Information
-
Patent Grant
-
6619776
-
Patent Number
6,619,776
-
Date Filed
Friday, March 29, 200222 years ago
-
Date Issued
Tuesday, September 16, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Hallacher; Craig
- Stewart, Jr.; Charles W.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 347 7
- 347 19
- 347 23
- 347 10
- 347 12
- 347 15
- 347 11
- 347 16
- 347 14
- 347 9
- 347 86
- 347 85
- 347 51
-
International Classifications
-
Abstract
In a calibration data input process, a carriage 5 is moved toward an ink sensor 19 to a prescribed position while the ink sensor 19 detecting levels of reflected light. Then the amount of reflected light is read for over a range wider than the width of the carriage 5 including a theoretical detecting position P2. An actual detecting position P1 is found based on the level of reflected light. The difference between the theoretical detecting position P2 and the actual detecting position P1 is calculated and is stored as the calibration value α in a first calibration data memory M1. Accordingly, the actual detecting position P1 is set as P2±α. The calibration value α is used in a calibration process to calibrate the detecting position, so that the level of reflected light can be detected with accuracy.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an image-forming device, such as an inkjet printer, having an optical sensor for detecting ink cartridges mounted in the device, as well as the existence of ink in the ink cartridges.
2. Description of the Related Art
Conventional inkjet printers used as image-forming devices, such as facsimile devices, photocopying devices, and the like, are provided with an optical sensor for optically detecting whether an ink cartridge is mounted in the device and whether the cartridge contains ink. This optical sensor includes a light-emitting element for radiating a light toward an ink cartridge, which is formed of an optically transparent material, and a light-receiving element for sensing the amount of light reflected by or permeated through the ink cartridge. Since the amount of light reaching the light-receiving element changes according to the existence of ink and the existence of an ink cartridge, the optical sensor can sense the existence of ink or an ink cartridge by detecting the amount of received light.
Sometimes a light different from expected one is reflected from the irradiated surface of the ink cartridge or the like, due to the condition of the irradiated surface. Such a light consists a noise signal, thereby degrading the detecting precision. For this reason, the inventors of the present invention attempted to reduce the noise signal by orienting the optical sensor to radiate light onto the surface of the ink cartridge in a non-perpendicular direction, specifically at an inclination angle of about 10 degrees.
However, it is difficult to slant the optical sensor at the prescribed angle in relation to the irradiation surface of the ink cartridge. If there is an error in the mounting angle of the optical sensor, the relative positioning of the optical sensor and the irradiation surface of the ink cartridge will be different from the intended setting. As a result, the optical sensor cannot detect the light or a portion of the light that is reflected from the ink cartridge at the intended detecting position and cannot, therefore, accurately detect the existence of ink or of a mounted ink cartridge.
Further, due to irregularities in its sensitivity, the optical sensor may not achieve precise detection when the intensity of irradiated light from the light-emitting element is uniform. In order to overcome such a problems, a process has been conventionally conducted to calibrate the intensity of the light irradiated from the light-emitting element. In this process, an ink cartridge is filled with sufficient ink, and the intensity of the light is calibrated so as to achieve a predetermined amount of light received by the optical sensor. This calibrating process is conducted for each printer by controlling the drive of the light-emitting element through pulse-width modulation.
However, because the amount of light reflected from the ink cartridge differs according to the color of ink stored in the cartridge, the calibration process must be conducted for each ink cartridge in a printer provided with a plurality of ink cartridges containing different color ink. This leads to an increase in complexity and duration of the calibration process.
Another conceivable method for overcoming the above problem due to irregularities in sensitivity of the optical sensor is to measure an amount of light reflected from a single ink cartridge and to estimate the amount of reflected light for other ink cartridges based on the measured value. However, it is difficult to estimate appropriate calibration values for other ink cartridges using this method, because the amount of light reflected from the ink cartridge varies according to the color of ink contained therein. Hence, while it is possible to detect with high accuracy the amount of ink remaining in the ink cartridge for which reflected light has been actually measured, it is not possible to measure with accuracy the amount of ink remaining in ink cartridges using the estimated value.
Further, in order to detect the existence of ink optically, it is necessary to move the ink cartridge to a position near the optical sensor, and it requires a certain time interval to move the ink cartridge to such a position and to perform the detection using the optical sensor with respect to the ink cartridge at the position. Because recording operation cannot be performed during this time interval, detecting the existence of ink during the recording operation reduces the processing speed of the recording device.
There has been developed an ink cartridge for practical use that is provided with a plurality of prisms on the irradiated surface of light irradiation. These prisms are integrally formed on the surface of the ink cartridge in a shape that repeatedly alternates in peaks and valleys, which form a plurality of reflecting surfaces. This configuration enables to detect with accuracy the amount of ink remaining in the ink cartridge using the properties of the prisms of reflecting and penetrating light.
However, since this conventional device is configured with only a single optical sensor to detect the existence of ink in a plurality of ink cartridges, the carriage supporting the ink cartridges must be continually moved while the optical sensor is irradiating a light onto each ink cartridge to detect the existence of ink therein. Since the amount of reflected light varies depending on whether it is reflected from a valley or a peak in the prisms or therebetween, the waveform read by the optical sensor has a zigzag shape Accordingly, it is not always possible to detect the existence of ink with accuracy at some reading points.
In view of the foregoing, it is an object of the present invention to provide an image-forming device capable of detecting with accuracy the existence of ink cartridges mounted in the device and the existence of ink contained in the ink cartridges using optical sensors.
It is another object of the present invention to provide an image-forming device having a simple construction and capable of reliably calibrating the intensity of light irradiated from the optical ink sensor to detect with accuracy the existence of ink and ink cartridge.
It is another object of the present invention to provide an image-forming device capable of detecting the existence of ink without slowing the processing speed of the image-forming device.
It is another object of the present invention to provide an image-forming device employing prisms to form alternate peaks and valleys on the ink cartridge and capable of accurately detecting the existence of ink cartridges and of ink inside the ink cartridges while the ink cartridges are moving.
In order to achieve the above and other objects, according to the present invention, there is provided an image forming device including a cartridge, a carriage, a sensor, a memory, and a first detection unit. The cartridge contains an ink and has a surface. The carriage mounts the cartridge thereon and reciprocally moves along with the cartridge. The sensor detects an amount of a reflected light reflected from the cartridge. The sensor includes a light emitting unit and a light receiving unit. The light emitting unit irradiates a light onto the surface of the cartridge in a non-perpendicular direction with respect to the surface while the carriage is moving along with the cartridge. The light receiving unit receives the reflected light. The amount of the reflected light changes depending on the amount of ink contained in the cartridge and further on existence and non-existence of the cartridge on the carriage. The memory stores a first threshold value and a second threshold value differing from the first threshold value. The first detecting unit compares the amount of received light and the first threshold value for detecting an ink-near empty condition of the cartridge and compares the amount of received light and the second threshold value for detecting whether or not the cartridge is mounted on the carriage.
There is also provided an image forming device including at least one cartridge, a sensor, a carriage, a control unit, and a detecting unit. The at least one cartridge contains an ink and has an irradiated portion. The sensor that detects an amount of reflected light reflected from the irradiated portion of the cartridge. The sensor includes a light emitting unit that irradiates a light onto the cartridge at the irradiated portion and a light receiving unit that receives the reflected light The carriage mounts the cartridge thereon and reciprocally moves along with the cartridge. The control unit controls an intensity of the light irradiated from the light emitting unit. The detecting unit moves the carriage to a predetermined position where the light irradiated from the light emitting unit is irradiated on the cartridge at the irradiated portion and detects an amount of the ink contained in the cartridge based on the amount of reflected light detected by the sensor. The detecting unit detects existence of the ink in the cartridge when a level of the ink containing in the cartridge is above the irradiated portion. The control unit controls the intensity of the light such that the detecting unit detects the existence of the ink when the level of the ink is above the irradiated portion of the cartridge based on the amount of reflected light reflected from the irradiated portion of the cartridge that contains a brightest-color ink. With this configuration, accurate detection of the existence of the ink cartridge and the ink in the ink cartridge is achieved.
By using the brightest ink cartridge to adjust the amount of light emitted from the light-emitting element, accurate detection can be achieved even when the sensitivity of the ink sensor is irregular. Further, by performing such adjustments using the ink cartridge with the brightest ink, suitable detection can be reliably performed on ink cartridges containing other inks that are less bright. Therefore, a single adjustment value can be applied to all ink cartridges when multiple colors of ink are used, thereby simplifying the process and reducing the processing time.
Further, there is provided an image forming device including a cartridge, a sensor, a transport means, and a detecting unit The cartridge contains an ink. The carriage mounts the cartridge thereon and reciprocally moves along with the cartridge. The sensor detects an amount of reflected light reflected from the cartridge. The sensor includes a light emitting unit that irradiates a light onto the cartridge and a light receiving unit that receives the reflected light. The transport means transports a recording medium in relation to a printing operation. The detecting unit controls, during a recording-medium transporting period, the carriage to move to a position where the light irradiated from the light emitting unit is irradiated onto the cartridge and detects an amount of the ink contained in the cartridge based on the amount of reflected light detected by the sensor.
With this configuration, because the detecting unit detects the amount of the ink contained in the cartridge during the paper-feed interval, there is no need to put printing operations on standby, thereby improving processing speed of the image forming device.
There is also provided an image forming device including a cartridge, a carriage, a sensor, a detection unit, and a reading unit. The cartridge contains an ink and has an irradiated portion. The carriage mounts the cartridge thereon and moves along with the cartridge. The sensor detects an amount of reflected light reflected from the irradiated portion of the cartridge. The sensor includes a light emitting unit that irradiates a light onto the cartridge at the irradiated portion and a light receiving unit that receives the reflected light. The detection unit detects an amount of the ink contained in the cartridge based on the amount of the reflected light detected by the sensor. The irradiated portion of the cartridge is provided with prisms in a shape that repeatedly alternates in peaks and valleys. Adjacent two of the valleys are separated by a predetermined first interval. The reading unit controls the carriage to move to a predetermined position where the light irradiated from the light emitting unit is irradiated onto the cartridge and reads levels of reflected light from a waveform for the amount of reflected light at a second interval non-integral multiples of the first interval, based on which the reading unit detecting an amount of the ink contained in the cartridge.
In this configuration, because the second interval is non-integral multiples of the first interval, the reading unit can read the waveform at portions corresponding to portions of the prism other than the valleys. Accordingly, the existence of the ink and of the ink cartridge can be detected with accuracy.
There is also provided an image forming device including a cartridge, a carriage, a sensor, a first memory, a detecting unit, a measuring unit, an error, a second memory, and a calibrating unit. The cartridge contains an ink and has a surface. The carriage mounts the cartridge thereon and reciprocally moves along with the cartridge. The sensor detects an amount of a reflected light reflected from the cartridge. The sensor includes a light emitting unit and a light receiving unit. The light emitting unit irradiates a light onto the surface of the cartridge in a non-perpendicular direction with respect to the surface while the carriage is moving along with the cartridge. The light receiving unit receives the reflected light. The amount of the reflected light changes depending on the amount of ink contained in the cartridge. The first memory stores a threshold value. The detecting unit compares the amount of received light and the threshold value for detecting an ink-near empty condition of the cartridge. The measuring unit measures a detect position of the cartridge based on the amount of reflected light detected by the sensor. The error detection unit detects an error amount between the detect position and a predetermined theoretical position. The second memory stores the error amount. The calibrating unit calibrates a detection position for detecting the ink-near empty condition.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings:
FIG. 1
is a perspective view showing a color inkjet printer according to a first embodiment of the present invention;
FIG. 2
is a cross-sectional view of the color inkjet printer of
FIG. 1
;
FIG. 3
is a perspective view showing the general configuration of the color inkjet printer of
FIG. 1
;
FIG. 4
is a partially cross-sectional side view showing one of the ink cartridges mounted in a head unit of the inkjet printer;
FIG.
5
(
a
) is a cross-sectional side view of the ink cartridge of
FIG. 4
;
FIG.
5
(
b
) is a cross-sectional view of prisms of the ink cartridge taken along a line Vb—Vb of FIG.
5
(
a
);
FIG.
5
(
c
) is a perspective view showing the bottom of the ink cartridge of
FIG. 4
;
FIG.
6
(
a
) is a side view showing the vertical relationship between the ink cartridge of FIG.
4
and an ink sensor and optical paths when the ink cartridge contains sufficient ink;
FIG.
6
(
b
) is the same view as that in FIG.
6
(
a
) showing optical paths when the sub ink reservoir in the ink cartridge does not contain sufficient ink;
FIG.
7
(
a
) is a top view showing optical paths when the ink sensor is positioned in parallel with the ink cartridge with respect to the horizontal direction;
FIG.
7
(
b
) shows optical paths when the ink sensor is slanted an angle larger than 10 degrees from the ink cartridge with respect to the horizontal direction;
FIG.
7
(
c
) shows the ink sensor is slanted approximately 10 degrees to the ink cartridge with respect to the horizontal direction;
FIG.
8
(
a
) is an explanatory diagram showing the shape of the prisms formed on the ink cartridge and the intervals between peaks of the prisms;
FIG.
