patent Publication No. 2910019, a positioning member that comes into contact with a hole defining member defining the holes therein and positions the hole defining member relative to the agent carrier, is fixed to both ends in the axial direction of the agent carrier. Because the positioning member positions the hole defining member relative to the agent carrier, a predetermined toner gap that is an interval between the agent carrier and the hole defining member can be set.
However, in the image forming apparatus disclosed in Japanese Patent Publication No. 2910019, the hole defining member only comes into contact with the positioning member at small portions of both ends in the axial direction of the agent carrier. The hole defining member is positioned under a so-called both ends supported state. Accordingly, a region near the center of the hole defining member in the axial direction of the agent carrier tends to bend and distort, by the weight of the hole defining member. Particularly, if the hole defining member is made of a flexible material such as a flexible print circuit, the bending and distortion near the center of the hole defining member in the axial direction of the agent carrier become significant. Due to such bending and distortion are produced on the hole defining member, problems such as the toner supply gap fluctuates in the axial direction of the agent carrier, and a predetermined toner supply gap cannot be maintained in the axial direction of the agent carrier occur.
The applicants of the present invention have proposed an image forming device that can solve the problems in Japanese Patent Application Laid-open No. 2008-273508 (hereinafter, referred to as prior application).
In other words, the image forming device of the prior application includes a casing that stores therein an agent, an agent carrier rotatably supported by the casing and facing outside through an opening formed on the casing, a sheet-like hole defining member that defines a plurality of holes therein, and placed opposite to the agent carrier with a predetermined interval therebetween, and a plurality of spray electrodes that is provided on the hole defining member in a manner corresponding to the holes, and forms an electric field for selectively causing the agent to be sprayed from the agent carrier towards the holes. The image forming device also includes a positioning member that is provided on the casing so as to cover the agent carrier, at least holds the hole defining member in the axial direction of the agent carrier by the side walls of the positioning member having an opening at a location opposite to a plurality of toner holes in the hole defining member, and positions the holes relative to the agent carrier so that the relative positions of the agent carrier and the holes are in a predetermined positional relationship.
In the image forming device of the prior application, the positioning member holds the hole defining member by the side walls in the axial direction of the agent carrier. Accordingly, compared to when the hole defining member is only held by the positioning member by both ends in the axial direction of the agent carrier, it is possible to prevent the hole defining member from bending, for example, causing the fluctuations in interval in the axial direction of the agent carrier. Consequently, it is possible to prevent the interval between the agent carrier and the hole defining member from fluctuating in the axial direction of the agent carrier, thereby maintaining a predetermined interval.
If the printing gap that is an interval between the holes formed on the hole defining member and the recording member fluctuates, the spraying time of the toner caused to be sprayed from the holes towards the recording member will not be uniform. Accordingly, the recording characteristics (image qualities) deteriorate significantly. The fluctuation of the printing gap is caused because, when the recording member passes through the location opposite to the hole defining member, the recording member moves in the thickness direction of the recording member while being displaced, due to vibration and the like.
For example, WO01/032432 discloses an image forming apparatus in which an image forming device is so arranged that, to maintain a predetermined printing gap, an intermediate transfer belt (i.e., a recording member) is brought into contact with a counter electrode including an abutting unit with which the intermediate transfer belt is wound and brought into contact, and part of the intermediate transfer belt that is wound around and brought into contact with the counter electrode and a plurality of holes of the hole defining member are opposed to each other.
Because the intermediate transfer belt is wound around and brought into contact with the counter electrode, the intermediate transfer belt and the counter electrode are brought into contact with each other without fail. Accordingly, it is possible to prevent the intermediate transfer belt from displacing in the thickness direction thereof, thereby maintaining a predetermined printing gap that is an interval between the holes of the hole defining member and the intermediate transfer belt.
In this image forming apparatus, as described above, the intermediate transfer belt 200 is wound around and brought into contact with counter electrodes 240 corresponding to the image forming devices 120. In general, the locations where the intermediate transfer belt 200 is wound around the counter electrodes 240 tend to deviate towards the upstream or downstream of the counter electrodes 240 in the moving direction of the intermediate transfer belt, and a degree of deviation often differs. Accordingly, if the four image forming devices 120 having the same configuration are so arranged in the image forming apparatus that part of the intermediate transfer belt 200 that is wound around and brought into contact with the counter electrode 240 is opposed to a plurality of holes of the hole defining members 104, the image forming devices 120 are arranged in the image forming apparatus having different orientations for each of the counter electrodes 240 as shown in
To arrange the image forming devices 120 in the same orientation in the image forming apparatus, the configuration of the image forming device 120 may be varied, by changing the positions of the holes formed on the hole defining member 104 by each image forming device 120, and the like. However, if each of the image forming devices is formed differently, members dedicated for each of the image forming devices are required, thereby increasing cost.
It is an object of the present invention to at least partially solve the problems in the conventional technology.
According to one aspect of the present invention, there is provided an image forming device including: a casing that stores therein an image forming agent; an agent carrier that is rotatably supported by the casing, faces outside of the casing through an opening that is formed on the casing, and carries the image forming agent stored in the casing; a hole defining member that is formed in a sheet and includes a row of a plurality of holes in an axial direction of the agent carrier, and is arranged opposite to the agent carrier with a predetermined interval therebetween; a plurality of spray electrodes provided on the hole defining member respectively corresponding to the holes, and forms an electric field for selectively causing the image forming agent to be sprayed from the agent carrier towards the holes; and a positioning member provided on the casing to cover the agent carrier, at least holds the hole defining member in the axial direction of the agent carrier by side walls of its own having a portion defining an opening at a location opposite to the row of holes in the hole defining member, and positions the hole defining member with respect to the agent carrier so that relative positions of the agent carrier and the hole defining member are in a predetermined positional relationship. The image forming device is used in an image forming apparatus that, based on image information, forms an image by depositing the image forming agent selectively caused to be sprayed from the agent carrier by forming a spraying electric field, and having passed through the holes, on a recording member arranged in the image forming apparatus opposite to the agent carrier with the hole defining member interposed therebetween, and wound around and brought into contact with a counter electrode for forming an electric field that attracts the image forming agent caused to be sprayed from the agent carrier. An angle of the positioning member is adjustable relative to the casing about a rotation shaft that is coaxial with the agent carrier.
