Image forming device having a plurality of image forming units with a single drive unit

Information

  • Patent Grant
  • 6801736
  • Patent Number
    6,801,736
  • Date Filed
    Friday, May 17, 2002
    22 years ago
  • Date Issued
    Tuesday, October 5, 2004
    20 years ago
Abstract
An image forming includes a plurality of photosensitive bodies and a drive unit. Each photosensitive body forms an image having a different color. The drive unit selectively switches between forward drive and reverse drive. The drive unit uses forward drive to selectively drive a particular one of the plurality of photosensitive bodies and uses reverse drive to selectively drive another one of the plurality of photosensitive bodies.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an image forming device such as a color laser printer.




2. Description of the Related Art




A tandem laser printer is one type of laser printer for forming full-color images. One example of a tandem laser printer includes an image forming unit for each color. Each image forming unit includes a developing roller, a photosensitive drum, a charge unit, and an exposure unit. The developing roller, the charge unit, and the exposure unit are disposed in confrontation with the photosensitive drum. The charge unit forms a uniform charge on the surface of the photosensitive drum. The exposure unit selectively exposes portions of the charged surface to form a latent static-electric image on the surface of the photosensitive drum. The developing roller bears toner on its surface and develops the latent static-electric image using the toner.




The visible toner images developed for each color are transferred one at a time in order onto a transfer belt so that a full-color image can be formed at substantially the same speed as a monochrome image.




Some tandem color laser printers can selectively switch between forming color images and monochrome images. That is, to form a color image, all four photosensitive drums are driven to form images in the four colors of yellow, magenta, cyan, and black. The different color images are transferred one at a time into a stacked condition onto a transfer belt to form a color image. On the other hand, to form a monochrome image, only the photosensitive drum for forming black image is driven so that only a black image is transferred onto the transfer belt to form a monochrome image.




Four motors are provided, one for each photosensitive drum in order to enable selective switching between multi-color and monochrome image formation. All four of the motors are driven when a multi-color image is to be formed and only the motor that corresponds to the black photosensitive drum is driven when a monochrome image is to be formed. However, providing four motors in this manner increases production costs. Also, the control circuit must be able to control drive of all the motors, which increases the complexity of the printer.




SUMMARY Of THE INVENTION




It is conceivable to drive all four photosensitive drums using a single motor in order to reduce production costs and simplify configuration. To achieve this, it is conceivable to provide an electromagnetic clutch between the single motor and the photosensitive drums that can be switched to selectively transmit drive force from the motor to one or all of the four photosensitive drums. Monochrome images can be formed when only one of the photosensitive drum is driven and multi-color images can be formed when all four photosensitive drums are driven. By providing this electromagnetic clutch, there is no need to provide a separate motor for all of the four photosensitive drums.




However, with this conceivable configuration, the electromagnetic clutch itself as well as circuitry for controlling the switching operation of the electromagnetic clutch must be provided, thereby increasing production costs and complexity of the printer. Also, a large torque is required to rotate all four of the photosensitive drums. As a result, a great deal of power would be required to prevent the electromagnetic clutch from slipping while a multi-color image is being formed. This would greatly increase running costs.




It is an objective of the present invention to overcome the above-described problems and to provide an image forming device with low production coats and a simple configuration capable of selectively switching drive of a plurality of photosensitive bodies and selectively forming multi-color and monochrome images.




To achieve the above-described objectives, an image forming device according to one aspect of the present invention includes a plurality of photosensitive bodies and a single drive unit. The plurality of photosensitive bodies each forms an image having a different color. The single drive unit switches between driving at least one of the photosensitive bodies and at least a different one of the photosensitive bodies.




An image forming device according to another aspect of the present invention includes a plurality of developing units, a plurality of photosensitive bodies, a transfer unit, a drive unit, and a transmission mechanism. Each of the developing units is provided for a different one of a plurality of colors. The photosensitive bodies are provided in correspondence with the developing units. The transfer unit is disposed in confrontation with the photosensitive bodies. The drive unit generates drive force. The transmission mechanism switches transmission of the drive force from the drive unit to photosensitive bodies selected in accordance with drive condition of the drive unit.