8
(
b
) shows a reading waveform corresponding to the peaks and valleys of the prisms of FIG.
8
(
a
) and reading positions of the reading waveform;
FIG. 9
shows an example of a reading waveform of level of reflected light from the ink cartridges;
FIG. 10
is a block diagram showing the general configuration of an electrical circuit in the color inkjet printer of
FIG. 1
;
FIG. 11
is a block diagram showing a drive circuit of the ink sensor;
FIG. 12
is a flowchart representing a calibration data input process;
FIG. 13
is a flowchart representing an ink sensor adjustment process;
FIG. 14
is a flowchart representing a calibration process;
FIG. 15
is a flowchart representing a process executed in the color inkjet printer of
FIG. 1
;
FIG. 16
is a flowchart showing an ink detection process executed during the process of
FIG. 14
for detecting the existence of ink;
FIG. 17
is a flowchart showing an ink cartridge detection process;
FIG.
18
(
a
) is a theoretical graph showing levels of reflected light at an original detecting position;
FIG.
18
(
b
) is a graph showing levels of reflected light detected during the calibration data input process;
FIG. 19
is reading waveforms read during the ink detection process when each ink cartridge is full and each is empty;
FIG. 20
is a graph showing speed variations of a carriage of the color inkjet printer;
FIG. 21
is a timing chart showing the timing of the ink detection process;
FIG.
22
(
a
) is a side view showing an ink cartridge and an ink sensor according to a second embodiment of the present invention and optical paths when the ink cartridge contains sufficient ink;
FIG.
22
(
b
) is a side view showing the ink cartridge and the ink sensor of FIG.
22
(
a
) and optical paths when the sub ink reservoir in the ink cartridge does not contain ink;
FIG.
23
(
a
) is a side view showing an ink cartridge and an ink sensor according to a modification of the second embodiment and the optical paths when the ink cartridge contains sufficient ink; and
FIG.
23
(
b
) is a side view showing the ink cartridge and the ink sensor of FIG.
23
(
a
) and the optical paths when the sub ink reservoir in the ink cartridge does not contain ink.
PREFERRED EMBODIMENTS OF THE PRESENT INVENTION
An image-forming device according to preferred embodiments of the present invention will be described while referring to the accompanying drawings. The image-forming device of the present embodiment is a color inkjet printer capable of printing color images. The printer is provided with four ink cartridges
2
storing ink of the colors black, cyan, magenta, and yellow.
FIG. 1
is a perspective view of a color inkjet printer
1
according to a first embodiment of the present invention. The inkjet printer
1
is provided with an operating panel
107
on the top surface of a printer case
110
The operating panel
107
includes a mode switch
107
a
and a liquid crystal display
107
b
. The inkjet printer
1
is also provided with a paper feed tray
201
on the back of the printer case
110
and a discharge tray
202
on the front of the printer case
110
.
FIG. 2
is a cross-sectional view of the inkjet printer
1
. As shown in
FIG. 2
, the inkjet printer
1
is provided internally with the ink cartridges
2
, a print head
3
, a platen roller
7
, an optical ink sensor
19
, and a conveying roller
200
for conveying a recording sheet. Detailed descriptions for these components will be provided later.
Recording sheets P are loaded into the paper feed tray
201
and fed one at a time by the conveying roller
200
. The recording sheet P is conveyed along a sheet feed direction indicated by an arrow A and introduced between the print head
3
and the platen roller
7
. The print head
3
performs a prescribed printing operation on the recording sheet P, and the recording sheet P is subsequently discharged onto the discharge tray
202
.
FIG. 3
is a perspective view showing the general configuration of the inkjet printer
1
. The inkjet printer
1
is further provided with a head unit
4
, a carriage
5
, a drive unit
6
, and a purging unit
8
. The head unit
4
is mounted on the carriage
5
and includes the print head
3
. The drive unit
6
moves the carriage S along with the head unit
4
reciprocally in a straight line along a widthwise direction W. The platen roller
7
is disposed in opposition to the print head
3
and extends in the widthwise direction w. The purging unit
8
performs well known purging operations.
The head unit
4
includes a mounting unit
4
a
formed with substantially flat surface and a pair of side covers
4
b
formed on both sides of the mounting unit
4
a
. A space defined by the mounting unit
4
a
and the side covers
4
b
is partitioned into four spaces by three partitioning walls
4
c
(see FIG.
4
). In these four spaces are detachably mounted four ink cartridges
2
a
,
2
b
,
2
c
,
2
d
(collectively referred to as “ink cartridges
2
”) filled with black ink, cyan ink, magenta ink, and yellow ink. The ink inside the ink cartridges
2
is supplied to the print head
3
. The ink cartridge
2
a
filled with black ink has a larger capacity than the other ink cartridges
2
b
,
2
c
,
2
d
filled with the other three colors of ink, taking into account that black ink is used more frequently than the others.
Although not shown in the drawings, the print head
3
has a nozzle surface formed with a plurality of nozzles defining nozzle lines in a lengthwise direction indicated by an arrow T, and performs a prescribed printing operation by selectively ejecting ink droplets through the nozzles onto the recording sheet P. This printing operation is performed by alternately and repeatedly executing one-pass printing for printing one-pass-worth of image with the print head
3
and a line-feed operation for feeding the recording sheet P in the direction A by a distance equivalent to the one-pass-worth of image. A print region covered in the one-pass printing is within a region having a length of the nozzle lines in the conveying direction of the recording sheet P (that is, the lengthwise direction T) and a maximum printing width in the widthwise direction W of the recording sheet P. Accordingly, the recording sheet P is moved a distance in each line-feed operation equivalent to the length of the nozzle lines.
The drive unit
6
includes a carriage shaft
9
engaging the bottom end of the carriage
5
and extending parallel to the platen roller
7
, a guide plate
10
engaging the top end of the carriage
5
and extending parallel to the carriage shaft
9
, two pulleys
11
and
12
disposed adjacent to both ends of the carriage shaft
9
between the carriage shaft
9
and the guide plate
10
, an endless belt
13
looped around both the pulleys
11
and
12
, and a carriage motor
101
disposed adjacent to the pulley
11
.
The carriage motor
101
drives the pulley
11
to rotate forward or in reverse. At this time, the carriage S attached to the endless belt
13
moves reciprocally in the widthwise direction W along the carriage shaft
9
and the guide plate
10
according to the forward or reverse rotation of the pulley
11
.
The purging unit
8
is provided on the right side of the platen roller
7
and opposes the print head
3
when the head unit
4
is in a predetermined reset position. The purging unit
8
includes a purge cap
14
, a pump
15
, a cam
16
, and an ink reservoir
17
. The purging unit
8
performs the purging operation when the head unit
4
is in the reset position. That is, the purge cap
14
contacts the nozzle surface of the print head
3
so as to cover the nozzles in the print head
3
. The cam
16
drives the pump
15
to draw out defective ink containing air bubbles and the like from the print head
3
. The defective ink drawn out of the print head
3
is stored in the ink reservoir
17
.
A wiping member
20
is disposed to the left side of the purging unit
8
. The wiping member
20
is formed in a spatula shape and wipes the nozzle surface of the print head
3
as the carriage S moves across, A cap
18
is positioned adjacent to the purge cap
14
for covering the nozzles in the print head
3
in order to prevent the ink from drying when the print head
3
returns to the reset position after the printing process ends.
The ink sensor
19
is disposed near the left end of the drive unit
6
for detecting the existence of the ink cartridges
2
and the existence of ink therein. As shown in
FIG. 10
, the ink sensor
19
includes an infrared light-emitting element
19
a
, an infrared light-receiving element
19
b
, and an A/D converter
19
c
connected to the infrared light-receiving element
19
b.
Next, the configuration for fixing the ink cartridges
2
in the head unit
4
will be described with reference to
FIGS. 4
,
5
(
a
), and
5
(
c
).
FIG. 4
is a side view showing one of the ink cartridges
2
mounted in the head unit
4
with a partial cross-sectional view. FIG.
5
(
a
) is a cross-sectional side view of the ink cartridge
2
. FIG.
5
(
c
) is a perspective view showing the bottom of the ink cartridge
2
.
As shown in FIG.
5
(
a
), the ink cartridge
2
have a bottom wall
46
and a top wall
56
. As shown in FIGS.
5
(
a
) and
5
(
c
), the bottom wall
46
is formed with a first engaging depression
55
, an air hole
47
, and an ink supply port
50
in order, beginning from the rear side. The first engaging depression
55
is formed approximately in the center of the ink cartridge
2
in the widthwise direction W.
As shown in FIG.
5
(
a
), the top wall
56
is formed with a first upper wall
56
a
, a first protrusion
62
, a second engaging depression
57
, a second upper wall
56
b
, and a handgrip
59
in order, beginning from the rear side. The first upper wall
56
a
is formed at a height from the bottom wall
46
lower than that of the second upper wall
56
b
. The first protrusion
62
protrudes upward and forms the back wall of the second engaging depression
57
. The handgrip
59
protrudes upward to provide a member that a user can easily grab when mounting and removing the ink cartridge
2
in and from the head unit
4
.
As shown in
FIG. 4
, the mounting unit
4
a
is formed with a protrusion
4
f
, an engaging protrusion
24
, and an ink supply channel
22
in order, beginning from the rear side. More specifically, the protrusion
4
f
is formed on the rear side of the mounting unit
4
a
for restricting vertical movement of the ink cartridge
2
. The engaging protrusion
24
protrudes from the mounting unit
4
a
on the front side of the protrusion
4
f
. The engaging protrusion
24
engages the first engaging depression
55
formed in the bottom wall
46
of the ink cartridge
2
to fix the position of the ink cartridge
2
. The ink supply channel
22
is formed in the front portion of the mounting unit
4
a
penetrating to the print head
3
, enabling the ink supply channel
22
and the ink cartridge
2
to be in fluid communication with each other. An O-ring
23
is disposed in a circular channel, which is formed around the periphery of the ink supply channel
22
and the ink supply port
50
, for sealing the ink supply channel
22
. In this configuration, ink is supplied from the ink cartridge
2
to the print head
3
while the ink supply channel
22
is sealed by the O-ring
23
.
Accurate positioning is not possible with this connection between the ink supply channel
22
and the ink supply port
50
alone, as the ink cartridge
2
will rotate about the ink. supply port
50
(O-ring
23
) due to inertia generated by the moving carriage
5
. However, this rotation is prevented in the present embodiment by the engagement of the engaging protrusion
24
on the head unit
4
and the first engaging depression
55
on the bottom wall
46
as described above, thereby fixing the position of the ink cartridge
2
. As a result, the ink cartridge
2
can be accurately fixed on the head unit
4
.
An upper cover
4
e
and a locking arm
21
are disposed on top of the head unit
4
. The upper cover
4
e
has an engage part
4
d
and an end portion
4
g
. The locking arm
21
is for locking the ink cartridge
2
and rotatably supported by a swinging shaft
25
at one end. An auxiliary spring member
26
is wound around the swinging shaft
25
for urging the locking arm
21
upward. One end
26
a
of the auxiliary spring member
26
is engaged with the engaging part
4
d
on the head unit
4
, and another end
26
b
is fixed to the locking arm
21
.
A stopper
27
having a triangular shape in side view is formed protruding from the rear end of the locking arm
21
. A pressing unit
28
is formed to protrude from the bottom surface of the locking arm
21
The pressing unit
28
is capable of receding with respect to the locking arm
21
, but is urging to protrude by a compression spring (not shown) disposed in the pressing unit
28
in an elastically compressed state.
When the locking arm
21
is closed as represented by a solid line in
FIG. 4
, the stopper
27
engages the end portion
4
g
of the upper cover
4
e
, and the top wall
56
of the cartridge
2
contacts the pressing unit
28
causing the pressing unit
28
to recede upward, resisting the urging force of the compression spring. With this construction, the pressing unit
28
applies an urging force on the ink cartridge
2
according to the stopper
27
and the compression spring, pushing downward on and fixing the ink cartridge
2
.
An engaging pawl
29
is fixed to the bottom surface of the locking arm
21
behind the pressing unit
28
. The engaging pawl
29
engages in the second engaging depression
57
formed in the top wall
56
for fixing the position of the ink cartridge
2
without contacting the bottom end of the second engaging depression
57
. Because the first protrusion
62
protrudes upward and forms the back wall of the second engaging depression
57
as described above, when the engaging pawl
29
engages in the second engaging depression
57
, the first protrusion
62
prevents the ink cartridge
2
from shifting backward and from floating upward Here, the second engaging depression
57
for engaging the engaging pawl
29
is disposed at a position corresponding to approximately the center in the thickness direction T and between the ink supply port
50
and the first engaging depression
55
. Hence, the ink cartridge
2
is supported with good balance at three points, namely the second engaging depression
57
, the ink supply port
50
, and the first engaging depression
55
, Accordingly, this configuration can prevent the ink cartridge
2
from rising up, leaning in one direction, or vibrating, thereby fixing the ink cartridge
2
on the head unit
4
in a stable state.
As shown in FIG.