Furthermore, according to another aspect of the present invention, there is provided an image forming apparatus including: an image forming unit that includes a casing that stores therein an image forming agent, an agent carrier that is rotatably supported by the casing, faces outside of the casing through an opening that is formed on the casing, and carries the image forming agent stored in the casing, a hole defining member that is formed in a sheet and includes a row of a plurality of holes in an axial direction of the agent carrier, and is arranged opposite to the agent carrier with a predetermined interval therebetween, a plurality of spray electrodes provided on the hole defining member respectively corresponding to the holes, and forms an electric field for selectively causing the image forming agent to be sprayed from the agent carrier towards the holes, and a positioning member provided on the casing to cover the agent carrier, at least holds the hole defining member in the axial direction of the agent carrier by side walls of its own having a portion defining an opening at a location opposite to the row of holes in the hole defining member, and positions the hole defining member with respect to the agent carrier so that relative positions of the agent carrier and the hole defining member are in a predetermined positional relationship; and a counter electrode that is arranged opposite to the agent carrier with the hole defining member interposed therebetween, and forms an electric field for attracting the image forming agent caused to be sprayed from the agent carrier. Based on image information, the image forming apparatus forms an image by deposing the image forming agent selectively caused to be sprayed from the agent carrier by forming a spraying electric field on a recording member, after moving the image forming agent towards the counter electrode through the holes. An angle of the positioning member is adjustable relative to the casing about a rotation shaft that is coaxial with the agent carrier.
In the present invention, a fixing angle of a positioning member that holds a hole defining member relative to a casing can be changed, about a rotation shaft that is coaxial with an agent carrier. Accordingly, even if the fixing angle of the positioning member relative to the casing is changed, the hole defining member moves in arc, about the shaft of the agent carrier. Consequently, it is possible to maintain the relative positions of the agent carrier and the hole defining member in a predetermined positional relationship.
When an image forming device according to the present invention is arranged in an image forming apparatus, the fixing angle of the positioning member that holds the hole defining member relative to the casing is changed, based on the location where the recording member is wound around and brought into contact with an electrode. Accordingly, part of the recording member that is wound around and brought into contact with the electrode and a plurality of holes formed on the hole defining member held by the positioning member can be placed opposite to each other. In other words, even if a plurality of image forming devices according to the present invention is arranged in the image forming apparatus in the same orientation, part of the recording member that is wound around and brought into contact with a counter electrode and the holes of the hole defining member can be placed opposite to each other in any of the image forming devices, by changing the fixing angle of the positioning member that holds the hole defining member relative to the casing for each of the image forming devices.
In this manner, such as the conventional image forming apparatus, compared to when a configuration in which the image forming devices are obliquely arranged in the image forming apparatus main body, so that the recording member and the holes of the hole defining member are placed opposite to each other is adopted, it is possible to prevent unnecessary space from being formed between the image forming devices, thereby preventing the size of image forming apparatus from increasing.
Part of the recording member placed that is wound around and brought into contact with the counter electrode and the holes of the hole defining member can be placed opposite to each other, by changing the fixing angle of the positioning member that holds the hole defining member relative to the casing. Accordingly, the image forming devices having the same configuration can be used. As a result, it is possible to prevent cost from increasing, because members dedicated for each of the image forming devices are not required. This is possible because the configuration of the image forming devices need not be varied, by changing the positions of the holes formed on the hole defining member for each of the image forming devices and the like.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
Exemplary embodiments in which the present invention is applied to an image forming apparatus will be described. A direct recording method applied to the present invention will now be described.
This embodiment includes a roller-shaped toner carrier 1 that causes toner T to be sprayed and carries the toner T in a cloud-like state, a recording medium 3 to which the toner T is adhered, and a toner controlling unit 4 that includes a plurality of toner passage holes 41 arranged between the toner carrier 1 and the recording medium 3.
The toner carrier 1 includes a plurality of electrodes 11 arranged at a predetermined pitch, on the surface side, at a predetermined interval in the direction to which the toner T is conveyed (here, circumferential direction), and formed along the direction perpendicular to the direction to which the toner T is conveyed (here, axial direction). A pulse voltage (cloud pulse) having an average potential Vs in which the potential varies with time is applied to each of the electrodes 11 of the toner carrier 1, from a voltage applying unit 5 that is a power source. Accordingly, a unit that makes the toner T into a cloud is formed.
For example, a strong electric field is formed between the electrodes 11, because a pulse voltage with a frequency from 0.5 kilohertz to 7 kilohertz is applied, and because the intervals between the electrodes 11 are finely pitched. Accordingly, the toner T is caused to swiftly be sprayed from the surfaces of the electrodes 11 having the potential opposite to the charge polarity of the toner T, and the toner T caused to be sprayed is drawn to the electrodes 11 to which the potential with an attracting polarity is applied. The toner T is made into a cloud-like state, because the toner T is repeatedly caused to be sprayed in the vertical direction corresponding to the pulse frequency, due to the switching of the pulse.
In a region where the pulse frequency is high, the toner T caused to be sprayed high in the upward direction may be sprayed up again before returning to the surfaces of the electrodes 11, because the pulse is switched while the toner T is being sprayed.
The toner controlling unit 4 includes a row of the toner passage holes (opening) 41 through which the toner T passes, in the axial direction of the toner carrier 1. Control electrodes 42 in a ring shape are provided at the periphery of the toner passage holes 41, at the toner supplying side surface (surface of the toner carrier 1 side) of the toner controlling unit 4. Common electrodes 43 common to the toner passage holes 41 are provided on the outside of the control electrodes 42 from the toner passage holes 41 with an insulation region interposed therebetween.
A control pulse Vc, for example, as shown in
At the recording medium 3, a rear electrode 31 is arranged at the rear side of the recording medium 3. The rear electrode 31 is an electrode unit that is a bias voltage applying unit to which a bias voltage for depositing the toner T that has passed through the toner controlling unit 4 on the recording medium 3 is applied. To deposit the toner T that has passed though the toner controlling unit 4 on the recording medium 3, a bias voltage Vp is applied to the rear electrode 31 from a bias power supplying unit 8. The recording medium 3 may be an intermediate transfer recording medium that forms an image on the recording medium once and then transfers the image on a paper, or a recording paper.
The bias voltage Vp may be applied to the recording medium 3, for example, by disposing the rear electrode 31 to the rear side (opposite surface side to the toner carrier 1) of the recording medium 3, and having the recording medium 3 pass through the upper surface of the rear electrode 31. If the intermediate transfer recording medium is used, an electrode may be buried therein (the electrode at the recording medium side is an inner electrode), or the rear electrode 31 may be disposed at the rear side of the intermediate transfer recording medium.