According to still another aspect of the present invention, an image forming device includes a plurality of developing units, a plurality of photosensitive bodies, a transfer unit, a drive unit, and a transmission mechanism. Each developing unit is provided for a different one of a plurality of colors. The photosensitive bodies are provided in correspondence with the developing units. The transfer unit is disposed in confrontation with the photosensitive bodies. The drive unit switchingly generates forward drive force and reverse drive force. The transmission mechanism transmits drive force from the drive unit to the photosensitive bodies. The transmission mechanism transmits the same direction of drive force to the photosensitive bodies regardless of whether the drive unit generates forward drive force or reverse drive force.











BRIEF DESCRIPTION OF THE DRAWINGS




The above and other objects, features and advantages of the invention will become more apparent from reading the following description of the embodiment taken in connection with the accompanying drawings in which:





FIG. 1

is a cross-sectional view showing essential components of a color laser printer according to an embodiment of the present invention;





FIG. 2

is a perspective view showing a cyan developing process portion as an example of developing process portions in the color laser printer of

FIG. 1

;





FIG. 3

is a frontal cross-sectional view showing configuration of the color laser printer of

FIG. 1

for transmitting drive force and a side view showing details of a reverse direction transmission mechanism;




FIG.


4


(


a


) is a cross-sectional view showing condition of a first one-way clutch mechanism during forward direction drive of a drive shaft;




FIG.


4


(


b


) is a cross-sectional view showing condition of the first one-way clutch mechanism during reverse direction drive of the drive shaft;




FIG.


5


(


a


) is a cross-sectional view shoving condition of a second one-way clutch mechanism during forward direction drive of a drive shaft; and




FIG.


5


(


b


) is a cross-sectional view showing condition of the second one-way clutch mechanism during reverse direction drive of the drive shaft.











DETAILED DESCRIPTION OF THE EMBODIMENTS




Next, a color laser printer


1


according to an embodiment of the present invention will be described while referring to the attached drawings. As shown in

FIG. 1

, the laser printer


1


includes a casing


2


, an upper cover


18


, a sheet-feed portion


4


, and an image forming portion


5


. The casing


2


houses the sheet-feed portion


4


and the image forming portion


5


. The sheet-feed portion


4


is for feeding out sheets


3


one sheet at a time. The image forming portion


5


is for forming images on the fed out sheets


3


.




The sheet-feed portion


4


includes a sheet-feed tray


6


and a sheet-feed roller


7


. The sheet-feed tray


6


is stacked with sheets


3


. The sheet-feed roller


7


feeds out the highest sheet


3


on the sheet-feed tray


6


in order to supply one sheet at a time to the image forming portion


5


.




The image forming portion


5


includes four process portions


8


K,


8


C,


8


M, and


8


Y, an intermediate transfer mechanism


9


, a secondary transfer roller


10


, and a fixing portion


11


. The four process portions are located in the upper portion of the casing


2


and will be referred to collectively as the “process portions


8


” to simplify explanation.




The four process portions a include a yellow developing process portion


8


Y, a magenta developing process portion


8


M, a cyan developing process portion


8


C, and a black developing process portion


8


K. The four process portions


8


are aligned in the horizontal direction, separated by a predetermined spacing. Each developing process portion


8


has substantially the same configuration and surrounding components, so the configuration of the cyan developing process portion


8


C and surrounding components will be described as a representative example.




As shown in

FIG. 2

, the cyan developing process portion


8


C includes a process cartridge


12


, an LED array


14


, and a scorotron charge unit


15


. The process cartridge


12


is freely detachably mounted to the casing


2


as indicated by two-dot chain line in

FIGS. 1 and 2

. As shown in

FIG. 2

, the process cartridge


12


includes a photosensitive drum


13


and a developing cartridge


16


. The developing cartridge


16


is mounted on the photosensitive drum


13


. The developing cartridge


16


includes a developing roller


17


and, although not shown in the drawings, a layer-thickness regulating blade, a toner-supply roller, and a toner box.




The toner box of the developing cartridge


16


is filled with non-magnetic, single-component toner that charges to a positive charge. Because the cyan developing process portion


8


C is being described in this example, the toner box in the developing cartridge


16


is filled with cyan-colored toner. However, the toner box in the developing cartridge


16


of the yellow developing process portion


8


Y is filled with yellow-colored toner, the toner box in the developing cartridge


16


of the magenta developing process portion


8


M is filled with magenta-colored toner, and the toner box in the developing cartridge


16


of the black developing process portion


8


Y is filled with black-colored toner.