5
(
a
), a pair of opposing side plates
58
(only one is shown) are provided one on each widthwise side of the second engaging depression
57
. The space between the side plates
58
is approximately equivalent to the width of the engaging pawl
29
. Hence, when the engaging pawl
29
is fitted into the second engaging depression
57
, the pair of side plates
58
prevents the ink cartridge
2
from moving (deviating) in the widthwise direction W.
Since the head unit
4
is moved reciprocally during a printing operation while being abruptly accelerated and decelerated repeatedly, the ink cartridge
2
may deviate horizontally in the moving direction W. Such horizontal deviation may generate vibrations in the head unit
4
itself and have adverse effects on the printing quality. However, since the pair of side plates
58
prevent deviation (vibration) of the ink cartridge
2
in the moving direction w, the head unit
4
can move smoothly back and forth without vibrating, thereby maintaining a good printing quality.
A pair of ribs
61
(only one is shown) is also provided on the back of the ink cartridge
2
. The ribs
61
oppose each other and are formed with the same prescribed interval as the side plates
58
. An engaging protrusion
4
h
(see
FIG. 4
) protrudes from the head unit
4
at a position corresponding to the pair of ribs
61
. When the ink cartridge
2
is mounted in the head unit
4
, the engaging protrusion
4
h
fits into the interval between the ribs
61
. Accordingly, this pair of ribs
61
prevents the ink cartridge
2
from deviating (vibrating) horizontally during the printing process also.
By not configuring the entire top wall
56
in a thin construction, it is possible to maintain rigidity in the top wall
56
to withstand pressure from the pressing unit
28
.
A protrusion
21
b
is also formed on the locking arm
21
. By pushing down on the protrusion
21
b
, the locking arm
21
slides downward along an elongated hole
21
a
, thereby disengaging the upper cover
4
e
and the stopper
27
. The locking arm
21
springs upward by the urging force of the auxiliary spring member
26
and is maintained in the open position described by dotted lines. This configuration allows a wide space to be opened in the region that the ink cartridge
2
is mounted in the head unit
4
, thereby improving the facilitating maintenance of the inkjet printer
1
for a user installing or removing an ink cartridge
2
. Here, the elongated hole
21
a
is formed of sufficient length to enable the stopper
27
to disengage from the upper cover
4
e.
By gripping the handgrip
59
, a single ink cartridge
2
can be removed from the head unit
4
without interference from neighboring ink cartridges
2
. Likewise, when mounting an ink cartridge
2
in the head unit
4
, the ink cartridge
2
can be easily mounted in its narrow space by gripping the ink cartridge
2
by the handgrip
59
.
When mounting the ink cartridge
2
, the back portion of the ink cartridge
2
, that is the first upper wall
56
a
side, is inserted first into the prescribed position in the head unit
4
. As described above, however, the first upper wall
56
a
is formed lower than the second upper wall
56
b
, thereby preventing interference between the first upper wall
56
a
and the pivoting portion of the locking arm
21
(the side near the stopper
27
). Hence, the ink cartridges
2
can be easily mounted without catching on the head unit
4
.
To return the locking arm
21
to its closed position, the operator simply presses down on a free end
21
c
of the locking arm
21
. By pushing down on the free end
21
c
, the locking arm
21
swings down around the swinging shaft
25
until the pressing unit
28
contacts the top wall
56
. By pushing further down on the free end
21
c
, the locking arm
21
rotates about the contact point between the pressing unit
28
and the top wall
56
, forcing the stopper
27
positioned below the upper cover
4
e
to move right of the end portion
4
g
. At this point, the locking arm
21
is pushed upward along the elongated hole
21
a
by the urging force of the auxiliary spring member
26
and engages the end portion
4
g.
Next, the internal structure of the ink cartridge
2
will be described with reference to FIGS.
5
(
a
) and
5
(
b
). FIG.
5
(
a
) shows the state of the ink cartridge
2
filled with no ink. FIG.
5
(
b
) is a cross-sectional view taken along a line Vb—Vb of FIG.
5
(
a
).
As shown in FIG.
5
(
a
), the ink cartridge
2
is hollow with a substantial box shape. In addition to the bottom wall
46
and the top wall
56
mentioned above, the ink cartridge
2
has side walls
51
and
60
. Partitions
41
and
42
are provided inside the ink cartridges
2
for partitioning the ink cartridge
2
into an air introduction chamber
43
, a main ink reservoir
44
, and a sub ink reservoir
45
. The air introduction chamber
43
is in fluid communication with the air outside the ink cartridge
2
via the air hole
47
. The top of the air introduction chamber
43
is in fluid communication with the main ink reservoir
44
, enabling air to be introduced into the main ink reservoir
44
.
The main ink reservoir
44
is an essentially airtight space for storing ink. Foam
48
, which is made of porous material, is accommodated in the main ink reservoir
44
in a compressed state. The foam
48
is a porous member formed of a sponge, a fibrous material, or the like that is capable of retaining ink due to the capillary effect. Even if the ink cartridge
2
is inverted, for example, this configuration can prevent ink from flowing from the main ink reservoir
44
to the air introduction chamber
43
and leaking out of the ink cartridge
2
through the air hole
47
. An ink channel
49
is formed in the partition
42
at the bottom of the main ink reservoir
44
, enabling the main ink reservoir
44
to be in fluid communication with the sub ink reservoir
45
.
The sub ink reservoir
45
is an essentially hermetically sealed space on the front of the ink cartridge
2
for storing ink. Ink stored in the main ink reservoir
44
and the sub ink reservoir
45
is supplied to the print head
3
via the ink supply port
50
as described above.
The side wall
51
that forms a front wall of the sub ink reservoir
45
is formed of a transparent light-permeable material. Examples of the light-permeable materials that can be used in this embodiment include acrylic resin, polypropylene, polycarbonate, polystyrene, polyethylene, polyamide, methacryl, methyl pentene polymer, and glass. The term transparent used above does not necessarily mean perfectly optically transparent, but can include the meaning translucent as well.
The side wall
51
includes a sloped portion
51
a
, which slopes downward toward the main ink reservoir
44
at approximately 20 degrees to the vertical and serves as light-permeable window. Prisms
52
are integrally formed along an inner surface of the sloped portion
51
a
spanning nearly the entire widthwise direction W of the sloped portion
51
a
. The prisms
52
are used to detect the existence of ink stored in the ink cartridge
2
. Details will be described later.
As shown in FIG.
5
(
b
), the prisms
52
have a plurality of reflecting surfaces
52
a
by arranging the prisms
52
with alternating peaks and valleys. In the present embodiment, the reflecting surfaces
52
a
intersect with one another at an angle of about 90 degrees. The number of reflecting surfaces
52
a
is between eight and sixteen. The plurality of reflecting surfaces
52
a
are arranged along the widthwise direction W (perpendicular to the paper surface in FIG.
5
(
a
)) and slope downward, as does the sloped portion
51
a
Accordingly, the ink can flow down over the prisms
52
, thereby preventing ink from remaining on the prisms
52
, as residual ink can prevent a desired reflected light from being obtained from the prisms
52
. As shown in FIG.
8
(
a
), the valleys of the prisms
52
are formed in the center of the ink cartridge
2
in the widthwise direction W. The interval between peaks or between valleys is set to 2 mm.
Referring to FIG.
5
(
a
), a reflecting member
53
is formed on the top of the sub ink reservoir
45
in a manner to Oppose the prisms
52
at a prescribed distance for changing the path of infrared light emitted from the ink sensor
19
. The reflecting member
53
is formed in a pouch shape having an air pocket
53
A in the center, and extends in the vertical direction V at an angle of 20 degrees to the prisms
52
(see FIG.
6
(
a
)).
In the ink cartridge
2
having the construction described above, air is introduced from the air introduction chamber
43
into the main ink reservoir
44
when the print head
3
expends ink from the ink cartridge
2
in order to replace the expended ink. Accordingly, the level of ink in the main ink reservoir
44
drops, as shown in FIG.
6
(
a
). When ink is further expended until all the ink in the main ink reservoir
44
is used, ink remaining in the sub ink reservoir
45
is supplied to the print head
3
. At this time, the sub ink reservoir
45
is decompressed, but air received from the air introduction chamber
43
via the main ink reservoir
44
is introduced into the sub ink reservoir
45
via the ink channel
49
, thereby alleviating the decompression in the sub ink reservoir
45
and lowering the level of the ink as shown in FIG.
6
(
b
).
That is, the ink cartridge
2
is configured such that first ink in the main ink reservoir
44
is expended and then ink in the sub ink reservoir
45
is expended after all ink in the main ink reservoir
44
has been used. Accordingly, by detecting the existence of ink in the sub ink reservoir
45
using the ink sensor
19
, it is possible to determine the existence of ink for the entire ink cartridge
2
.
Next, the ink sensor
19
will be described. As described above, the ink sensor
19
includes the infrared light-emitting element
19
a
and the infrared light-receiving element
19
b
. The infrared light-emitting element
19
a
and the infrared light-receiving element
19
b
have an irradiating surface and a receiving surface, respectively. As shown in FIG.
6
(
a
), the ink sensor
19
is oriented such that the irradiating and receiving surfaces are slanted at approximately 20 degrees to the vertical direction V, as is the sloped portion
51
a
. The ink sensor
19
is also slanted at an angle of approximately 10 degrees to the sloped portion
51
a
in the widthwise direction W (horizontal direction) as shown in FIG.
7
(
c
). An infrared light irradiated from the infrared light-emitting element
19
a
onto the ink cartridge
2
is received as reflected light by the infrared light-receiving element
19
b
. The existence of the ink cartridges
2
and of ink in the ink cartridges
2
can be detected based on the amount of reflected light received.
Next, the principles of detecting the existence of ink and an ink cartridge will be described with reference to FIGS.
6
(
a
) and
6
(
b
). FIGS.
6
(
a
) and
6
(
b
) are partial cross-sectional side views showing the ink cartridge
2
and the ink sensor
19
. It should be noted that mounting members for the head unit
4
and the ink sensor
19
are omitted from these drawings for illustration purposes.
When the ink cartridge
2
is sufficiently filled with an ink
71
as shown in FIG.
6
(
a
), infrared light irradiated from the infrared light-emitting element
19
a
(optical path X) passes through the ink
71
inside the ink cartridge
2
. The reason the infrared light passes through the ink
71
is that its index of refraction is very similar to that of the material forming the prisms
52
. After passing through the ink
71
, the infrared light reaches the reflecting member
53
disposed in the sub ink reservoir
45
. Since the refractive index of the material forming the reflecting member
53
is different from that of an air
72
inside the air pocket
53
A of the reflecting member
53
, the infrared light is reflected off the interface between the inner surface of the reflecting member
53
and the air
72
(optical path Y).
Since the sloped portion
51
a
of the ink cartridge
2
is slanted at approximately 20 degrees to the reflecting member
53
, the angle of incidence of the infrared light reaching the reflecting member
53
is different from the angle of incidence of light reaching the side wall
51
. Accordingly, light reflected by the reflecting member
53
(optical path Y) is reflected at a different angle from the incident light. Accordingly, the reflected infrared light is not directed toward the infrared light-receiving element
19
b
. As a result, the amount of reflected light directed toward the infrared light-receiving element
19
b
is small.
On the other hand, when there is no ink
71
in the sub ink reservoir
45
as shown in FIG.
6
(
b
), the infrared light irradiated from the infrared light-emitting element
19
a
(optical path X) is reflected by the interface between the air inside the sub ink reservoir
45
and the reflecting surface
52
a
of the prisms
52
(optical path Y), because the index of refraction of air is different from that of the material forming the prisms
52
. Therefore, there is a large amount of light reflected from the ink cartridge
2
to the infrared light-receiving element
19
b
. When an ink cartridge
2
is not mounted in the head unit
4
, the infrared light irradiated from the infrared light-emitting element
19
a
is not deflected by the ink cartridge
2
. Accordingly, the infrared light-receiving element
19
b
will receive the amount of reflected light even less than when the ink cartridge
2
is filled with sufficient ink.
Since the amount of light reflected from the ink cartridge
2
(optical path Y) changes according to the existence of ink and ink cartridge
2
, it is possible to detect the existence of ink and of the ink cartridge
2
using the infrared light-receiving element
19
b
to detect the difference in amount of reflected light.
FIG.
18
(
a
) graphs variations in the level of light reflected by the ink cartridge
2
. The vertical axis indicates the amount of reflected light, growing larger toward the top of the graph. Ink detection is performed using a first threshold value t1 represented by a dotted line, while detection of the ink cartridge
2
is conducted using a second threshold value t2 represented by a dotted line below that for the first threshold value t1. A level of reflected light above the first threshold value t1 indicates that the level of the ink
71
in the sub ink reservoir
45
is below the reflecting member
53
, indicating that the ink cartridge
2
is near empty. A level of reflected light between the first threshold value t1 and the second threshold value t2 indicates that the level of the ink
71
in the sub ink reservoir
45
is above the reflecting member
53
, indicating that the ink cartridge
2
is full of ink. A level less than the second threshold value t2 indicates that an ink cartridge
2
is not mounted in the head unit
4
. In this manner, it is possible to detect the existence of ink by comparing the level of reflected light (signal waveform) to the first threshold value t1 and to detect the existence of the ink cartridge
2
by comparing the level of reflected light to the second threshold value t2 because there is an obvious difference in reflected light when ink exists or not and when an ink cartridge
2
is mounted or not.