As described above, the toner carrier 1 and the toner controlling unit 4 are arranged as a unit to make the toner on the surface of the toner carrier 1 into a cloud. When the voltage Vs is applied to the electrodes 11 provided on the surface of the toner carrier 1, a voltage having a relationship in which the attracting direction and the repulsive direction of the toner T are alternately repeated is applied between the adjacent electrodes 11. The toner carrier 1 and the toner controlling unit 4 are arranged in a relationship, in which a distance d between the surface of the toner carrier 1 and the surface of the toner controlling unit 4 at the toner carrier 1 side (it means the surface at the side of the toner carrier 1) relative to a pitch p between the two-phase electrodes (or a pitch between n-phase electrodes that applies an n-phase voltage to the electrodes 11 at every n pieces), in other words, the toner supply gap, is increased (p<d).
This is because, in the relationship of p>d, a spraying electric field formed on the surfaces of the electrodes 11 of the toner carrier 1 interferes with the ON-OFF electric field formed on the surface of the toner carrier 1 side of the toner controlling unit 4, and a loop electric field of the toner controlling unit 4, which will be described later, is disturbed. Accordingly, the toner tends to deposit on the surface of the control electrodes 42. Under the condition of p<d, it is possible to prevent the toner from being deposited on the control electrodes 42 without fail, and even if dots are continuously printed, the density does not change, thereby obtaining a good image.
An example of a specific configuration of the toner controlling unit 4 will now be described with reference to
In the example, the control electrodes 42 in a ring shape having a width from 10 micrometers to 100 micrometers are provided on the surface at the toner supply side (the toner carrier 1 side) of an insulation substrate (base material) 45, so as to surround the toner passage holes 41. The common electrodes 43 that apply the common bias voltage Vg to the toner passage holes 41 are provided on the same surface as that of the control electrodes 42, at an interval of 20 micrometers to 50 micrometers from the control electrodes 42, in other words, with an insulation region formed by the insulation substrate 45 interposed therebetween.
In the example explained by using
Each of the control electrodes 42 is coupled with a lead pattern 42a connected to a driver circuit (drive circuit) that ON-OFF controls the passing of the toner T, and the common electrodes 43 are connected to a common lead pattern 43a. The print surface side of the insulation substrate 45 (surface at the recording medium 3 side) has the toner passage holes 41 being opened.
In this manner, each of the common electrodes 43 of the toner controlling unit 4 is formed so as to surround the outside of the control electrode 42 in a ring shape, with an insulation region interposed therebetween. Accordingly, the bias potential at the recording medium 3 side and the electric force formed between the common electrodes 43 on the outside of the control electrode 42 can be formed as an individual electric force line of each of the toner passage holes. Consequently, mutual interference (affected by the other toner passage holes 41) does not occur during multiple drive (drive in which toner is caused to be sprayed from a plurality of nozzle passage holes).
By forming the control electrodes 42 and the common electrodes 43 on the same surface of the toner controlling unit 4, the control electrodes 42 and the common electrodes 43 can be formed simultaneously by one manufacturing process, thereby accurately forming electrodes at a low cost.
Another example of a specific configuration of the toner controlling unit 4 will now be described with reference to
In this example, the control electrodes 42 in a ring shape having a width from 10 micrometers to 100 micrometers are provided on the surface at the toner supply side (the toner carrier 1 side) of the insulation substrate (base material) 45, so as to surround the toner passage holes 41. The common electrode 43 that applies the common bias voltage Vg to the toner passage holes 41 is provided so as to cover the entire open space in a solid state, at an interval of an insulation region of 20 micrometers to 50 micrometers from each of the control electrodes 42.
In this manner, the common electrode 43 of the toner controlling unit 4 is formed in a solid state on the outside of the control electrodes 42 with an insulation region interposed therebetween. Because the common electrode 43 is formed over the entire region outside the control electrodes 42, an electric field of a bias potential at the recording medium 3 side can be shielded. Accordingly, it is possible to prevent the toner from being deposited on the control electrodes 42, thereby improving the toner usage efficiency.
In a specific manufacturing method of the toner controlling unit 4 such as this, a resin film such as polyimide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyethersulfone (PES) having the thickness from 30 micrometers to 100 micrometers is used as the insulation substrate 45 that is an insulation material, from the cost and manufacturing process point of view. First, an aluminum (Al) vapor deposition film from 0.2 micrometer to 1 micrometer is formed on the film surface. After applying a photoresist on the film by a spinner using a photolithography process, prebake and mask exposure are performed. When the film is developed, the photoresist is heated and cured, and the Al is patterned by an Al etching solution. If an electrode pattern is also required on the rear surface of the film, the patterning may be performed as described above. However, a pattern used as a mask for forming holes may be formed on the rear surface of the film. Through holes that are the toner passage holes 41 can be accurately produced without positional deviation, by mechanical processing using a pressing tool after the pattern is formed, by excimer laser processing using the pattern formed on the rear surface, or by dry etching processing such as sputter etching processing.
In the direct recording type image forming apparatus formed as described above, the pulse voltage having an average potential Vs is applied to the electrodes 11 of the toner carrier 1. Accordingly, the toner T is caused to be sprayed above the toner carrier 1 and made into a cloud, and the toner T is conveyed by the rotation of the toner carrier 1 or by a traveling-wave electric field. A print bias voltage Vp is applied to the rear electrode 31 of the recording medium 3. In this state, the voltage Vg is applied to the common electrodes 43 of the toner controlling unit 4. To allow the toner T to pass through the toner passage holes 41 (ON state), the ON-state voltage Vc-on shown in
In such an event, lines of electric force 10 in loops are formed between the recording medium 3 side and the common electrodes 43 of the toner controlling unit 4, while bypassing the control electrodes 42 that control the passing of the toner. This is enabled by setting the voltages applied to the electrodes 11, 31, 42, and 43 to certain values, and by enabling the toner T of the toner carrier 1 to pass through the toner controlling unit 4 toward the recording medium 3. Accordingly, the toner made into a cloud on the toner carrier 1 lands on the recording medium 3 via the electric field with the lines of electric force 10, through the toner passage holes 41 of the toner controlling unit 4. Consequently, a toner image can be directly formed on the recording medium 3, by ON-OFF controlling (open-close controlling) the toner passage holes 41 of the toner controlling unit 4, corresponding to the image.