The toner-supply roller is rotatably disposed below the toner box. The toner-supply roller includes a metal roller shaft that is covered by a conductive foam roller. The developing roller


17


is rotatably disposed below the toner-supply roller in pressing contact with the toner-supply roller. The developing roller


17


includes a metal roller shaft that is covered by a conductive rubber roller.




The layer-thickness regulating blade is disposed adjacent to the developing roller


17


. The layer-thickness regulating blade includes a blade body and a pressing portion. The blade body is made from a metal plate spring and is supported at one end by the developing cartridge


16


at a position near the developing roller


17


. The pressing portion is provided on the free end of the blade body, that is, at the end opposite from the end supported by the developing cartridge


16


. The pressing portion is made from silicon rubber that has electrically insulating properties and is formed in a half-circle shape when viewed in cross-section. Resilient force of the blade body presses the pressing portion onto the developing roller


17


.




Rotation of the toner-supply roller supplies the toner from the toner box to the developing roller


17


, where friction between the toner-supply roller and the developing roller


17


charges the toner to a positive charge. As the developing roller


17


rotates, the layer-thickness regulating blade operates to regulate the toner on the developing roller


17


to a fixed thickness and to sufficiently charge the toner.




The photosensitive drum


13


is attached to the developing cartridge


16


in a condition below and in confrontation with the developing roller


17


. The photosensitive drum


13


is driven to rotate clockwise as indicated by arrows in FIG.


1


. The photosensitive drum


13


includes a cylindrical drum body that is connected to ground. The outer circumferential surface of the photosensitive drum


13


is made from an organic photosensitive material including polycarbonate.




The upper cover


18


covers the upper portion of the casing


2


. The upper cover


18


is pivotably attached to a side wall of the casing


2


by a hinge


19


. A downward-extending attachment frame


20


for each process cartridge


12


is provided integrally with the upper cover


18


. The LED array


14


and the scorotron charge unit


15


are attached to the attachment frame


20


so that by opening the upper cover


18


the process cartridge


12


can be attached and removed as indicated in two-dot chain line in

FIGS. 1 and 2

.




The LED array


14


is configured from a plurality of LEDs aligned in a row disposed above the photosensitive drum


13


when the upper cover


18


is closed. The LEDs selectively emit light based on image data to selectively irradiate the surface of the photosensitive drum


13


.




The scorotron charge unit


15


is disposed, that is, when the upper cover


18


is closed, to the side of the photosensitive drum


13


at a position separated from the photosensitive drum


13


so as not to contact the photosensitive drum


13


. The scorotron charge unit


15


is a positively-charging scorotron type charge unit that generates a corona discharge from a charge wire made from tungsten, for example. The scorotron charge unit


15


charges the surface of the photosensitive drum


13


to a uniform positive charge.




After the scorotron charge unit


15


charges the surface of the photosensitive drum


13


to a uniform positive charge, the LED array


14


emits light based on image data to selectively expose the charged surface of the photosensitive drum


13


. The electric potential of the uniform charge on the surface of the photosensitive drum


13


drops where exposed by light from the LED array


14


. The portions at the surface with electric potential lowered in this manner form a latent static-electric image.




As mentioned previously, the toner borne on the surface of the developing roller


17


is charged to a positive charge. When the toner on the surface of the developing roller


17


moves into confrontation with the surface of the photosensitive drum


13


, the toner is selectively borne on the latent static-electric image, thereby developing the latent static-electric image into a visible toner image. This visible toner forming process is performed separately for each different color the process portions


8


K,


8


C,


8


M, and


8


Y. Accordingly, inverse development is achieved for each color. The visible image borne on the photosensitive dram


13


is transferred onto the endless belt


22


as the corresponding portion of the endless belt


22


moves into and out of confrontation with the photosensitive drum


13


by circulating movement of the endless belt


22


.