In general, the infrared light emitted from the infrared light-emitting element
19
a
has a prescribed beam angle (about ±10 degrees). Therefore, as the beam of infrared light spreads, the amount of light per unit area irradiated on the sloped portion
51
a
decreases. In the present embodiment, however, the prisms
52
with the plurality of reflecting surfaces
52
a
cover nearly the entire width of the sloped portion
51
a
. Accordingly, the irradiated infrared light can be reflected efficiently, and sufficient amount of reflected light can be received by the infrared light-receiving element
19
b.
Next, the reason for disposing the ink sensor
19
at an angle of approximately 10 degrees to the horizontal in relation to the sloped portion
51
a
will be described with reference to FIG.
7
.
FIG. 7
is a top view of the ink cartridge
2
and the ink sensor
19
. The ink cartridges
2
a
-
2
d
mounted in the head unit
4
are conveyed reciprocally in the widthwise direction W.
When the ink sensor
19
is positioned parallel to the sloped portion
51
a
as shown in FIG.
7
(
a
), light emitted from the infrared light-emitting element
19
a
(optical path X) passes through the sloped portion
51
a
. However, the fine irregularity of an external surface
51
b
on the sloped portion
51
a
sometimes reflects the incident light (optical path X) that is expected to penetrate the sloped portion
51
a
. Light reflected in this way (optical path Y) is received by the infrared light-receiving element
19
b
The infrared light-receiving element
19
b
may determine that the sub ink reservoir
45
is out of ink
71
even though the sub ink reservoir
45
contains the ink
71
, a problem that can adversely affect the precision of detecting ink.
When the ink sensor
19
is oriented at an angle larger than about 10 degrees to the sloped portion
51
a
as shown in FIG.
7
(
b
), light emitted from the infrared light-emitting element
19
a
(optical path X) is sometimes-reflected by the neighboring ink cartridge
2
c
, even when the ink cartridge
2
b
is not mounted on the head unit
4
. When this reflected light (optical path Y) is received by the infrared light-receiving element
19
b
, the infrared light-receiving element
19
b
may determine that an ink cartridge
2
b
, for example, exists even when this is not true. Therefore, detection of the ink cartridge
2
b
is unreliable.
When the ink sensor
19
is oriented at about 10 degrees to the sloped portion
51
a
as shown in FIG.
7
(
c
), it is possible to suppress light reflected by the external surface
51
b
(optical path Y in FIG.
7
(
a
)) from being received by the infrared light-receiving element
19
b
because the infrared light-receiving element
19
b
is slanted. Accordingly, the light passes through the sloped portion
51
a
when ink
71
exists, and is not received by the infrared light-receiving element
19
b
. However, when there is no ink, the infrared light-receiving element
19
b
receives light reflected from the reflecting surface
52
a
(optical path Y). Hence, it is possible to determine the existence of ink accurately according to differences in amount of reflected light. When the ink cartridge
2
c
, for example, is not mounted in the head unit
4
, light emitted from the infrared light-emitting element
19
a
does not irradiate the neighboring ink cartridge
2
d
(optical path X
1
). Hence, it is possible to determine the existence of the ink cartridge
2
c
accurately.
As described above, the prisms
52
are provided on the inner surface of the sloped portion
51
a
. Also, the infrared light is irradiated onto the sloped portion
51
a
in a non-perpendicular direction. Hence, the infrared light-receiving element
19
b
is prevented from receiving a reflected light unrelated to the existence of ink that is reflected by the external surface
51
b
of the sloped portion
51
a
. Accordingly, the noise signal (unnecessary reflected light) is reduced, thereby improving the accuracy of detecting the existence of ink.
FIG. 10
is a block diagram showing the general configuration of an electrical circuit in the inkjet printer
1
. As shown, the inkjet printer
1
includes a main controller substrate
100
and a carriage substrate
120
. Mounted on the main controller substrate
100
are a single-chip microcomputer serving as a central processing unit (CPU)
91
, a read only memory (ROM)
92
, a random access memory (RAM)
93
for temporarily storing various data and the like, an electrically erasable read only memory (EEPROM)
94
, which is a rewritable nonvolatile memory, an image memory
95
, a gate array
96
, an interface
97
, and the like. An address bus
98
and a data bus
99
connect the CPU
91
, the ROM
92
, the RAM
93
, the EEPROM
94
, and the gate array
96
.
The CPU
91
generates a print timing signal and a reset signal and transfers the signals to the gate array
96
. Connected to the CPU
91
are the operating panel
107
with which the user can input a print command, a motor drive circuit
102
for driving the carriage (CR) motor
101
connected thereto, a motor drive circuit
104
that activates a line feed motor
103
to drive the conveying roller
200
, a paper sensor
105
for detecting an leading edge of the recording sheet P, an origin sensor
106
for detecting the carriage S located at a predetermined point of origin, the infrared light-emitting element
19
a
, the A/D converter
19
c
, and the like. The CPU
91
controls operations of each component connected thereto.
The ROM
92
stores control programs that are controlled by the CPU
91
. The programs include programs for a calibration data input process (FIG.
12
), a calibration process (FIG.
14
), an ink detection process (FIG.
16
), an ink cartridge detection process (FIG.
17
), and the like. These programs will be described in detail later, In addition, the ROM
92
stores various fixed data, such as the above-described first and second threshold values t1 and t2.
The ROM
93
is provided with a maintenance mode flag
93
a
, which is turned ON by a user operating the mode switch
107
a
provided in the operating panel
107
. The maintenance mode flag
93
a
in the ON condition indicates that the operating mode of the inkjet printer
1
is in a maintenance mode for executing calibrations. The maintenance mode flag
93
a
is set to OFF at the end of the calibrations. The calibration data input process of the present invention, which is one of the calibrations, is executed only when the maintenance mode flag
93
a
is ON.
The EEPROM
94
includes a first calibration data memory M
1
, a second calibration data memory M
2
, counters C, near-empty flags F
1
, count-d flags F
2
, and empty flags F
3
. The first calibration data memory M
1
is for storing as calibration data a calibration value α that is obtained through the calibration data input process (described later) The calibration data α can be stored in the first calibration data memory M
1
only when the maintenance mode flag
93
a
is ON. The second calibration data memory M
2
is for storing an adjustment value obtained through the calibration data input process (described later).
The counters C are memories for corresponding ones of four ink cartridges
2
and serve to count the number of ink ejections from the print head
3
. A counter value of each counter C is set to 0 when a corresponding ink cartridge
2
is replaced, and is incremented one for each ejection of ink. It is possible to know the approximate amount of expended ink by counting the amount of ink ejections.
A prescribed amount of ink is ejected from the ink cartridge
2
not only during printing, but also during purging and flushing operations. The purging operation is for purging air bubbles in the ink cartridges
2
along with ink. The flushing operation ejects ink in order to clear out blockage in the print head
3
. The amount of ink expended during the purging and flushing operations is known in terms of the number of ink ejections and is prerecorded as a prescribed count value in the ROM
92
. Accordingly, when the purging operation or the flushing operation is performed, the equivalent prescribed count is added to the counters C to update the count value.
Each of the near-empty flags P
1
corresponds to one of the four ink cartridges
2
. Each near-empty flag F
1
is set to OFF when it is detected that a corresponding ink cartridge
2
is full of ink when, for example, the ink cartridge
2
is exchanged. The near-empty flag F
1
is set to ON when the ink sensor
19
detects no ink in the corresponding ink cartridge
2
, indicating that the corresponding ink cartridge
2
is near empty. In other words, when the ink level in the sub ink reservoir
45
drops below the reflecting member
53
, the amount of reflected light detected by the ink sensor
19
changes greatly (increases) Since the amount of reflected light detected is inputted into the CPU
91
as a signal, the CPU
91
recognizes this change and sets the corresponding near-empty flag F
1
to ON.
Because the sloped portion
51
a
and the reflecting member
53
are provided at the top of the sub ink reservoir
45
, when the ink sensor
19
detects no ink, resulting in the corresponding near-empty flag F
1
being set to ON, the corresponding ink cartridge
2
is not yet completely out of ink. In other words, near empty indicates the limit of the ink sensor
19
for detecting ink and does not indicate that the ink cartridge
2
is completely empty. Therefore, printing can be continued for a while even after the ink cartridge
2
becomes near empty. Because the sloped portion
51
a
and the reflecting member
53
are provided at the top of the sub ink reservoir
45
, it is possible to determine when the ink cartridge
2
is running out of ink at the point ink
71
no longer exists at the top of the sub ink reservoir
45
. Therefore, a state of low ink can be detected before all the ink
71
in the ink cartridge
2
is expended.
In the present embodiment, the amount of ink remaining in an ink cartridge
2
after the near empty is first detected is detected by the corresponding counter C. More specifically, when one of the near-empty flags C is set to ON, the count value for the corresponding counter C is reset to 0 and subsequently incremented up to an empty threshold count e, which is stored in the ROM
92
, thereby improving the precision for detecting when an ink cartridge
2
is empty As will be described in detail later, the empty threshold count e is set such that when the count value of the counter C reaches the empty threshold count e, the corresponding ink cartridge
2
is close to empty, but contains sufficient ink for one-page printing.
Each of the empty flags F
3
corresponds to one of the four ink cartridges
2
. The empty flag E is set to ON when the count value of corresponding counter C reaches the empty threshold count e after the near empty is detected, indicating that the corresponding ink cartridge
2
is empty (close to empty). Each of the count-d flags F
2
corresponds to one of the four ink cartridges
2
, and is turned ON each time the count value of corresponding counter C reaches a predetermined count d, which is stored in the ROM
92
, indicating the timings to execute the ink detection process.
In response to print timing signals transferred from the CPU
91
, the gate array
96
outputs, based on the image data stored in the image memory
95
, print data (drive signals) for printing images corresponding to the image data on the recording sheet P, a transfer clock CLK synchronizing the input data, a latch signal, a parameter signal for generating a basic printer waveform signal, and an ejection timing signal JET for producing output at fixed periods. These signals are transferred to the carriage substrate
120
on which a head driver is mounted. The gate array
96
also receives image data transferred from external devices, such as computers, via the central interface
97
and stores the image data in the image memory
95
. The gate array
96
generates a central data reception interrupt signal based on central data transferred from a host computer or the like via the central interface
97
and transfers this signal to the CPU
91
. Signals are transferred between the gate array
96
and the carriage substrate
120
via a harness cable connecting the ink cartridge
2
.
The carriage substrate
120
shown in
FIG. 10
is for driving the print head
3
using a head driver (drive circuit) mounted thereon. The print head
3
and the head driver are connected by a flexible printed circuit board including a copper plate wiring pattern formed on a polyimide film having a thickness of 50 μm to 150 μm. The head driver is controlled via the gate array
96
and applies a drive pulse in a waveform suited to a printing mode to each drive element so that ink is ejected in prescribed amounts from the print head
3
.
The infrared light-receiving element
19
b
converts a received reflected light using photoelectric conversion and outputs an electric analog signal. This analog signal has a smaller output voltage the larger the amount of reflected light. The A/D converter
19
c
converts the analog signal to a digital signal through the steps of sampling, quantization, binarization, and the like, and outputs the same to the CPU
91
. Then, the CPU
91
reads the levels of the reflected light based on the digital signal and compares the read levels to the first threshold value t1 and the second threshold value t2.
It should be noted that because the output voltage of the digital signal is low when the amount of reflected light is great and high when the amount of reflected light is small, there is an inverse relationship between the amount of reflected light shown in FIG.
18
(
a
) and the output voltage of the digital signal shown in
FIG. 9
, which shows an example of the reading waveform for the output voltage of the digital signal corresponding to the light reflected from the ink cartridge
2
. More specifically, the amount of reflected light greater than the first threshold value t1 of FIG.
18
(
a
) indicates that a corresponding ink cartridge
2
is near empty, whereas the output voltage of the digital signal lower than the threshold voltage value t3 indicates that a corresponding ink cartridge
2
is near empty.
FIG. 11
is a block diagram showing a drive circuit of the ink sensor
19
. In addition to the infrared light-emitting element
19
a
, the infrared light-receiving element
19
b
, the A/D converter
19
c
, and the CPU
91
, the drive circuit also includes a transistor
19
d
connected to the CPU
91
for turning the infrared light-emitting element
19
a
ON and OFF, a resistor
19
e
for regulating the light-emitting element
19
a
, a load resistor
19
f
for the infrared light-emitting element
19
a
, and a low-pass filter
19
g
With this drive circuit, the CPU
91
supplies a PWM signal to the transistor
19
d
, setting the transistor
19
d
ON and OFF in a cycle of from several kHz to several hundred kHz to turn ON and OFF the infrared light-emitting element
19
a
. The infrared light-receiving element
19
b
receives light reflected from the ink cartridge
2
, changing the amperage of current flowing from the infrared light-receiving element
19
b
and changing the amount of voltage drop generated by the load resistor
19
f
. When the amount of received light is large, the voltage drop is great. When the amount of received light is small, the voltage drop is small. Accordingly, the voltage at the junction between the load resistor
19
f
and low-pass filter
19
g
varies according to the change in voltage drop This change in voltage is inputted into the A/D converter
19
c
via the low-pass filter
19
g
. After being converted to a digital value, the signal is read by the CPU
91
. Hence, by changing the duty ratio of the PWM signal with the CPU
91
, it is possible to adjust the amount of light emitted by the infrared light-emitting element
19
a
and to adjust the output from the infrared light-receiving element
19
b.