The lines of electric force 10 are formed in loops between the recording medium 3 side and the common electrodes 43 of the toner controlling unit 4, while bypassing the control electrodes 42 that control the passing of the toner. Accordingly, the toner is prevented from depositing on the control electrodes 42 and at the periphery of the toner passage holes 41. Because the toner is made into a cloud, it is also possible to improve the toner usage efficiency.
A print unit and an image forming apparatus of the present reference example will now be described.
In the present reference example, to form and set a predetermined toner supply gap that is an interval between the toner carrier 1 and the toner controlling unit 4, the holder 14 that accurately determines relative positions of the toner carrier 1 and the toner controlling unit 4 is interposed between the developing unit 13 and the toner controlling unit 4.
Instead of using the holder 14, a method of directly fixing the toner controlling unit 4 on a case 13d of the developing unit 13, for example, by bending the toner controlling unit 4 so as to cover the toner carrier 1 may also be considered. However, the problems as described in the background section in this specification occur, and due to the low rigidity of the toner controlling unit 4 because of its flexibility, it is difficult to accurately set and maintain the toner supply gap over the entire region of the toner controlling unit 4.
Conventionally, a spacer is used to bring the toner controlling unit into contact with the toner carrier. However, because of problems such as toner scattering, a solution that can set and maintain the gap without bringing the spacer into contact with the toner carrier has been desired.
Accordingly, in the present reference example, the holder 14 that guides and holds the toner controlling unit 4, so that a desired surface shape can be obtained over the substantially entire region of the toner controlling unit 4, excluding a region where a number of toner passage holes 41 are opened on the toner controlling unit 4. By using the holder 14, substantially entire region of the toner controlling unit 4 excluding the region of the toner passage holes 41 is held by the side walls of the holder 14. Accordingly, the problems due to the low-rigidity of the toner controlling unit 4 as described above are solved, and the bending and distortion that cause the toner supply gap to fluctuate in the axial direction of the toner carrier in a region near the center of the toner controlling unit 4 in the axial direction of the toner carrier are eliminated. Consequently, it is possible to form and set a desired surface shape of the toner controlling unit 4 relative to the toner carrier 1, at a precise position.
In this image forming apparatus, a toner image is formed on an intermediate transfer belt 20 by the print unit 12, and the toner image is transferred onto a paper conveyed with the rotation of the intermediate transfer belt 20, eventually forming a toner image on the paper.
In an image forming unit, the intermediate transfer belt 20 is stretched by a drive roller 21, a tension roller 22, a transfer counter roller 23, a counter roller 24 that is an electrode (rear electrode) at the intermediate transfer belt 20 side used for controlling toner, and the like. In
The print unit 12 is transversely and horizontally arranged, and placed opposite to the counter roller 24 with the intermediate transfer belt 20 interposed therebetween. The toner controlling unit 4 of the print unit 12 is disposed apart from the intermediate transfer belt 20, as much as a predetermined interval (a few hundred micrometers), or a so-called printing gap. The position of the toner controlling unit 4 at this time is the printing position.
In the image forming unit shown in
As described above, the toner controlling unit 4 forms the printing gap of a few hundred micrometers relative to the intermediate transfer belt 20, and the accuracy (acceptable gap range) is about a few ten micrometers. The inventors of the present invention, for example, if the printing gap is set to 300 micrometers, has positioned the toner controlling unit 4, so that at least the rows of toner passage holes 41 fall into the acceptable range of approximately ±30 micrometers, based on the position of 300 micrometers.
In the present reference example, rotatable rings 101 are disposed at both ends of the toner carrier 1 in the axial direction, to obtain the accuracy of the printing gap. By brining each of the rings 101 into contact with the counter roller 24, the printing gap between the toner controlling unit 4 integrally formed with the toner carrier 1 as the print unit 12, and the intermediate transfer belt 20 stretched by the counter roller 24 is formed and set at a predetermined interval within the acceptable gap range.
As shown in
Below the intermediate transfer belt 20, a sheet feeding and conveying unit 30 formed of a sheet feeding roller 28 and a pair of registration rollers 29 is arranged at the loading side of the transferring unit, so that the paper conveying direction is oblique to the transferring unit. A fixing device 32 is arranged at the unloading side of the transferring unit.
Focusing on the printing position (
In the present reference example, four rows of toner passage holes 41 (a row of holes 41a, a row of holes 41b, a row of holes 41c, and a row of holes 41d) of the toner controlling unit 4 are provided along the rotational direction of the toner carrier 1. As described above, the virtual straight line X that passes through the positions of the center of the rotation shaft of the toner carrier 1 and the center of the toner controlling unit 4, in other words, the intermediate position between the rows of holes 41b and 41c that is a median of the four rows of toner passage holes 41, passes through the center of the rotation shaft of the counter roller 24. The virtual straight line X is also aligned with the horizontal line.
Accordingly, in this configuration, the virtual straight line X and the bisector (center line) of the winding angle θ1 of the intermediate transfer belt 20 are matched, so that the virtual straight line X and the bisector (center line) of the winding angle θ1 are both aligned with the horizontal line. This is the most important point in the configuration shown in
If the winding angle θ1 is divided into the upstream in the rotational direction and the downstream in the rotational direction of the counter roller 24, based on the virtual straight line X aligned with the horizontal line, as shown in
In
However, the orientation of the print unit 12 is the result of limited state corresponding to the winding way of the intermediate transfer belt 20 as shown in
Conventionally, the print unit 12 is obliquely mounted on the apparatus main body, so that the virtual straight line X is aligned with the bisector (center line) of the winding angle.