As shown in

FIG. 1

, the intermediate transfer mechanism


9


is disposed in confrontation with all of the photosensitive drums


13


from a position below the photosensitive drums


13


. The intermediate transfer mechanism


9


includes the endless belt


22


and three rollers, that is, a first roller


23


, a second roller


24


, and a third roller


25


. The first roller


23


is provided downstream from the sheet-feed roller


7


with respect to the transport direction of sheets


3


. The second roller


24


is disposed above the first roller


23


at a position upstream from the yellow developing process unit


8


Y with respect to the movement direction of the endless belt


22


. The third roller


25


is disposed substantially beneath the black developing process unit


8


K separated from the second roller


24


by a predetermined distance in the horizontal direction. The first through third rollers


23


to


25


are disposed at the corners of an imaginary inverted triangle. The upper edge of the imaginary triangle is formed by an imaginary horizontal line that connects the upper edges or the second roller


24


and the third roller


25


and contacts the lower edge of between the photosensitive drums


13


. Another edge of the imaginary triangle extends diagonally downward and frontward from the third roller


25


to the first roller


23


and still another extends diagonally upward and forward the first roller


23


to the second roller


24


.




The endless belt


22


is wound around the outer periphery of the first through third rollers


23


to


25


. The endless belt


22


moves between the second and third rollers


24


,


25


in a direction indicated by arrows in

FIG. 1

, pressed against the lower edge of the photosensitive drums


13


by a predetermined pressing force. It should be noted that the endless belt


22


is made from conductive resin, such as polycarbonate or polyimide, dispersed with conductive particles, such as carbon.




Rotation of the first through third rollers


23


to


25


brings the endless belt


22


sequentially into confrontation with the photosensitive drums


13


so that visible toner images formed in different colors by the different photosensitive drums


13


are transferred onto the endless belt


22


one at a time in order, and overlap to form a full-color image. For example, first a yellow visible image, which was formed on the corresponding photosensitive drum


13


from yellow toner that fills the developing cartridge


16


of the yellow process portion


8


Y, is transferred onto the endless belt


22


, then a magenta visible image, which was formed on the magenta photosensitive drum


13


M from magenta toner that fills the developing cartridge


16


of the magenta process portion


8


M, is transferred onto the endless belt


22


on top of the previously transferred yellow image. By the same operation, the cyan visible image, which was formed on the cyan photosensitive drum


13


C from cyan toner that fills the developing cartridge


16


of the cyan process portion


8


C, and the black visible image, which was formed on the black photosensitive drum


13


B from black toner that fills the developing cartridge


16


of the black process portion


8


B, are also transferred onto the endless belt


22


in an overlapping condition with the yellow visible image and the magenta visible image so that a color image is formed on the endless belt


22


.




The secondary transfer roller


10


is rotatably disposed at a position in confrontation with the first roller


23


of the intermediate transfer mechanism


9


through a sheet


3


. The secondary roller


10


includes a metal roller shaft and a conductive rubber roller. The roller covers the metal roller shaft. The secondary roller


10


is applied with a predetermined transfer bias. The color image formed on the endless belt


22


is transferred all at once onto the sheet


3


passing between the endless belt


22


and the secondary transfer roller


10


.




In this way, the visible toner images borne on the different photosensitive drums


13


are temporarily transferred onto the endless belt


22


of the intermediate transfer mechanism


9


. After a color image is formed on the endless belt


22


by stacking the different colored images onto the endless belt


22


, the full color image is transferred in a single action from the endless belt


22


onto the secondary transfer roller


10


.




The fixing portion


11


is disposed downstream from the secondary transfer roller


10


with respect to the transport direction of the sheet


3


. The fixing portion


11


includes a thermal roller


26


and a pressing roller


27


. The pressing roller


27


presses against the thermal roller


26


. The thermal roller


26


is made from metal and includes a halogen lamp for heating the metal. The thermal roller


26


thermally fixes the color image that was transferred by the secondary transfer roller


10


onto the sheet


3


as the sheet


3


passes between the thermal roller


26


and the pressing roller


27


. Afterward, the sheet


3


is discharged from the casing


2


.




In this way, the color laser printer


1


includes a photosensitive drum


13


for each color so that using a tandem type mechanism, a full color image can be formed with substantially the same speed as a monochrome image.




The color laser printer


1


includes a first worm gear


31


, and two support rollers


32




a


,


32




b


for each photosensitive drum


13


. The two support rollers


32




a


,


32




b


will be alternately referred to collectively as support rollers


32


hereinafter. Each set of first worm gear


31


and the support rollers


32


supports the corresponding photosensitive drum


13


in a rotatable manner.