Next, a method to read a reading waveform of output voltage from the ink sensor
19
will be described while referring to FIGS.
8
(
a
) and
8
(
b
). FIG.
8
(
b
) shows a reading waveform of output voltage and reading positions.
In the present embodiment, the existence of ink and ink cartridges
2
are detected by using the single ink sensor
19
while the carriage
5
is moved in a constant speed, so that the reading waveform has a zigzag shape as shown in FIG.
8
(
b
), corresponding to the peaks and valleys of the prisms
52
shown in FIG.
8
(
a
). The CPU
91
is set to read the output voltages (i.e., level of reflected light) from the reading waveform at three positions, i.e., at the center of the prisms
52
corresponding to a valley and at right and left sides of the center with a fixed reading interval from the center. The reading interval is set not to an integral multiple of the interval between the valleys of the prisms
52
, so as to read the levels of the reflected light from positions corresponding to the peaks of the prisms
52
. In the present embodiment, the reading interval is set to 15 times the interval between valleys of the prisms
52
. That is, the reading positions of the present embodiment includes a first reading position {circle around (1)} coinciding with a peak, a second reading position {circle around (2)} coinciding with a valley located at the center of the ink cartridge
2
, and a third reading position {circle around (3)} coinciding with another peak. By setting the reading interval at 1.5 times the interval of valleys in the prisms
52
in this way, it is possible to reliably read the levels of the output voltage from portions of the reading waveform corresponding to the peaks.
After reading the reading waveforms in three positions as described above, the read levels each corresponding to the position {circle around (1)}, {circle around (2)}, {circle around (3)} is compared to a threshold voltage value t3 corresponding to the first threshold value t1. Then, the determination is made by majority based on these results. In this example, the readings at the positions {circle around (1)} and {circle around (3)} are determined to be less than the threshold voltage value t3, and the reading at the portion {circle around (2)} is determined to be greater than the threshold voltage value t3, so that the ink cartridge
2
is determined to be near empty. Because the voltage levels are read at a plurality of locations of the reading waveform, and because the determination is made by majority based on these results, accurate detection is achieved.
Here, if the reading waveform were read in integral multiples of the interval of valleys in the prisms
52
, the output voltages corresponding to only valley portions are read, leading the detector to mistakenly determine that ink exists when there is none.
Also, more than three reading locations could be used to read the reading waveform. In this case also, the intervals between the reading position {circle around (2)} at the center and additional reading positions should be other than an integral multiple of the valley intervals in the prisms
52
so as to read waveforms from peaks in the prisms
52
.
Further, the reading interval is not limited to 1.5 times the interval of valleys in the prisms
52
. The present invention has been shown to read the reading waveform properly when the reading interval is set larger than the interval of valleys and smaller than two times the interval. With this reading interval, it is possible to read the waveform at interval corresponding to portion of the prism
52
other than the valleys. It has been confirmed from experiments that the reading interval is preferably within a range of 1.3 to 1.7 times the interval of valleys.
Moreover, because the above reading position {circle around (2)} is known to be corresponding to the valley from the beginning, determination could be made based on only the read levels at the positions {circle around (1)} and {circle around (3)} without taking the read level at the position {circle around (2)} into account or without reading the level at the position {circle around (2)}.
Next, the various processes executed by the inkjet printer
1
will be described with reference to the flowcharts in
FIGS. 12
to
17
. First, the calibration data input process will be described. This process is performed for the following reasons.
As described above, the ink sensor
19
is oriented at an angle of approximately 10 degrees to the irradiation surface of the ink cartridge
2
, that is, the outer surface
51
b
of the sloped portion
51
a
. However, errors often occur when mounting the ink sensor
19
, causing the angle to be set differently from the intended 10 degrees. In such a case, the relative positions of the ink sensor
19
and the ink cartridge
2
are different from the intended positions. FIG.
18
(
b
) shows the signal waveform for the reflected light level when the mounted angle of the ink sensor
19
deviates from an intended angle with respect to the irradiation surface of the ink cartridge
2
. As shown, an actual detecting position P
1
has shifted from the intended theoretical detecting position P
2
shown in FIG.
18
(
a
). When the actual detecting position P
1
deviates from the theoretical detecting position P
2
in this way, it is not possible to perform accurate detection at the theoretical detecting position P
2
. In order to overcome such a problem, in the calibration data input process of the present invention, the deviation between the theoretical detecting position P
2
and the actual detecting position P
1
is calculated, and the amount of deviation is set as a calibration value α and written to the first calibration data memory M
1
.
There is also irregularity in the sensitivity of the infrared light-receiving element
19
b
for each ink sensor. Therefore, if the infrared light from the infrared light-emitting element
19
a
is set at a fixed amount, the output from the infrared light-receiving element
19
b
may exceed the first threshold voltage value t1 even when there is ink in the ink cartridge
2
for example, leading to a mistaken determination of no ink. In the calibration data input process of the present embodiment, therefore, the amount of light emitted from the infrared light-emitting element
19
a
is adjusted so as to achieve a prescribed output from the infrared light-receiving element
19
b
, using the ink cartridge
2
d
filled with yellow ink only in the sub ink reservoir
45
. The ink cartridge
2
d
is used because the yellow ink stored in the ink cartridge
2
d
is the brightest and generates the most reflected light. After adjusting the output from the infrared light-receiving element
19
b
to a prescribed value, the amount of light emission at that time is set as an adjustment value and written to the second calibration data memory M
2
. In this way, it is possible to absorb irregularities in sensitivity in the ink sensor
19
and to adjust the output from each infrared light-receiving element
19
b
when ink is present to uniform values, irrespective of the ink sensor.
FIG. 12
is a flowchart showing the calibration data input process, This process is executed prior to shipping and includes a process for storing the calibration value α in the first calibration data memory M
1
and a process for storing the adjustment value in the second calibration data memory M
2
. In the present embodiment, the calibration data input process is executed with ink cartridges
2
filled with ink. However, at least the ink cartridge
2
d
for yellow ink is filled with ink only in the sub ink reservoir
45
, but not in the main ink reservoir
44
.
Below the calibration data input process for storing the calibration value α will be described as a first calibration data input process, and the process for storing the adjustment value will be described as a second calibration data input process.
When the calibration data input process is started, first in S
1
, it is determined whether or not the maintenance mode flag
93
a
is ON because the calibration data input process is executed only when the operating mode of the inkjet printer
1
is set to the maintenance mode as described above. If the maintenance mode flag
93
a
is OFF (NO: S
1
), the process is ended. On the other hand, if the maintenance mode flag
93
a
is ON (YES:S
1
), then after the origin sensor
106
has confirmed the carriage
5
located at the point of origin, the carriage motor
101
is driven to move the carriage
5
a prescribed distance from the point of origin to the home position (
52
). Then in S
3
, the infrared light-emitting element
19
a
starts emitting the infrared light, and the infrared light-receiving element
19
b
starts receiving light reflected from the ink cartridge
2
to detect the amount (level) of reflected light. As described above, the detected amount of reflected light is output as analog signal (FIGS.
18
(
a
) and
18
(
b
)), converted into a digital signal by the A/D converter
19
c
, and output to the CPU
91
. Then in S
4
, the carriage
5
is moved toward the ink sensor
19
at a speed lower than that during printing process until the carriage
5
reaches a prescribed position, that is, until the carriage
5
has moved a prescribed distance from the point of origin so that the amount of reflected light is detected not only at the theoretical detecting position P
2
but also over a range wider than the width of the carriage
5
. Then in S
5
, the CPU
91
reads the levels of the reflected light based on the digital signal from the ink sensor
19
. The resultant reading waveform is shown in FIG.
18
(
b
).
Then in S
6
, the actual detecting position P
1
indicated in FIG.
18
(
b
) is found for the ink cartridge
2
a
, which is a leading cartridge reaching the prescribed position first, based on the level of reflected light. The actual detecting position P
1
is detected by sensing the position at which the level of reflected light changes from below the second threshold value t2 indicating that an ink cartridge
2
does not exist to above the second threshold value indicating that an ink cartridge
2
exists.
Next, the difference between the theoretical detecting position P
2
(theoretical value) stored in the ROM
92
and the actual detecting position P
1
(actual value) is calculated as a moving distance from the point of origin, and is stored as the calibration value α in the first calibration data memory M
1
(S
7
). Here, the theoretical detecting position P
2
(theoretical value) is indicated by a distance of the carriage
5
from the point of origin. Accordingly, the actual detecting position P
1
is set as P
2
±α from the point of origin.
The calibration value α is used in the calibration process executed in the second calibration data input process, the ink detection process, and the ink cartridge detection process, so that it is possible to correct the detecting position for detecting the amount of light reflected from the ink cartridge
2
, and so the level of reflected light can be detected accurately. This calibration value α is used for calibrating the detection position of not only the ink cartridge
2
a
but also the detection positions of all the ink cartridges
2
a
to
2
d.
Here, as shown in
FIG. 20
, after beginning to move from its home position, the carriage
5
undergoes accelerated movement, uniform movement, and decelerated movement. Since the ranges for acceleration and fixed speed are preset, it is possible to determine whether the carriage
5
is moving in its uniform speed interval based on the distance from the home position. In the present embodiment, therefore, the actual detecting position P
1
and the theoretical detecting position P
2
are preset at positions that are passed during the uniform speed interval.
By setting the positions in this way, the position of light irradiation on the ink cartridge
2
can always be maintained uniformly, thereby improving detection accuracy based on the level of reflected light. Since the ink cartridge
2
will pass the ink detecting position P
1
when the carriage
5
is moving at a uniform speed, more accurate ink detection is possible.
As described above, the actual detecting position Pi of the ink cartridge
2
is measured while moving the carriage
5
at a velocity slower than that during the printing process. Since printing is generally conducted at a high speed, the carriage
5
must also be moved reciprocally at a high speed during the printing process. When measuring the actual detecting position P
1
while moving the carriage
5
at such a high speed, the amount of reflected light must be detected with a rough sampling and it is difficult to measure the actual detecting position P
1
with accuracy. However, in the present embodiment because the actual detecting position P
1
is measured while moving the carriage
5
at a speed slower than that during the printing process, precise data sampling can be achieved for the detecting position. Therefore, the detecting position can be accurately adjusted based on the precise data acquired.
After completing the first calibration data input process described above (S
1
through S
7
), the ink sensor adjustment process as the second calibration data input process is executed in S
8
to adjust the ink sensor
19
. The second calibration data input process is described in detail with reference to the flowchart in FIG.
13
.
Once the ink sensor adjustment process shown in
FIG. 13
is started, the carriage
5
is moved in S
20
to the home position. Next in S
21
, the calibration process is executed to obtain the reading waveform. The detailed description for the calibration process will be described later. Then, in S
22
, one of the ink cartridges
2
with the brightest color ink, which in this embodiment is the yellow ink cartridge
2
d
, is detected. Because as shown in
FIG. 19
the brightest ink cartridge
2
reflects the largest amount of irradiated light, the brightest color ink cartridge can be detected from the reading waveform obtained through the calibration process in S
21
.
Next, in S
23
, a value that determines the duty ratio of the PWM signal supplied to the infrared light-emitting element
19
a
is initialized so that the infrared light-emitting element
19
a
will emit a minimum amount of infrared light. The carriage
5
is moved in S
24
to a position where an infrared light from the ink sensor
19
will be irradiated on the detected ink cartridge
2
, that is, the yellow ink cartridge
2
d
in this example. Then, in S
25
, the CPU
91
reads the output voltage of the digital signal indicating the level of reflected light for the ink detected cartridge
2
d
. That is, the PWM signal initialized as described above is supplied to the infrared light-emitting element
19
a
so that the infrared light-emitting element
19
a
irradiates an infrared light onto the ink cartridge
2
d
, and the infrared light-receiving element
19
b
outputs an analog signal corresponding to the amount of light reflected from the ink cartridge
2
d
. The analog signal is converted into a digital signal and output to and read by the CPU
91
. Since the sub ink reservoir
45
of the yellow ink cartridge
2
d
is filled with ink, as shown in the example of
FIG. 19
a
corresponding output voltage of the digital signal will be near the threshold voltage value t3, which is set to 1.2 V in this example, corresponding to the first threshold value t1.
Next, the voltage of the digital signal read in S
25
is compared to the threshold voltage value t3 in S
26
If the voltage is greater than the threshold voltage value t3 (No:S
26
), then the value that determines the duty ratio of the PWM signal is incremented by one (S
27
). By incrementing this value by one, the period in which the transistor
19
d
is ON becomes longer, increasing the amount of light emitted from the infrared light-emitting element
19
a
. Then, the process returns to S
25
to repeat the same process until a voltage of the digital signal becomes less than or equal to the threshold voltage value t3. When the voltage of the digital signal becomes less than or equal to the threshold value t3 (YES:S
26
), then the value that sets the duty ratio of the PWM signal is decremented by one and stored as the adjustment value in the second calibration data memory M
2
in S
28
, and the process ends.