When a plurality of rows of toner passage holes 41 is provided in the rotational direction of the toner carrier 1, and if the rows of holes are even numbered, the “position in the center of the toner controlling unit 4 (rows of toner passage holes 41) through which the virtual straight line X passes” described above, is the center (median) of the rows of holes, and if the rows of holes are odd numbered, it is the row of holes positioned in the center among the rows of holes (the row of holes 41f in
The toner controlling unit 4 and the intermediate transfer belt 20 are both curved in opposite directions at the opposing position. Accordingly, the printing gaps of the same row order in the upstream in the rotational direction and the downstream in the rotational direction viewed from the virtual straight line X are made the same, and the center of the rows of toner passage holes 41 is closest to the intermediate transfer belt 20 (see
The toner controlling unit 4 and the intermediate transfer belt 20 are curved in the opposite direction to each other with a certain curvature. Accordingly, with the rows of holes located at the same upstream in the rotational direction and located at the same downstream in the rotational direction, such as the rows of holes 41a and 41b located upstream in the rotational direction, and the rows of holes 41c and 41d located downstream in the rotational direction, if the row order viewed from the virtual straight line X is different, the printing gaps will naturally become different. The difference between the printing gaps such as this is increased, with the decrease of the curvature radius of the curves of the toner controlling unit 4, the intermediate transfer belt 20, and the like. On the contrary, if the curvature radiuses of the toner controlling unit 4, the intermediate transfer belt 20, and the like are increased, the gap difference can be reduced. Accordingly, it is possible to fit the printing gap within the acceptable range. Consequently, the curvature radiuses of the toner controlling unit 4 and the intermediate transfer belt 20 need to be set so that the printing gaps of all the rows of toner passage holes fall into the acceptable range without fail.
The configuration in
In
However, in
In general, the curvatures of the toner controlling unit 4, the intermediate transfer belt 20, and the like are set, so that the difference falls into the acceptable range of the printing gap, and the difference is very small from a few micrometers to a few ten micrometers. However, in the high definition image, this small difference deteriorates the image quality, in other words, is a cause for subtly fluctuating the dot density and dot diameter of the toner.
To solve the problems, as shown in
In the configuration as shown in
As shown in
In this manner, when the print unit 12 is tilted corresponding to the winding state of the intermediate transfer belt 20, and a predetermined printing gap is formed and set, a good image can be formed. However, because the print unit 12 is tilted, the side effects such as an increase in the size of image forming apparatus (an extra space is required to arrange the print unit 12 due to the orientation), and complex layouts occur.
At the four printing positions, the intermediate transfer belt 20 is wound around each of the counter rollers 24 with a winding width to some extent. However, the winding states are all different. Accordingly, the print units 12 are tilted as described above (tilted so that the virtual straight line X is aligned with the bisector (center line) of the winding angle, corresponding to the winding state of the intermediate transfer belt 20). A predetermined printing gap is formed at the printing position of each of the print units 12.
When the print units 12 are tilted in this manner, a predetermined printing gap is formed at each printing position, thereby forming a good color image. However, as is evident from
In the present invention, to form and set a predetermined printing gap, the print unit is formed so that only the angle of the holder to which the toner controlling unit is fixed can be adjusted relative to the developing unit. In other words, in a print unit 12′ according to the present invention, only a holder 14′ is tilted without tilting a developing unit 13′. Corresponding to the winding state of the intermediate transfer belt 20 to the counter roller 24, the position and angle (virtual straight line X is aligned with the bisector (center line) of the winding angle (2) of the toner controlling unit 4 (rows of toner passage holes 41) are optimized. As described above, the printing gaps relative to the intermediate transfer belt 20 from the rows of toner passage holes in the same order are made the same, in the upstream in the rotational direction and the downstream in the rotational direction viewed from the virtual straight line X.
By forming the print unit 12′ as described above, the developing unit 13′ need not to be tilted awkwardly corresponding to the winding state of the intermediate transfer belt to the counter roller 24. Accordingly, the orientation of the print unit 12′ in the image forming apparatus can be set freely.
The present invention is described by using the intermediate transfer belt 20 as the recording medium. However, the present invention is not limited thereto, and an intermediate transfer body in a drum shape or a paper (if paper is used, the direct transfer method will be used) may be applicable.
The print unit 12′, similar to the print unit 12, mainly includes three elements of the developing unit 13′ that supports the toner carrier 1, the toner controlling unit 4, and the holder 14′ to which the toner controlling unit 4 is fixed, and they are integrally assembled. The print unit 12′ is different from the print unit 12 in that the holder 14′ forms and sets a predetermined supply gap, and the angle of the holder 14′ can be freely adjusted to the developing unit 13′. Accordingly, the printing gap can be set by adjusting the angle of the holder 14′ to the developing unit 13′.
In the present embodiment, the supply gap and the printing gap are set with high accuracy, and to stably maintain the accuracy, a rotation shaft 1a of the toner carrier 1 or a bearing 1b of the toner carrier 1 as shown in
The developing unit 13′ according to the present embodiment uses a two-component developer containing a magnetic carrier and a non-magnetic toner. However, a one-component toner containing a non-magnetic toner may be used, instead of the two-component developer. The developing unit 13′ includes the roller-shaped toner carrier 1, a magnetic roller 13a, two stirring screws 13b, a blade 13c that reduces the thickness of the toner on the toner carrier 1, the case 13d that stores therein these elements, and the like. The two-component developer is stored in the case 13d.
The toner carrier 1 is rotatably supported by side plates 13d-1 (including a side plate at the rear of
The rotatable rings 101 are provided at both ends of the rotation shaft 1a of the toner carrier 1, so as to form and set an interval (printing gap) between the toner controlling unit 4 and the recording medium such as the intermediate transfer belt highly accurately. The rings 101 and the counter roller 24 are brought into contact with each other.
The case 13d of the developing unit 13′ is formed in a shape in which the side where the toner carrier 1 is supported (right surface side in
At the opened surface (right surface side in
Long holes 13d-7 parallel to the axial direction of the toner carrier 1 are opened, at an upper plate 13d-5 and a lower plate 13d-6 of the case 13d at the opened surface. The long holes 13d-7 are long holes having the shape and size through which the toner controlling unit 4 and an electrical base material 4a shown in
An interior space 14b of the holder 14′ is a large space in which the toner carrier 1 can be comfortably accommodated. The space is provided, to prevent the toner carrier 1 from being damaged, when the holder 14′ is attached and removed, while the angle of the holder 14′ is adjusted, and the like. When the toner carrier 1 is rotated while the holder 14′ is fixed to the developing unit 13′, the toner is scattered due to the air flow, if the space is narrow. The space is also provided to prevent this from happening.
At the side portion 14a where the toner carrier 1 and the toner controlling unit 4 are opposed to each other with the holder 14′ interposed therebetween, an opening 14c that passes through the side portion 14a and the interior space 14b is opened with a shape and size slightly larger than the region of the rows of toner passage holes 41. The toner is caused to be sprayed from the toner carrier 1 towards the toner controlling unit 4 (rows of toner passage holes 41), through the opening 14c. The opening area of the opening 14c should be made small as much as possible. This is because, at a portion not guided by side portions 14d, the toner controlling unit 4 tends to bend, distort, generate vibrations, and the like. To prevent this from happening, it is better to reduce the opening area of the opening 14c, to an extent not to prevent the toner from being sprayed, so that the side portions 14d can guide the toner controlling unit 4 over a wide range.