Two drive shafts


25


extend in the direction followed the upper portion of the endless belt


22


. Although only one is shown in the drawings, one of the drive shafts


25


is provided on either axial side of the photosensitive drums


13


. The drive shafts


25


serve as a common drive source for all of the photosensitive drums


13


. The first worm gears


31


are provided on the drive shafts


25


at positions in confrontation with the corresponding photosensitive drums


13


.




Two disk-shaped bearing members


33


and two first worm wheels


34


are provided on the outer peripheral surface of each photosensitive drum


13


. One of the disk-shaped bearing members


33


and one of the first worm wheels


34


are provided at each axial end of the photosensitive drum


13


. As shown in

FIG. 2

, the first worm wheels


34


are disposed nearer the axial ends of the photosensitive drum


13


than the disk-shaped bearing members


33


. Each first worm wheel


34


is meshingly engaged with the corresponding first worm gear


31


.




A single reversible motor M is provided for driving rotation of the drive shaft


35


that is visible in FIG.


1


. The motor M is a reversible motor and so can selectively rotate the drive shaft


35


in forward or reverse directions.




A pair of support rollers


32


is provided for each photosensitive drum


13


. As shown in

FIG. 2

, the first support roller


32




a


and the second support roller


32




b


are located at the upper portion of each bearing member


33


separated from each other by a predetermined distance. Although not shown detail in the drawings, each set of first and second support rollers


32




a


,


321




b


is provided on the attachment frame


20


of the upper cover


18


so as to swing away from and toward the corresponding photosensitive drum


13


with opening and closing movement of the upper cover


18


. When one of the process cartridges


12


is to be removed from the casing


2


, the upper cover


18


is opened up to swing the corresponding set of first and second support rollers


32




a


,


32




b


away from the corresponding photosensitive drum


13


. On the other hand, after one of the process cartridges


12


is newly mounted into the casing


2


, the upper cover


18


is closed up to swing the corresponding set of first and second support rollers


32




a


,


32




b


into pressing contact with the bearing members


33


at both axial ends of the corresponding photosensitive drum


13


, while separated from each other by the predetermined distance.




Each axial end photosensitive drum


13


is supported at a total of three positions, that is, by the corresponding first worm gear


31


and two support rollers


32


. One of the first worm gears


31


supports an axial end of the corresponding photosensitive drum


13


from below through the corresponding first worm wheel


34


. Each pair of support rollers


32


are swingable, via the cover


18


, into pressing contact with an axial end of the corresponding photosensitive drum


13


to support the photosensitive drum


13


from above.




With this configuration, each photosensitive drum


13


is supported at three positions, by two support rollers


32


and the drive shaft


35


, at both axial ends on its outer peripheral surface, which is formed with extremely high precision. Therefore, the photosensitive drums


13


can be rotated precisely without any eccentricity of rotation. Visible images formed on the photosensitive drums


13


can be transferred at the same speed onto the endless belt


22


. Eccentric rotation of the photosensitive drum


13


can be reliably and easily prevented and good images can be formed.




Power from the single motor M is transmitted to drive the drive shaft


35


to rotate. The first worm gears


31


provided on the drive shaft


35


rotate as a result. Therefore, the photosensitive drums


13


are driven to rotate by their first worm wheels


31


, which are in meshing engagement with the worm gears


31


. Therefore, the photosensitive drums


13


can be reliably rotated using a simple configuration.




All of the photosensitive drums


13


can be driven to rotate by driving the drive shaft


35


to rotate using the single motor M. There is no need to provide a gear train transmission system or a motor for each photosensitive drum


13


. Therefore the photosensitive drums


13


can be reliably driven with a simple configuration.




Further, by switching between forward drive and reverse drive of the drive shaft


35


using the motor M, either all or only one of the photosensitive drums


13


can be selectively driven. In order to form a multi-color image, all four photosensitive drums


13


, that is, the yellow photosensitive drum


13


Y, the magenta photosensitive drum


13


M, the cyan photosensitive drum


13


C, and the black photosensitive drum


13


K, are driven to rotate by forward drive of the drive shaft


35


. On the other hand, in order to form a monochrome image, only one of the photosensitive drums


13


, that is, the black photosensitive drum


13


K, is driven to rotate by reverse drive of the drive shaft


35


.