By performing the second calibration data input process in this manner, the ink sensor
19
is set to output a uniform analog signal when receiving reflected light from ink cartridge
2
that is full of ink, regardless of the irregularity in sensitivity of the ink sensor
19
.
Because the ink sensor
19
is adjusted in the second calibration data input process using the yellow ink cartridge
2
d
filled with brightest ink, the adjusted ink sensor
19
can reliably detect the existence of ink for the ink cartridges
2
a
-
2
c
also, which contain less bright ink, as shown in FIG.
19
. Also, because the adjustment value obtained through the second calibration input process is used not only for the yellow ink cartridge
2
but also any other ink cartridges
2
. Therefore, even when a plurality of ink cartridges are used in a signal printer, a reliable detection can be performed by utilizing a single adjustment value without executing any additional process. This simplifies the second calibration data input process and reduces the time duration required to execute the same.
As described above, according to the process of
FIG. 13
, the position of the yellow ink cartridge
2
d
is detected by reading the amount of light reflected from each ink cartridge
2
after executing the calibration process. Therefore, even when the position of the yellow ink cartridge
2
d
is unknown, the second calibration data input process can be executed. Also, even when ink other than yellow ink is the brightest when, for example, the yellow ink is not used, the position of the ink cartridge with the brightest ink can be detected, so that the second calibration data input process can be executed in a reliable manner.
However, if the position of the brightest-color ink cartridge is known from the beginning, the processes of S
20
and S
22
could be omitted, and an encoder could be used in S
24
to position the brightest ink cartridge.
The second calibration data input process is not limited to the process shown in FIG.
13
. For example, the PWM value can be initialized in S
23
to generate a maximum amount of infrared light. Subsequently, the PWM value is continuously increased by one until a voltage of a digital signal exceeds the threshold voltage value t3, and the PWM value of this point is stored in the second calibration data memory M
2
.
Next, the calibration process executed in S
21
of FIG.
13
will be described while referring to the flowchart shown in FIG.
14
. The calibration process is for correcting the detecting position of the ink cartridge
2
to the actual detecting position P
1
based on the calibration value α stored in the first calibration data memory M
1
and reads the level of reflected light at the corrected detecting position P
1
. The calibration process is executed during the process of FIG.
15
and the process of
FIG. 16
also.
In the calibration process of
FIG. 14
, the carriage
5
is first moved to the home position in S
31
, and then in S
32
, the carriage
5
is moved from the home position toward the ink sensor
19
. Next in S
33
, it is determined whether or not an ink cartridge
2
has reached the actual detecting position P
1
, which is the original detection position P
1
±calibration value α. If not (NO:S
33
), then the process returns to S
32
to move the carriage
5
further toward the ink sensor
19
. If so (YES:S
33
), a level of reflected light is detected in S
34
. At this time, infrared light is emitted from the infrared light-emitting element
19
a
based on the adjustment value stored in the second calibration data memory M
2
. Also, the reading is conducted at three locations at an interval of 1.5 times the interval of valleys in the prisms
52
as described above. Then, it is determined in S
35
whether or not the level of reflected light has been detected for all the four ink cartridges
2
. If not (NO:S
35
), then the process returns to S
32
to repeat the same processes until the level of light reflected from each ink cartridge
2
has been detected. On the other hand, if the level of reflected light has been detected for all the four ink cartridges
2
(YES:S
35
), then the calibration process ends.
Because the level of reflected light is detected in the calibration process at the prescribed actual detection position P
1
(one point) for each ink cartridge
2
, the level of reflected light is indicated by pinpoint data detected at a single point. Hence, the present invention can perform efficient data by reducing the amount of data to be processed. Further, even if the existence of ink is detected while the carriage
5
is moving at a high speed, the ink cartridge
2
is conveyed precisely to the actual detecting position P
1
based on the calibration value α stored in the first calibration data memory M
1
. Accordingly, the level of reflected light can be detected accurately (even with point data).
Next, a process executed during printing in the color inkjet printer
1
will be described while referring to FIG.
15
. During the process of
FIG. 15
, the ink detection process for detecting the existence of the ink
71
in the ink cartridge
2
is executed at proper timings, namely, during the paper-feed interval at the beginning of printing operations, during the paper-feed interval between printing each page thereafter, and during line feed interval.
The paper-feed interval is for feeding a recording sheet P from the paper feed tray
201
to a position between the print head
3
and the platen roller
7
. Although the ink detection process takes certain time duration, as shown in
FIG. 21
, the paper-feed interval is longer than the time duration required to execute the ink detection process. Accordingly, using the paper-feed interval wherein the carriage
5
is conventionally stopped, it is possible to execute the ink detection process without putting the printing operation on standby, thereby improving processing speed of the inkjet printer
1
while performing an accurate ink detection process. That is, in the present embodiment, the paper feed and the ink detection are executed simultaneously.
The line feed interval is where the recording sheet P is fed by one-pass-worth of distance or more after one-pass printing. More specifically, line feed is performed each time one-pass printing is performed so as to feed the recording sheet P by a distance of one-pass-width or more as shown in FIG.
21
. The amount of line feed varies depending on print data. As described above, during the printing process, the one-pass printing and the line feed are repeatedly performed in alternation. Actual printing is not performed during the line feed, but only the recording sheet P is fed by a necessary amount. Depending on the printing details, the line feed is conducted not only for a single pass, but also for a plurality of passes at one time. It is possible to conduct an ink detection process in the latter period. Accordingly, the ink detection process can be performed if the time required to perform a line teed is longer than the time required to perform the ink detection process without halting the printing operation. This prevents a loss in processing speed of the image-forming device,
In
FIG. 15
, when the process starts, the ink detection process is executed in S
50
during the paper-feed interval.
FIG. 16
shows the flowchart representing the ink detection process. As shown in
FIG. 16
, when the ink detection process is started, it is determined in S
101
whether not a near-empty flag F
1
corresponding to subject one of the ink cartridges
2
is ON. If not (S
101
:NO), then in S
102
it is determined whether or not the count value of corresponding counter C is equal to or greater than the prescribed count d, which is 100 for example. If so (S
102
:YES), the corresponding count-d flag F
3
is turned ON, and the process proceeds to S
106
. On the other hand, if a negative determination is made in S
102
(S
102
:NO), then the process directly proceeds to S
106
.
If it is determined in S
102
that the near-empty flag F
1
is ON (S
101
:YES), this means that the near empty has been detected, and then in S
104
it is determined whether or not the count value of the corresponding counter C is equal to or greater than the empty threshold count e. If so (S
104
:YES), this indicates the subject ink cartridge
2
is close to empty but contains sufficient ink for completing one page printing. Then, the corresponding empty flag F
2
is turned ON in S
105
, and the process proceeds to S
106
. On the other hand, if a negative determination is made in S
104
(S
104
:NO), this indicates that sufficient ink still remains, and then the process directly proceeds to S
106
.
In S
106
, it is determined whether or not the above processes in S
101
through S
105
has been executed with respect to all the four ink cartridges
2
. If not (S
106
:NO), the process returns to S
101
to repeat the above processes for next one of the ink cartridges
2
.
If the processes from S
101
to S
105
have been completed for all the four cartridges
2
(S
106
:YES), then the process proceeds to S
107
. In S
107
, it is determined whether or not any count-d flag F
3
is ON. If all the four count-d flags F
3
are OFF (S
107
:NO), the ink detection process ends. On the other hand, if even one of the count-d flags F
3
is determined to be ON in S
107
(S
107
:YES), then in S
108
the above described calibration process is executed.
After the calibration process is executed in S
10
, it is determined in S
109
whether or not there is any level of reflected light, reflected from the ink cartridge
2
whose count-d flag F
3
is determined ON in S
107
, equal to or greater than the first threshold value t1. In other words, the process in S
108
is executed with respect to only the ink cartridge(s)
2
whose count-d flag F
3
is ON, and the level of reflected light is read for the subject ink cartridge(s)
2
only. If the level of all the subject reflected light is lower than the first threshold value t1 (S
109
:NO), the process proceeds to S
111
to reset the count value and turn OFF the count-d flag F
3
of the subject ink cartridges
2
, and the process ends. On the other hand, if any of the level of reflected light that is equal to or greater than the first threshold value t1 (S
109
:YES), this indicates that the ink level of the corresponding ink cartridge
2
is near empty. Then in S
110
, the near-empty flag(s) F
1
corresponding to the ink cartridges)
2
that is near empty is turned ON, and process proceeds to S
111
.
After completing the ink detection process of
FIG. 16
, then the process returns to S
51
of FIG.
15
. In S
51
, one-pass printing is performed for printing one-pass-worth of image. Next in S
52
, it is determined whether the purging operation or the flushing operation is to be performed or not. If not (S
52
:NO), the process proceeds to S
54
. If so (S
52
:NO), then in S
53
the purging or flushing operation is performed, and the process proceeds to S
54
.
In S
54
, it is determined whether or not the line-feed interval is greater than a predetermined time duration t that is required to execute the ink detection process. If so (S
54
:YES), this means the ink detection process can be completed during the next line feed, so that the ink detection process described above is executed in S
55
, and the process proceeds to S
56
. On the other hand, if not (S
54
:NO), then the process directly proceeds to S
56
without executing the ink detection process.
In S
56
, it is determined whether or not printing is completed for one page. If not (S
56
:NO), then the process returns to S
50
to repeat the same process until the printing is completed for the current page. If so (S
56
:YES), then it is determined in S
57
whether or not any empty flag F
2
is ON. If not (S
57
:NO) it is determined in S
60
whether the printing has been completed for all pages If so (S
60
:YES), the process ends. If not (S
60
:NO) the process returns to S
50
. If an affirmative determination is made in S
57
(S
57
:YES), an ink-empty process is executed in S
58
and a message indicating that the ink cartridge
2
is empty is displayed on the liquid crystal display
107
b
to urge the user to replace the ink cartridge
2
Then in S
59
, the current process is stopped, and any print data, such as facsimile data, which has not been printed because of the ink-empty is stored in a memory.
As described above, the ink-empty process of S
58
is not immediately executed even if ink empty of the ink cartridge
2
is detected in S
104
. Instead, the ink-empty process is executed only after printing for a current page is completed without stopping printing operation in the middle of the page. This is because the ink cartridge
2
still contains sufficient ink for one-page printing after the ink empty is detected. Accordingly, the problems that the ink runs out in the middle of page can be prevented, and also effective use of ink is possible.
In the above described process, the ink detection operation is executed every time and right before the purging or flushing operation is performed.
Because the calibration process in the ink detection process is executed every time the count value reaches the value d, the present invention can determine an interval for executing the calibration process for checking the amount of reflected light as well as counting the amount of expended ink to determine when the ink cartridge
2
is empty.
It should be noted that the ink cartridges
2
may vary in the amount of ink
71
they contain, for example, when inserting a used product or one with manufacturing irregularities. Also, when considering variations in the amount of ink ejected from the print head
3
in different inkjet printers
1
, the count value will not always be uniform. Therefore, if the ink ejection is simply counted from an initialized state until the ink cartridge
2
is empty, it is difficult to determine when the ink cartridge
2
is empty using a prescribed ejection count number. Determining when an ink cartridge
2
is empty based on the prescribed ejection count number tends to be unreliable. However, the amount of remaining ink in the ink cartridge
2
at the point that the ink cartridge
2
is determined to be near empty can be treated as approximately uniform. Hence, the number of ink ejections (count number) required to expend this amount of remaining ink can be thought of as uniform. Accordingly, a prescribed number near this number of ink ejections is set as the empty threshold value e. By setting the count value to 0 at the point the ink cartridge
2
is found to be near empty and incrementing this count value every ink ejection up to the empty threshold value e, it is possible to detect with accuracy when the ink cartridge
2
is empty.
Next, the ink cartridge detection process for detecting whether or not an ink cartridge
2
is mounted on the head unit
4
will be described while referring to the flowchart shown in FIG.
17
. The ink cartridge detection process is executed each time an ink cartridge
2
is replaced. A sensor provided on a cover of the inkjet printer
1
detects when the cover is opened and closed. This action is perceived as an ink cartridge replacement operation.
When the ink cartridge detection process starts, first in S
41
, it is determined whether or not the cover has been opened and subsequently closed. If not (NO:S
41
), the process ends. On the other hand, if so (YES:
41
) the above-described calibration process of
FIG. 14
is executed in S
42
to detect the amount of reflected light from the ink cartridge
2
at the detecting position P
1
. Then, in S
43
, an ink cartridge(s)
2
whose near-empty flag F
1
is ON is detected, and it is determined whether or not the level of light reflected from thus detected ink cartridge
2
is less than the first threshold value t1. If it is determined that the level of reflected light is less than the first threshold value t1 (YES:S
43
), this indicates that the subject near empty ink cartridge
2
has been replaced. Then, in S
44
, the corresponding near-empty flag F
1
is turned OFF, and the count value of the corresponding counter C is cleared in S
45
, It a negative determination is made in S
43
(NO:S
43
), then the process directly proceeds to S
46
. Next, in S
46
, it is determined whether or not a level of reflected light greater than or equal to the second threshold value t2 has been detected at all the four locations of the reading waveform, each corresponding to one of the ink cartridges
2
. If a level of reflected light less than the second threshold value t2 is detected in S
46
(NO:S
46
), this means that there is an ink cartridge
2
not mounted on the head unit
4
, so that a no-ink-cartridge error process is conducted in S
47
to notify the user that an ink cartridge
2
is not mounted in the head unit
4
, and the ink cartridge detection process ends If it is determined in S
46
that a level of reflected light exceeding the second threshold value t2 is detected at all of the four locations (YES:S
46
), indicating that all ink cartridges
2
are mounted in the printer, the ink cartridge detection process ends.