By forming the holder 14′ as described above, the toner controlling unit 4 can form and set a desired surface shape at a precise position.
A U-shaped notch 14d-1 fitted with the bearing 1b of the toner carrier 1 is provided at the side portion 14d at the front side in
As described above, the holder 14′ is included in the developing unit 13′, so as to act as a lid for the opened surface (right surface side in
The assembly and individual replacement of the toner carrier 1 are taken into consideration, so that the toner carrier 1 can be attached and removed to and from the developing unit 13′ with ease, by just fitting or removing the bearing lb. Needless to say, the holder 14′ may be removed by unscrewing the fixing screw, and pulling out from the bearing 1b along the U-shaped notch 14d-1 with which is in a fitting relationship.
Accordingly, the assembly and setting of the print unit 12′ as a single body, in other words, the assembly and setting of the holder 14′ and the toner controlling unit 4 based on the toner carrier 1 is completed. The setting of the angle of the holder 14′ corresponding to the winding state of the intermediate transfer belt 20, when the print unit 12′ is mounted on the image forming apparatus, will be described below.
In the present embodiment, as shown in
The toner controlling unit 4 fixed to the holder 14′ is fixed to the developing unit 13′ with the holder 14′, after the supply gap and the angle are set. In the configuration of the print unit 12′ according to the present embodiment, the operations of setting and fixing are performed, after the electrical base material 4a of the toner controlling unit 4 is passed through the long holes 13d-7 of the developing unit 13′ shown in
If the toner controlling unit 4 that requires replacement, reuse, or the like is used, the toner controlling unit 4 needs to be easily removed from the holder 14′. In such an event, instead of adhering the toner controlling unit 4 to the holder 14′ by using the adhesive, the pressure-sensitive adhesive, and the like, a method of closely bringing the toner controlling unit 4 into contact with the holder 14′, by pulling the electrical base material 4a towards the direction to which the tension is applied, by a spring and the like may be applied.
If by any chance a desired surface shape cannot be obtained, because the toner controlling unit 4 is bent and distorted, even if the toner controlling unit 4 is fixed to the holder 14′, a reinforcement of a thin plate such as a stainless steel plate may be adhered to the toner controlling unit 4 or the holder 14′, while paying careful attention to the electrical failure (short circuit, leakage, and the like) from occurring.
In
In
In general, a slide bearing made of resin is usually used as a bearing for the developing unit, from the insulation characteristics and cost point of view. In
A plurality of electrodes is aligned on the surface of the toner carrier 1, and the toner is made into a cloud by applying a voltage to each of the electrodes through the rotation shaft 1a and the bearing lb. In the configuration in which the rotation shaft la, the bearing 1b, and the like are exposed, as shown in
Accordingly, as shown in
The unit support member 1k includes an insulated bearing member 1k-1 having a hole that rotatably supports the rotation shaft 1a″ as a bearing, and a shaft 1k-2 used to mount the print unit 12′ on the image forming apparatus main body and the like.
In the present embodiment, the orientation of the developing unit 13′ is horizontally arranged, by aligning the center of the rotation shaft of the toner carrier 1 with the bisector (center line) of the winding angle η2, by using the ring 101. The angle of the holder 14′ is then set, so that the virtual straight line X that passes through the positions of the center of the rotation shaft of the toner carrier 1 of the developing unit 13′ and the center of the toner controlling unit 4 (rows of toner passage holes 41), is aligned with the bisector (center line) of the winding angle η2, in other words, the line tilted by θ2/2 that passes through the center of the rotation shaft of the counter roller 24. The enlarged view of the printing position at this time is the same as that in
Accordingly, it is possible to horizontally arrange the print unit 12′ (developing unit 13′) in the image forming apparatus, while securing the printing gap highly accurately.
In the present embodiment, the print unit 12′ (developing unit 13′) is horizontally arranged in the image forming apparatus, by setting the supply gap and the printing gap, in other words, by setting the optimal position and angle of the toner controlling unit 4 (rows of toner passage holes 41) relative to the intermediate transfer belt 20, by using the holder 14′. If the holder structure such as that of the present embodiment is employed, regardless of the desired orientation (such as an orientation with an arbitrary inclination angle relative to the vertical orientation and the horizontal direction) of the print unit 12′ (developing unit 13′) in the image forming apparatus, it is possible to correspond to any orientation.
In this manner, with the present embodiment, regardless of the winding state (winding angle and winding position) of the intermediate transfer belt 20 wound around the counter roller 24, and regardless of the desired orientation setting of the print unit 12′ (developing unit 13′) in the image forming apparatus, the setting of a predetermined printing gap, in other words, the setting of an optimal position and angle of the toner controlling unit (rows of toner passage holes 41) relative to the intermediate transfer belt 20 can be performed, by adjusting the angle of the holder 14′ to the developing unit 13′.
A color image forming apparatus on which a plurality of print units 12′ according to the present embodiment is mounted will now be described.
The image forming apparatus is approximately the same as that in
In the color image forming apparatus, the intermediate transfer belt 20 is stretched by the drive roller 21, the tension roller 22, the transfer counter roller 23, the four counter rollers 24 that are rear electrodes, and the like. The intermediate transfer belt 20 is perpendicularly and substantially vertically arranged. The intermediate transfer belt 20 is rotated in the anti-clockwise direction by a motor, which is not shown, connected to the drive roller 21. On the stretched surface of the intermediate transfer belt 20 at the left side in
All the print units 12′ are transversely and horizontally arranged in the color image forming apparatus. The toner controlling units 4 of the print units 12′ are placed opposite to the counter rollers 24 with the intermediate transfer belt 20 interposed therebetween, and the toner controlling units 4 are disposed apart from the intermediate transfer belt 20, as much as a predetermined printing gap (a few hundred micrometers). The positions are the printing positions.
The printing gap of each color is formed and set by adjusting each angle of the holders 14′ of the print units 12′, corresponding to the winding state of the intermediate transfer belt 20 relative to the counter roller 24 at each of the printing positions, so that the positions and angles of the toner controlling units 4 (rows of toner passage holes 41) to the intermediate transfer belt 20 are optimized. In other words, a predetermined printing gap is set, by horizontally arranging the print units 12′ (developing units 13′) of each color in the color image forming apparatus, and aligning the virtual straight lines X of the print units of each color with the bisector (center line) of the winding angle, corresponding to the winding state of the intermediate transfer belt 20 relative to the counter rollers 24, by adjusting the angles of the holders 14′. Accordingly, the positions and angles of the toner controlling units 4 (rows of toner passage holes 41) can be optimized.