Configuration for achieving this selective rotational drive will be described next. As shown in

FIGS. 3

,


4


(


a


), and


4


(


b


), a first one-way clutch mechanism


36


is interposed between the drive shaft


35


and each of the first worm gears


31


. As a result, four first one-way clutch mechanisms


36


are provided in total along the drive transmission path between the drive shaft


35


and the four photosensitive drums


13


. The first one-way clutch mechanisms


36


transmit drive force only during forward drive of the drive shaft


35


. In addition, a reverse direction transmission mechanism


50


is provided along the drive transmission path between the drive shaft


35


that is visible in FIG.


1


and the black photosensitive drum


13


K. The reverse direction transmission mechanism


50


transmits drive force from the drive shaft


35


only during reverse drive of the drive shaft


35


. With this configuration, three of the photosensitive drums


13


, that is, the yellow photosensitive drum


13


Y, the magenta photosensitive drum


13


M, and the cyan photosensitive drum


13


C are only driven during forward drive of the drive shaft


35


, and one of the photosensitive drums


13


, that is, the black photosensitive drum


13


K, is driven both during forward and reverse drive of the drive shaft


35


.




The first one-way clutch mechanisms


36


are provided at the outer periphery of the drive shaft


35


, within the first worm wheels


31


of each of the four photosensitive drums


13


. As shown in FIGS.


4


(


a


) and


4


(


b


), each first one-way clutch mechanism


36


includes a first sleeve


42


, first rollers


44


, and springs


45


. Each first sleeve


42


is provided so that its inner peripheral surface is slidable with respect to the drive shaft


35


and so that it outer peripheral surface moves integrally with the inner peripheral surface of the corresponding worm gear


31


. Said differently, each first sleeve


42


is provided incapable of relative movement with respect to the corresponding worm gear


31


. Each first sleeve


42


is formed with a plurality of first grooves


43


. One of the first rollers


44


and one of the springs


45


is disposed in each of the first grooves


43


.




Each first sleeve


42


has a tube shape that follows the axial direction of the corresponding worm gear


31


.




Six first grooves


43


are formed in the outer peripheral surface of each first sleeve


42


, spaced at a predetermined interval following around the circumference of the first sleeve


43


. The first grooves


43


are formed as openings in the inner peripheral surface of each first sleeve


42


and follow the axial direction of the corresponding first worm gear


31


. Although each first groove


43


is substantially rectangular in cross section as can be viewed in FIGS.


4


(


a


) and


4


(


b


), each first groove


43


includes a broad space


43




a


and a narrow space


43




b


. Each broad space


43




a


is located at the upstream side of the corresponding groove


43


with respect to the forward drive direction of the drive shaft


35


, that is, the counterclockwise direction as indicated by an arrow in FIG.


4


(


a


), and is formed sufficiently large to enable the corresponding first roller


44


to move freely between the first sleeve


42


and the outer peripheral surface of the drive shaft


35


. On the other hand, each narrow space


43




b


is located at the downstream side of the corresponding groove


43


with respect to the forward drive direction of the drive shaft


35


, and is formed sufficiently small to firmly sandwich the corresponding first roller


44


between the first sleeve


42


and the outer peripheral surface of the drive shaft


35


.




That is, the broad space


43




a


of each first groove


43


is formed into the first sleeve


42


to an average depth from the inner peripheral surface of the first sleeve


42


that is larger than the diameter of the first roller


44


. The narrow space


43




b


of each first groove


43


tapers so that its depth from the inner peripheral surface of the first sleeve


42


gradually diminishes from its rear upstream side, where it connects to the corresponding broad space


43




a


, to its front upstream side, where it is shallower than the diameter of the corresponding first roller


44


.




Each first roller


44


has a rod shape and is disposed in the corresponding first groove


43


so as to extend following the axial direction of the corresponding first worm gear


31


. Each first spring


45


is positioned in the rear end upstream side of the broad space


43




a


of the corresponding first groove


43


. The springs


45


constantly urge the corresponding first roller


44


toward the front end downstream side of the corresponding narrow space


43




b.