As described above, according to the first embodiment of the present invention, because the level of light emitted from the infrared light-emitting element
19
a
has been adjusted using the ink cartridge containing yellow ink, the ink sensor
19
can detect remaining ink with great accuracy, even when the ink sensor
19
has irregularities in sensitivity.
Since the amount of light reflected by the yellow ink cartridge is the largest, the present invention can still reliably detect remaining ink in the other ink cartridges when the amount of emitted light is adjusted to achieve proper ink detection in the yellow ink cartridge. Therefore, when the printer uses multiple colors of ink, it is possible to apply a single adjustment value to all ink cartridges, thereby simplifying the process and reducing the processing time.
Moreover, since the level of light emitted from the infrared light-emitting element
19
a
is adjusted using the yellow ink cartridge
2
d
containing ink only in the sub ink reservoir
45
, a precise adjustment can be achieved under more severe conditions than when adjusting the level of emitted light using an ink cartridge
2
d
containing ink in both the main ink reservoir
44
and the sub ink reservoir
45
. In other words, the amount of reflected light is greater from an ink cartridge
2
d
containing ink only in the sub ink reservoir
45
than one containing ink in both the main ink reservoir
44
and the sub ink reservoir
45
. Consequently, a more accurate adjustment can be made under conditions closer to those in a near-empty state.
As described above, in the calibration process, light is emitted from the infrared light-emitting element
19
a
based on the adjustment value stored in the second calibration data memory M
2
. The detecting position for detecting the level of reflected light is calibrated based on the calibration value α stored in the first calibration data memory M
1
. Accordingly, it is possible to execute the ink cartridge detection process and the ink detection process with high accuracy, even if the relative position of the ink sensor
19
and the irradiation surface of the ink cartridge
2
deviates from the original position. By correcting the detecting position with the calibration value α, parameters and comparison data can be more easily set than when electrically calibrating the amount of detecting light itself.
In the inkjet printer
1
of the embodiment described above, the ink sensor
19
detects the amount of reflected light by emitting light in a direction non-perpendicular to the irradiation surface of the ink cartridge
2
. The amount of detected light is compared to the first threshold value t1 to determine whether or not ink exists in the ink cartridge
2
and to the second threshold value t2 to determine whether or not an ink cartridge
2
is mounted in the carriage
5
, making it possible to determine when an ink cartridge
2
is out of ink and when an ink cartridge
2
is missing. Accordingly, the present invention can accurately detect the existence of the ink
71
and the existence of an ink cartridge
2
mounted on the carriage
5
based on the light reflected from the ink cartridge
2
.
In addition, the present invention calculates the difference between the actual detecting position P
1
and the theoretical detecting position P
2
and calibrates the position of the carriage
5
for detecting the existence of ink
71
or a mounted ink cartridge
2
based on this calculated error. Hence, when the actual detecting position P
1
of the ink cartridge
2
deviates from the theoretical detecting position P
2
due to an error generated when mounting the ink sensor
19
, it is possible to correct this deviation in order to detect the level of reflected light with accuracy.
In the above-described embodiment, the calibration process in the ink detection process is executed every time the count value reaches the count value d. However, the ink detection process could be executed only after the amount of expended ink has reached a prescribed amount.
In the above-described first embodiment, the ink detection process is executed during the paper-feed interval directly after the printing process beings and between printing each page thereafter. However, the ink detection process could be executed in a paper-discharging interval also by executing the ink detection process between S
56
and S
57
of FIG.
14
. The paper-discharging interval is defined as the period after the printing has completed in which the recording sheet P is discharged from the printer
1
. If the ink detection process is conducted during the paper-discharging period, then the existence of ink can be detected prior to feeding the next sheet of recording sheet P. Hence, it is possible to avoid the ink empty process being executed immediately after a recording sheet P has been set in the printer
1
between the print head
3
and the platen roller
7
, thereby eliminating the need for the user to discharge the recording sheet P from the inkjet printer
1
. In this case, the ink detection process in S
50
of
FIG. 14
could be omitted.
Also, it is conceivable to execute the ink detection process every time the maintenance operation, such as the purging operation and the flushing operation, is executed. In this case, after the purging or flushing operation is performed in S
53
of
FIG. 15
, the process could directly proceed to the process of S
55
without the process of S
54
.
The present invention is not limited to sloping the sloped portion
51
a
as described in the first embodiment, such that the sloped portion
51
a
is sloped approximately 20 degrees in relation to the reflecting member
53
. The reflecting member
53
can be sloped instead of the sloped portion
51
a
, while obtaining the same effects described in the first embodiment.
Also, the reflecting member
53
could be configured with a reflecting plate to reflect light that reaches thereto. Further, the reflecting member
53
could be provided separately in the sub ink reservoir
45
, but the partition
42
could also be configured as the reflecting member
53
.
Next, a second embodiment of the present invention will be described with reference to FIGS.
22
(
a
) and
22
(
b
). While the ink cartridge
2
of the first embodiment is configured with the reflecting member
53
to change the optical path of the infrared light, an ink cartridge
130
of the second embodiment includes an infrared light-absorbing member
131
for absorbing infrared light. Parts and components similar to those in the first embodiment are designated by the same reference numerals to avoid duplicating description.
FIGS.
22
(
a
) and
22
(
b
) are side views showing the ink cartridge
130
and the ink sensor
19
with a partial cross-sectional view of the ink cartridge
130
. The mounting members and the like for the head unit
4
and ink sensor
19
are omitted from these drawings for illustration purposes.
Similar to the ink cartridge
2
of the first embodiment, the ink cartridge
130
of the present embodiment includes the prisms
52
formed on an inner surface of a sloped portion
51
a
on which infrared light is irradiated. The inside of the ink cartridge
130
is partitioned by the partition
42
into a main ink reservoir
44
and a sub ink reservoir
45
. The infrared light-absorbing member
131
is provided in the sub ink reservoir
45
in opposition to and separated a prescribed distance from the prisms
52
. The infrared light-absorbing member
131
absorbs infrared light emitted from the ink sensor
19
that passes into the ink cartridge
130
.
Next, the method of detecting the existence of the ink
71
in the ink cartridge
130
will be described As in the first embodiment, the ink sensor
19
emits infrared light from the infrared light-emitting element
19
a
toward the sloped portion
51
a
. The infrared light-receiving element
19
b
receives reflected light and determines whether the ink cartridge
130
contains ink based on the amount of reflected light.
More specifically, when the sub ink reservoir
45
is filled with ink
71
as shown in FIG.
22
(
a
), infrared light emitted from the infrared light-emitting element
19
a
(optical path X) penetrates the ink
71
and reaches the infrared light-absorbing member
131
, and the light is absorbed thereby. Accordingly, the amount of reflected light received by the infrared light-receiving element
19
b
is smaller than a fixed value.
The absorbing properties of the infrared light-absorbing member
131
may degrade over time, causing the infrared light reaching the infrared light-absorbing member
131
to be reflected. However, because the sloped portion
51
a
is sloped at approximately 20 degrees in relation to the infrared light-absorbing member
131
in the similar manner as in the first embodiment, the infrared light reaching the infrared light-absorbing member
131
is reflected in a direction different from the optical path X. Hence, it is possible to suppress the amount of unnecessary reflected light detected by the infrared light-receiving element
19
b.
On the other hand, when the sub ink reservoir
45
is out of ink
71
as shown in FIG.
22
(
b
), the infrared light emitted from the infrared light-emitting element
19
a
(optical path X) is reflected by the interface between the prisms
52
and the air (optical path Y). As a result, the amount of reflected light received by the infrared light-receiving element
19
b
is much larger than the fixed value.
According to the second embodiment described above, the infrared light-absorbing member
131
absorbs infrared light. Therefore, the amount of light reflected from the ink cartridge
130
changes greatly according to whether the ink cartridge
130
contains ink or not. By detecting this difference in amount of reflected light using the ink sensor
19
, it is possible to detect with accuracy whether or not ink exists in the ink cartridge
130
.
By providing the sloped portion
51
a
(prisms
52
) and infrared light-absorbing member
131
at the top of the sub ink reservoir
45
, the present invention can detect when the ink cartridge
130
is running out of ink in plenty of time before all of the ink
71
is expended.
In general, any of infrared absorbing members well known in the art that is available can be used as the infrared light-absorbing member
131
. The infrared absorbing member can be formed, for example, of V (vanadium), Fe (iron) Cu (copper), Co (cobalt), Ni (nickel), or any combination thereof on a base material of glass. Further, the base material is not limited to a solid or liquid. For example, the base material can include an infrared absorbing material such as a metal chelate compound of acetylacetone, an anthraquinone compound, a naphthoquinone compound, an aromatic diammine metal complex, an aromatic dithiol metal complex, or an aliphatic dithiol metal complex. It is also possible to use members having filtering properties for absorbing specific ranges of optical wavelengths, particularly a member having a 90% or greater absorbing ratio of infrared light having a wavelength of 700 nm to 900 nm.
The electrical construction of the color inkjet printer
1
according to the second embodiment is the same as that according to the first embodiment shown in FIG.
10
. Further, the processes conducted by the inkjet printer
1
in the second embodiment are the same as those conducted by the inkjet printer
1
in the first embodiment described in
FIGS. 12
to
17
. Therefore, a description of these constructions and processes has been omitted.
In the second embodiment, the sloped portion
51
a
is configured to be sloped in relation to the infrared light-absorbing member
131
. However, as shown in FIGS.
23
(
a
) and
23
(
b
), it is also possible to arrange a light absorbing member
141
and the side wall
51
(prisms
52
) in parallel. By providing the light-absorbing member
141
along the optical path X of the infrared light emitted from the infrared light-emitting element
19
a
, it is possible to accurately detect the existence of ink.
also, inn the above-described second embodiment, the partition
42
or foam
48
could be configured of an infrared light-absorbing member. The infrared light-absorbing member
131
and light-absorbing member
141
could also be accommodated in the reflecting member
53
of the first embodiment formed with an air pocket. In this case, the infrared light-absorbing member
131
or light absorbing member
141
can be provided inside the ink cartridge and partitioned from the ink
71
, enabling the use of a light-absorbing material that may have properties degraded by ink or that adversely affect the ink. Further, since the infrared light-absorbing member can be hermetically sealed in the pocket formed in the reflecting member
53
, this member can be formed of a liquid.
While the invention has been described in detail with reference to specific embodiments thereof, it would be apparent to those skilled in the art that many modifications and variations may be made therein without departing from the spirit of the invention, the scope of which is defined by the attached claims.
For example, while the embodiments described above use an inkjet printer as the image-forming device, the present invention is not limited to this apparatus, but can be applied to an inkjet type photocopier, facsimile device, and the like. In addition, four ink cartridges
2
are mounted in the inkjet printer
1
, but any number of ink cartridges
2
can be provided.
In the calibration data input process described above, a calibration value α for correcting deviation between the theoretical detecting position P
2
and actual detecting position P
1
is calculated based on the single ink cartridge
2
a
used as the standard, and the position of the ink cartridge
2
is corrected in the calibration process (S
15
) based on the single calculated calibration value α. However, it is also possible to calculate correction values for each ink cartridge
2
or for the ink cartridge
2
on each end and to correct the detection position of the ink cartridges
2
based on these calculated calibration values. With this method, it is possible to detect the precise detection position with even greater accuracy.
In the embodiments described above, a counter C is provided for each ink cartridge
2
. Each counter performs a count for an ink detection interval in the ink detection process. However, when one of the near-empty flags F
1
is turned ON, the count value for the counters C corresponding to the near-empty flags F
1
that has been turned ON is cleared and begins counting the number of ink ejections up to an empty threshold count e. Instead, however, it is possible to provide two counters for each ink cartridge
2
. One counter would count the number of total ink ejections from the beginning up to an ink empty value in the ink detection process, while the other would count the detection interval according to the number of ink ejections. These counters can also be configured such that the first counter counts the total number of ink ejections from the beginning until the ink cartridge
2
is empty, while the second counter counts the ink detection intervals according to the number of ink ejections.
While the degree of slope in the sloped portion
51
a
is set to approximately 20 degrees in the present embodiment, the present invention is not limited to this angle. The slope of the sloped portion
51
a
can be set within a range of approximately 15 to 25 degrees. That is, by setting the slope of the sloped portion
51
a
to approximately 15 degrees or greater, it is possible to cut down on the amount of light reflected from the reflecting member
53
back to the infrared light-receiving element
19
b
. Further, an angle of approximately 25 degrees or less can discourage ink from remaining on the sloped portion
51
a.