The color image forming apparatus also includes the transfer roller 27 that forms a transferring unit with the transfer counter roller 23 with the intermediate transfer belt 20 interposed therebetween, the mark sensor 25 that generates reference signals used for an image forming operation between the drive roller 21 and the transfer counter roller 23 in the loop of the intermediate transfer belt 20, and the like.
Below the intermediate transfer belt 20, the sheet feeding and conveying unit 30 formed of the sheet feeding roller 28, the pair of registration rollers 29, and the like are arranged at the loading side of the transferring unit, and the fixing device 32 is arranged at the unloading side of the transferring unit, so that the paper conveying direction is oblique to the transferring unit formed of the transfer roller 27 and the transfer counter roller 23 with the intermediate transfer belt 20 interposed therebetween. The color image forming apparatus main body also includes a rotation shaft 33. Accordingly, it is possible to integrally separate the intermediate transfer belt 20, the transferring unit, the fixing device 32, and the like from the apparatus main body, while leaving the print units 12′, the sheet feeding and conveying unit 30, and the like in the apparatus main body. The attachment, removal, and replacement of the print units 12′ to and from the color image forming apparatus main body are performed after the separation is carried out.
Toner colors of yellow (Y), magenta (M), cyan (C), and black (Bk) are stored in the print units 12′, and in each of the print units 12′, the toner is made into a cloud by the toner carrier 1, and delivered to the position opposite to the toner controlling unit 4. The toner is then selectively caused to be sprayed above the intermediate transfer belt 20, by the electric field of the control electrodes 42 that ON-OFF controls the passing of the toner, at the rows of toner passage holes 41 of the toner controlling unit 4. After toner images of each color are formed on the intermediate transfer belt 20, the toner images of four colors are overlapped, and the overlapped toner images proceed to the transferring unit.
In synchronization with the printing and the image forming operation as described above, a sequence of conveying sheets is operated by the sheet feeding and conveying unit 30. A sheet is conveyed by the sheet feeding roller 28 and the pair of registration rollers 29, and come into contact with the surface of the intermediate transfer belt 20 so as to slide along the surface. In the transferring unit, the toner images and the sheet are overlapped, and the toner images of four colors on the intermediate transfer belt 20 are integrally transferred onto the sheet, because bias is applied from the transfer roller 27. The sheet to which the image is transferred is separated from the intermediate transfer belt 20 by a neutralizing needle and the like, which is not shown, and sent to the fixing device 32. Accordingly, the toner image is fixed on the sheet. The residual toner remained on the intermediate transfer belt 20 is cleaned by the cleaning unit 26 after the toner image is transferred to the sheet, and the intermediate transfer belt 20 then waits for the next image forming process.
With such a color image forming apparatus, four colors of toner images are formed and overlapped on the intermediate transfer belt 20, and a color image is produced with one rotation of the intermediate transfer belt 20. Accordingly, a high-definition color image can be produced at a high speed, and the size of the color image forming apparatus can be reduced.
With the present embodiment, even if the winding state (winding position and angle) of the intermediate transfer belt 20 wound around the counter roller 24 at the printing position may vary for each color, a predetermined printing gap can be formed and set accordingly. All the print units 12′ in the color image forming apparatus can be arranged in desired orientations (in
In
The print unit 12′ according to the present embodiment using the intermediate transfer belt 20 as a recording medium. However, the present invention is not limited thereto, and an intermediate transfer body in a drum shape may be used, or an image forming apparatus in which the toner is directly printed on the sheet, without using the intermediate transfer body, may be used. If the intermediate transfer body in a drum shape is used, the virtual straight line X is set so as to pass through the center of the drum. If the sheet is used, similar to the intermediate transfer belt 20, the setting is performed based on the winding state of the sheet wound around the counter roller 24.
With the present embodiment, in an image forming device including a casing that stores therein an image forming agent, an agent carrier rotatably that is supported by the casing, faces outside of the casing through an opening formed on the casing, and carries the image forming agent stored in the casing, a sheet-like hole defining member that defines a row of a plurality of holes therein in an axial direction of the agent carrier, and arranged opposite to the agent carrier with a predetermined interval therebetween, a plurality of spray electrodes that is provided on the hole defining member in a manner corresponding to the holes, and forms an electric field for selectively causing the image forming agent to be sprayed from the agent carrier towards the holes, and a positioning member that is provided on the casing so as to cover the agent carrier, at least holds the hole defining member in the axial direction of the agent carrier by side walls of the positioning member having a portion defining an opening at a location opposite to the row of holes in the hole defining member, and positions the hole defining member with respect to the agent carrier so that relative positions of the agent carrier and the hole defining member are in a predetermined positional relationship. The image forming device is for use in an image forming apparatus that, based on image information, forms an image by depositing the image forming agent selectively caused to be sprayed from the agent carrier by forming a spraying electric field, and having passed through the holes, on a recording member arranged in the image forming apparatus opposite to the agent carrier with the hole defining member interposed therebetween, and wound around and brought into contact with a counter electrode for forming an electric field that attracts the image forming agent caused to be sprayed from the agent carrier, and an angle of the positioning member is adjustable relative to the casing about a rotation shaft that is coaxial with the agent carrier. Accordingly, as described above, the supply gap and the printing gap can be set and maintain, for example, with high accuracy, thereby high quality images can be formed. Consequently, the orientation of the print unit can be set at a predetermined orientation.
With the present embodiment, the positioning member is detachably formed on the casing in a state in which the positioning member alone or the hole defining member is arranged along the side walls, with the positioning member mounted on the casing, the positioning member is positioned relative to the casing, by engagement of an engaging portion provided on a bearing member attached to a shaft of the agent carrier or to the agent carrier and an engaged portion provided on the positioning member, and the angle of the positioning member is adjustable relative to the casing about the shaft of the agent carrier. Accordingly, the gaps can be set and maintained, for example, with higher accuracy.
With the present embodiment, the angle of the positioning member is adjustable relative to the casing in a state in which the positioning member alone or the hole defining member is arranged along the side walls. Accordingly, it is possible to improve workability in setting the angle of the positioning member.