Next, operation of the first one-way clutch mechanisms


36


will be described. During forward drive of the drive shaft


35


as shown in FIG.


4


(


a


), the urging force of the first springs


45


move the first rollers


44


toward the narrow spaces


43




b


in association with the forward rotation of the drive shaft


35


so that the first rollers


44


become firmly sandwiched between the first sleeve


42


and drive shaft


35


and restrict relative movement between the first sleeve


42


and the drive shaft


35


. As a result, forward drive of the drive shaft


35


is transmitted through the first one-way clutch mechanisms


36


to the first worm gears


31


so that the first worm gears


31


rotate with the drive shaft


35


.




On the other hand, during reverse drive of the drive shaft


35


, that is, when the drive shaft


35


is driven by the motor M to rotate in the clockwise direction indicated by arrows in FIG.


4


(


b


), rotation of the drive shaft


35


moves the first rollers


44


against the urging force of the first springs


45


into the broad spaces


43




a


so that the first rollers


44


move freely between the first sleeve


42


and drive shaft


35


. Thus, relative movement between the first sleeve


42


and the drive shaft


35


is allowed and reverse drive from the drive shaft


35


is not transmitted through the first one-way clutch mechanisms


36


to the first worm gears


31


. The drive shaft


35


rotates idly with respect to the first worm gears


31


.




The reverse direction transmission mechanism


50


is disposed along the power transmission path between the drive shaft


35


and the black photosensitive drum


13


K. As shown in

FIG. 3

, the reverse direction transmission mechanism


50


includes a rotation shaft


51


, a second worm gear


40


, a second worm wheel


41


, a first gear


37


, and a second gear


38


.




The second worm gear


40


is provided around the periphery of the drive shaft


35


at an axial end of the drive shaft


35


, further to the axial end than the first worm gear


31


that is in meshing engagement with the first worm wheel


34


of the black photosensitive drum


13


K.




The rotation shaft


51


is rotatably supported on the casing


2


at a position that is above and in confrontation with the second worm gear


40


. The second worm wheel


41


and the second gear


38


are formed integrally with the axial end of the rotation shaft


51


. The second worm wheel


41


is formed further from the axial end of the rotation shaft


51


than is the second gear


38


at a position in confrontation with and in meshing engagement with the second worm gear


40


. The second worm wheel


41


has substantially the same outer diameter as the first worm wheel


34


.




The second gear


38


is disposed in meshing engagement with the first gear


37


at a position outside from the second worm wheel


41


in the axial direction of the rotation shaft


51


.




The first gear


37


is formed at the outer peripheral surface of the black photosensitive drum


13


K to have substantially the same outer diameter as the second gear


38


. The first gear


37


is disposed on the axial end of the black photosensitive drum


13


K at a position further outside than the first worm wheel


34


in the axial direction of the black photosensitive drum


13


K. The first gear


37


is in meshing engagement with the second gear


38


.




The reverse direction transmission mechanism


50


further includes a second one way clutch mechanism


39


disposed in the second worm gear


40


. As shown in FIGS.


5


(


a


) and


5


(


b


), the second one way clutch mechanism


39


has a configuration similar to the first one way clutch mechanisms


36


and includes a second sleeve


46


, second rollers


48


, and springs


49


. The second sleeve


46


is provided capable of sliding over the outer peripheral surface of the drive shaft


35


. Second grooves


47


are formed in the inner peripheral surface of the second sleeve


46


. A set of one second roller


48


and one spring


49


is disposed in each of the second grooves


47


.




Each second groove


47


includes a broad space


47




a


and a narrow space


47




b


. However, compared with the broad space


43




a


and the narrow space


43




b


of each first groove


43


, the broad space


47




a


and the narrow space


47




b


of each second groove


47


have the opposite orientation with respect to the rotational direction of the drive shaft


35


. That is, each broad space


47




a


is located at the downstream side of the corresponding groove


47


with respect to the forward drive direction, that is, the counterclockwise direction as indicated by an arrow in FIG.


5


(


a


), and each narrow space


47




b


is located at the upstream side of the corresponding groove


47


with respect to the forward drive direction.




Next, operation of the second one-way clutch mechanism


39


will be described. During forward drive of the drive shaft


35


as shown in FIG.