Although the slope of the ink sensor
19
in relation to the sloped portion
51
a
is set at approximately 10 degrees in the present embodiment, this angle is determined by many factors including the size of the ink cartridge
2
, the space between neighboring ink cartridges
2
, and the space between the ink cartridge
2
and the ink sensor
19
. Therefore, this angle is not limited to 10 degrees, provided the ink sensor
19
is set at an angle to the sloped portion
51
a.
Claims
- 1. An image forming device comprising:a cartridge that contains an ink and has a surface; a carriage that mounts the cartridge thereon and reciprocally moves along with the cartridge; a sensor that detects an amount of a reflected light reflected from the cartridge, the sensor including a light emitting unit and a light receiving unit, the light emitting unit irradiating a light onto the surface of the cartridge in a non-perpendicular direction with respect to the surface while the carriage is moving along with the cartridge, the light receiving unit receiving the reflected light, wherein the amount of the reflected light changes depending on the amount of ink contained in the cartridge and further on existence and non-existence of the cartridge on the carriage; a memory that stores a first threshold value and a second threshold value differing from the first threshold value; and a first detecting unit that compares the amount of received light and the first threshold value for detecting an ink-near empty condition of the cartridge and compares the amount of received light and the second threshold value for detecting whether or not the cartridge is mounted on the carriage.
- 2. The image forming device according to claim 1, wherein the first detecting unit detects the ink-near empty condition and whether or not the cartridge is mounted on the carriage based on the amount of reflected light that has been reflected from the cartridge located at a predetermined position.
- 3. The image forming device according to claim 1, further comprising:a measuring unit that measures a consumed amount of the ink; a judging unit that judges whether or not the consumed amount of the ink has reached a predetermined amount; and a control unit that controls the sensor to detect the amount of reflected light when the judging unit judges that the consumed amount of the ink has reached the predetermined amount.
- 4. The image forming device according to claim 3, further comprising a second detecting unit that detects an ink empty condition of the cartridge based on the consumed amount of the ink measured by the measuring unit after the first detecting unit has detected the ink-near empty condition.
- 5. The image forming device according to claim 1, further comprising:a measuring unit that measures a consumed amount of the ink; a judging unit that judges whether or not the consumed amount of the ink has reached a predetermined amount; and a control unit that controls the sensor and the first detecting unit, wherein when the judging unit judges that the consumed amount of the ink has reached the predetermined amount, the control unit controls the sensor to detect the amount of the reflected light and the first detecting unit to detect the ink-near empty condition, and the measuring unit clears the measured consumed amount.
- 6. The image forming device according to claim 1, further comprising:a mode setting means for setting a driving mode to an adjusting mode; a second measuring unit that measures a detect position of the cartridge based on the amount of reflected light detected by the sensor when the driving mode is in the adjusting mode; an error detection unit that detects an error amount between the detect position and a predetermined theoretical position; a second memory that stores the error amount; a calibrating unit that calibrates a detection position for detecting the ink-near empty condition and the existence of the cartridge based on the error amount stored in the second memory.
- 7. The image forming device according to claim 6, wherein the second measuring unit measures the detect position of the cartridge in a condition where the carriage is moving along with the cartridge at a lower speed than a speed at which the carriage moves during printing operation.
- 8. The image forming device according to claim 6, wherein the calibration unit controls the carriage to move to the detection position which the calibration unit has calibrated based on the error amount when the first detecting unit detects the ink-near empty condition and the existence of the cartridge on the carriage.
- 9. The image forming device according to claim 1, wherein the carriage mounts a plurality of cartridges thereon.
- 10. The image forming device according to claim 1, wherein the cartridge includes a casing and a light-path changing member positioned inside the casing, the casing having an outer wall formed with a light-permeable window, the light-path changing member being positioned with a predetermined interval between the light-path changing member and the light-permeable window, wherein the light-permeable window forms a predetermined inclination angle with respect to the light-path changing member.
- 11. The image forming device according to claim 1, wherein the cartridge includes a casing and a light-path changing member positioned inside the casing, the casing having an outer wall formed with a light-permeable window, the light-absorbing member being positioned with a predetermined interval between the light-absorbing changing member and the light-permeable window.
- 12. An image forming device comprising:at least one cartridge that contains an ink and has an irradiated portion; a sensor that detects an amount of reflected light reflected from the irradiated portion of the cartridge, the sensor including a light emitting unit that irradiates a light onto the cartridge at the irradiated portion and a light receiving unit that receives the reflected light; a carriage that mounts the cartridge thereon and reciprocally moves along with the cartridge; a control unit that controls an intensity of the light irradiated from the light emitting unit; and a detecting unit that moves the carriage to a predetermined position where the light irradiated from the light emitting unit is irradiated on the cartridge at the irradiated portion and detects an amount of the ink contained in the cartridge based on the amount of reflected light detected by the sensor, the detecting unit detecting existence of the ink in the cartridge when a level of the ink contained in the cartridge is above the irradiated portion, wherein the control unit changes the intensity of the light to a proper intensity such that the detecting unit detects the existence of the ink when the level of the ink is above the irradiated portion of the cartridge based on the amount of reflected light reflected from the irradiated portion of the cartridge that contains a brightest-color ink.
- 13. The image forming device according to claim 12, further comprising a position detecting unit that detects a position of the carriage, wherein the control unit further determines a timing to control the sensor to irradiate the light from the light emitting unit onto the cartridge containing the brightest-color ink based on the position of the carriage detected by the position detecting unit.
- 14. The image forming device according to claim 12, wherein the control unit reads the amount of reflected light reflected from each of the at least one cartridge, and determines that one of the at least one cartridge from which the largest amount of reflected light is reflected is the cartridge that contains the brightest-color ink.
- 15. The image forming device according to claim 12, wherein the brightest-color ink is yellow ink.
- 16. The image forming device according to claim 12, wherein the control unit calculates a single adjustment value based on which the controls the intensity of the light, the single adjustment value being applied for all of the at least one cartridge.
- 17. The image forming device according to claim 12, wherein the cartridge is formed with a main ink chamber and a sub-ink chamber both contains the ink, wherein the ink contained inside the sub-ink chamber is consumed only after the ink contained inside the main-ink chamber has been consumed, the control unit changes the intensity of the light in a condition where the ink is contained only inside the sub-ink chamber of the cartridge.
- 18. An image forming device comprising:a cartridge that contains an ink; a carriage that mounts the cartridge thereon and reciprocally moves along with the cartridge; a sensor that detects an amount of reflected light reflected from the cartridge, the sensor including a light emitting unit that irradiates a light onto the cartridge and a light receiving unit that receives the reflected light; a transport means that transports a recording medium in relation to a printing operation; and a detecting unit that controls, during a recording-medium transporting period, the carriage to move to a position where the light irradiated from the light emitting unit is irradiated onto the cartridge and detects an amount of the ink contained in the cartridge based on the amount of reflected light detected by the sensor.
- 19. The image forming device according to claim 18, wherein the recording-medium transporting period is a time period for transporting the recording medium before starting printing operation.
- 20. The image forming device according to claim 18, wherein the recording-medium transporting period is a time to period for line-feed the recording medium during printing operation.
- 21. The image forming device according to claim 20, wherein the detection unit determines whether or not to detect of the amount of the ink based on a time duration of the line-feed.
- 22. The image forming device according to claim 18, wherein the recording-medium transporting period is a time period for discharging the recording medium after the completion of printing operation.
- 23. The image forming device according to claim 18, wherein the detection unit detects the amount of the ink based on the amount of reflected light reflected from the cartridge in a condition where the carriage is moving at a constant speed.
- 24. The image forming device according to claim 18, wherein the detecting unit determines an ink-empty condition of the cartridge when the detected amount of the ink is lower than a predetermined ink amount.
- 25. The image forming device according to claim 24, wherein the detection unit executes a predetermined ink-empty operation when the ink-empty condition is detected.
- 26. The image forming device according to claim 25, wherein the detection unit determines the ink-empty condition, the detection unit executes a predetermined ink-empty operation upon completion of printing for a current page of the recording medium.
- 27. An image forming device comprising:a cartridge that contains an ink and has an irradiated portion; a carriage that mounts the cartridge thereon and moves along with the cartridge; a sensor that detects an amount of reflected light reflected from the irradiated portion of the cartridge, the sensor including a light emitting unit that irradiates a light onto the cartridge at the irradiated portion and a light receiving unit that receives the reflected light; a detection unit that detects an amount of the ink contained in the cartridge based on the amount of the reflected light detected by the sensor, wherein the irradiated portion of the cartridge is provided with prisms in a shape that repeatedly alternates in peaks and valleys, wherein adjacent two of the valleys are separated by a predetermined first interval; and a reading unit that controls the carriage to move to a predetermined position where the light irradiated from the light emitting unit is irradiated onto the cartridge and reads levels of reflected light from a waveform for the amount of reflected light at a second interval non-integral multiples of the first interval, based on which the detection unit detects an amount of the ink contained in the cartridge.
- 28. The image forming device according to claim 27, wherein the valleys of the prisms includes a center valley locating in an approximate center of the cartridge with respect to a first direction;the detection unit detects a level of the reflected light from the waveform at a plurality of locations which includes a location corresponding to the center valley of the prisms and locations corresponding to portions of the prisms locating each side of the center valley with the second interval from the center valley with respect to the first direction.
- 29. The image forming device according to claim 27, further comprising a memory that stores a threshold value, wherein the detection unit compares the threshold value and each read level of the reflected light so as to determine by majority whether or not the read level of the reflected light is greater than the threshold value.
- 30. The image forming device according to claim 27, wherein the second interval is larger than the first interval and less than two times the first interval.
- 31. The image forming device according to claim 30, wherein the second interval is 1.5 times the first interval.
- 32. An image forming device comprising:a cartridge that contains an ink and has a surface; a carriage that mounts the cartridge thereon and reciprocally moves along with the cartridge; a sensor that detects an amount of a reflected light reflected from the cartridge, the sensor including a light emitting unit and a light receiving unit, the light emitting unit irradiating a light onto the surface of the cartridge in a non-perpendicular direction with respect to the surface while the carriage is moving along with the cartridge, the light receiving unit receiving the reflected light, wherein the amount of the reflected light changes depending on the amount of ink contained in the cartridge; a first memory that stores a first threshold value; and a first detecting unit that compares the amount of received light and the first threshold value for detecting an ink-near empty condition of the cartridge; a first measuring unit that measures a detect position of the cartridge based on the amount of reflected light detected by the sensor; an error detection unit that detects an error amount between the detect position and a predetermined theoretical position; a second memory that stores the error amount; and a calibrating unit that calibrates a detection position for detecting the ink-near empty condition.
- 33. The image forming device according to claim 32, wherein:the amount of the reflected light changes depending on existence and non-existence of the cartridge on the carriage; the first memory further stores a second threshold value differing from the first threshold value; and the first detecting unit further compares the amount of received light and the second threshold value for detecting whether or not the cartridge is mounted on the carriage.
- 34. The image forming device according to claim 33, wherein the first detecting unit detects the ink-near empty condition and whether or not the cartridge is mounted on the carriage based on the amount of reflected light that has been reflected from the cartridge located at the detect position.
- 35. The image forming device according to claim 32, further comprising:a second measuring unit that measures a consumed amount of the ink; a judging unit that judges whether or not the consumed amount of the ink has reached a predetermined amount; and a control unit that controls the sensor to detect the amount of reflected light when the judging unit judges that the consumed amount of the ink has reached the predetermined amount.
- 36. The image forming device according to claim 35, further comprising a second detecting unit that detects an ink empty condition of the cartridge based on the consumed amount of the ink measured by the second measuring unit after the first detecting unit has detected the ink-near empty condition.
- 37. The image forming device according to claim 32, further comprising:a second measuring unit that measures a consumed amount of the ink; a judging unit that judges whether or not the consumed amount of the ink has reached a predetermined amount; and a control unit that controls the sensor and the first detecting unit, wherein when the judging unit judges that the consumed amount of the ink has reached the predetermined amount, the control unit controls the sensor to detect the amount of the reflected light and the first detecting unit to detect the ink-near empty condition, and the second measuring unit clears the measured consumed amount.
- 38. The image forming device according to claim 32, further comprising a mode setting means for setting a driving mode to an adjusting mode, whereinthe first measuring unit measures the detect position when the driving mode is in the adjusting mode; the calibrating unit calibrates the detection position based on the error amount stored in the second memory.
Priority Claims (4)
Number |
Date |
Country |
Kind |
P2001-102695 |
Mar 2001 |
JP |
|
P2001-258553 |
Aug 2001 |
JP |
|
P2001-259835 |
Aug 2001 |
JP |
|
P2001-259836 |
Aug 2001 |
JP |
|
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
6137503 |
Hashimito et al. |
May 1997 |
A |
6454400 |
Morita et al. |
Aug 1999 |
B1 |
Foreign Referenced Citations (2)
Number |
Date |
Country |
A 9-240010 |
Sep 1997 |
JP |
A 11-277760 |
Oct 1999 |
JP |