With the present embodiment, a ball bearing is used as a bearing member attached to the agent carrier. This structure improves the accuracy of fixing the positioning member on the agent carrier, whereby the supply gap and the printing gap can be set and maintained with high accuracy. This structure also reduces risks such as leakage of the voltage applied to the agent carrier and a short-circuit.
With the present embodiment, the positioning member is a cover member provided on the casing so as to cover the opening formed on the casing and having a portion defining a second opening at a location opposite to the agent carrier, and holds the hole defining member along outer peripheral surfaces of the side walls that define the second opening of the cover member therein. Accordingly, the positioning member performs functions of positioning the hole defining member relative to the agent carrier, and preventing a developing agent stored in the casing from scattering from the opening formed on the casing.
With the present embodiment, an image forming apparatus includes an image forming unit that has a casing for storing an image forming agent therein, an agent carrier rotatably supported by the casing, facing outside of the casing through an opening formed on the casing, and carrying the image forming agent stored in the casing, a sheet-like hole defining member defining a row of a plurality of holes therein in an axial direction of the agent carrier and arranged opposite to the agent carrier with a predetermined interval therebetween, and a plurality of spray electrodes provided on the hole defining member in a manner corresponding to the holes and forming an electric field for selectively causing the image forming agent to be sprayed from the agent carrier towards the holes, and a counter electrode that is arranged opposite to the agent carrier with the hole defining member interposed therebetween, and forms an electric field for attracting the image forming agent caused to be sprayed from the agent carrier. Based on image information, the image forming apparatus forms an image by deposing the image forming agent selectively caused to be sprayed from the agent carrier by forming a spraying electric field on a recording member, after moving the image forming agent towards the counter electrode through the holes, and the image forming unit is the print unit 12′ of the present invention. Because the print unit that can set a supply gap and an optimal printing gap, in other words, that can set the optimal position and angle of the hole defining member (toner passage holes) relative to the recording member is mounted, it is possible to provide an image forming apparatus that can form high quality images.
With the present embodiment, when the hole defining member is arranged opposite to the recording member, an interval between the hole defining member and the recording member is set as a predetermined printing gap by adjusting an angle of the positioning member relative to the casing. Accordingly, the supply gap and the printing gap of the print unit can be set and maintained, for example, with high accuracy, whereby high quality images can be formed. Furthermore, because the print unit in the image forming apparatus can be set to a predetermined orientation, it is possible to further downsize the image forming apparatus and improve the attaching and detaching operability of the print unit, for example.
With the present embodiment, when the hole defining member is arranged so that the row of holes is placed within an acceptable gap range of the printing gap set in advance, the angle of the positioning member is adjustably set so that the center in a direction perpendicular to the direction of the row of holes is closest to the recording member within the acceptable gap range.
With the present embodiment, when the hole defining member is arranged so that the row of holes is placed within an acceptable gap range of the printing gap set in advance, the angle of the positioning member is adjustably set, so that the center in a direction perpendicular to the direction of the row of holes is closest to the recording member within the acceptable gap range. Accordingly, as described above, the size of the printing gap located upstream in the moving direction of the recording member and the size of the printing gap located downstream in the moving direction of the recording member can be the same based on the center in the direction perpendicular to the direction of the row of holes.
With the present embodiment, the row of holes is provided in plurality in a rotational direction of the agent carrier, and when a predetermined printing gap is formed at a position where the rows of holes are opposed to the recording member, an angle of the positioning member is adjustably set, by referring to a virtual straight line that passes through the center of a rotation shaft of the agent carrier and the center in a direction perpendicular to the direction of the rows of holes, and counting orders of rows of holes located upstream in the rotational direction of the agent carrier and downstream in the rotational direction of the agent carrier, so that printing gaps between the row of holes located upstream in the rotational direction of the agent carrier and the row of holes located downstream in the rotational direction of the agent carrier in the same row order are the same. Accordingly, as described above, the printing gaps between the rows of toner passage holes in the same order can be the same, by counting the orders of the rows of toner passage holes located upstream in the rotational direction and downstream in the rotational direction based on the virtual straight line.
With the present embodiment, the number of rows of holes provided along the rotational direction of the agent carrier is an even number, and the center position in the direction perpendicular to the direction of the rows of holes is positioned closest to the recording member within an acceptable gap range of the printing gap set in advance. Accordingly, as described above, even if the number of rows of toner passage holes is an even number, the printing gaps of the rows of toner passage holes in the same order can be the same, by counting the orders of the rows of toner passage holes located upstream in the rotational direction and downstream in the rotational direction based on the virtual line.
With the present embodiment, the number of rows of holes provided along the rotational direction of the agent carrier is an odd number, a row of holes placed in the center of the rows of holes in the rotational direction is positioned closest to the recording member within an acceptable gap range of the printing gap set in advance, and the angle of the positioning member is adjustably set, by referring to the virtual straight line that passes through the center of the rotation shaft of the agent carrier and the center in the direction perpendicular to the direction of a row of holes placed at the center, and counting orders of rows of holes located upstream in the rotational direction of the agent carrier and downstream in the rotational direction of the agent carrier, so that the printing gaps between the row of holes located upstream in the rotational direction of the agent carrier and the row of holes located downstream in the rotational direction of the agent carrier in the same row order are substantially the same. Accordingly, as described above, even if the number of rows of toner passage holes is an odd number, the printing gaps of the rows of toner passage holes in the same order can be the same, by counting the orders of the rows of toner passage holes located upstream in the rotational direction and downstream in the rotational direction based on the virtual line.
With the present embodiment, the image forming device is provided in plurality in a color image forming apparatus. Accordingly, it is possible to set the print units in the image forming apparatus to desired orientations, thereby further downsizing the image forming apparatus, and improving the attaching and detaching operability of the print unit, for example.
With the present embodiment, by providing the plurality of image forming devices of the present invention, the plurality of image forming devices is all mounted on an apparatus main body of the color image forming apparatus in the same orientation, or each of the image forming devices is mounted in a predetermined orientation. Accordingly, the degree of freedom of layout can be increased.
According to one aspect of the present invention, a predetermined interval can be set and maintained between the agent carrier and the hole defining member. It is also possible to advantageously set and maintain a predetermined printing gap that is an interval between the holes of the hole defining member and the recording member, while preventing the size of image forming apparatus from increasing and reducing cost.
Although the invention has been described with respect to specific embodiments for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2009-012165 | Jan 2009 | JP | national |