5


(


a


), rotation of the drive shaft


35


moves the second rollers


48


against the urging force of the second springs


49


into the broad spaces


47




a


, so that the second rollers


48


move freely between the second sleeve


46


and the drive shaft


35


and relative movement between the second sleeve


46


and the drive shaft


35


is allowed. As a result, forward drive from the drive shaft


35


is not transmitted through the second one-way clutch


39


to the second worm gear


40


. The drive shaft


35


therefore rotates idly with respect to the second worm gear


40


.




On the other hand, during reverse drive of the drive shaft


35


as shown in FIG.


5


(


b


), the reverse Notation of the drive shaft


35


and the urging force of the second springs


49


move the second rollers


48


toward the narrow spaces


47




b


, so that the second rollers


48


become firmly sandwiched between the second sleeve


46


and the drive shaft


35


and restrict relative movement between the first sleeve


42


and the drive shaft


35


. As a result, reverse drive of the drive shaft


35


is transmitted through the second one-way clutch


39


to the second worm gear


40


so that the second worm gear


40


rotates with the drive shaft


35


.




When the reversible motor M drives the drive shaft


35


in the forward direction, the first one way clutch mechanisms


36


corresponding to all four photosensitive drums


13


, that is, to the yellow photosensitive drum


13


Y, the magenta photosensitive drum


13


M, the cyan photosensitive drum


13




c


, and the black photosensitive drum


13


K, transmit the drive force to the first worm gears


31


. Therefore, the first worm gears


31


rotate with the rotation of the drive shaft


35


, so that the sour photosensitive drums


13


, that is, the yellow photosensitive drum


13


Y, the magenta photosensitive drum


13


M, the cyan photosensitive drum


13


C, and the black photosensitive drum


13


K, all rotate.




However, during forward drive of the drive shaft


35


, the second one way clutch mechanism


39


of the reverse direction transmission mechanism


50


does not transmit drive force to the second worm gear


40


. Therefore, the drive shaft


35


rotates idly with respect to the second worm gear


40


. It should be noted that at this time, the first gear


37


is driven to rotate in association with rotational drive of the black photosensitive drum


13


K and, consequently, the second worm wheel


40


is driven to rotate in the opposite direction from the forward drive direction of the drive shaft


35


through the second gear


38


and the second worm wheel


41


. However, even though the second worm wheel


40


is driven to rotate in the opposite direction from the forward drive direction of the drive shaft


35


, the second one way clutch mechanism


39


prevents the drive force from being transmitted to the drive shaft


35


, so the drive shaft


35


rotates smoothly in the forward direction.




Accordingly, by driving the motor M to drive in the forward direction so that the drive shaft


35


rotates in the forward direction, all of the photosensitive drums


13


, that is, the yellow photosensitive drum


13


Y, the magenta photosensitive drum


13


M, the cyan photosensitive drum


13


C, and the black photosensitive drum


13


K, can be driven to smoothly rotate and a good-quality color image can be formed.




One the other hand, by driving the motor M to drive in the reverse direction so that the drive shaft


35


rotates in the reverse direction, the second one way clutch mechanism


39


of the reverse direction transmission mechanism


50


, which is provided only to a single photosensitive drum


13


, that is, the black photosensitive drum


13


K, transmits the drive force to the second worm gear


40


. Therefore, because the second worm gear


40


rotates with the drive shaft


35


, the second worm wheel


41


in meshing engagement with the second worm gear


40


is driven so that, consequently, the black photosensitive drum


13


K is driven to rotate through the second gear


38


and the first gear


37


. It should be noted that even when the drive shaft


35


rotates in reverse, the black photosensitive drum


13


K is driven through the reverse direction transmission mechanism


50


to rotate in the same rotational direction as during forward drive of the drive shaft


35


, so that image formation can be smoothly achieved.




Also, during reverse drive of the drive shaft


35


, the first one way clutch mechanisms


36


do not transmit drive force to the first worm gears


31


. Therefore, the drive shaft


35


will merely rotate idly with respect to the first worm gear


31


. For this reason, the other three photosensitive drums


13


, that is, the yellow photosensitive drum


13


Y, the magenta photosensitive drum


13


M, and the cyan photosensitive drum


13


C, will not rotate because of engagement between the first worm wheel


34


and the first worm gear


31


, for example.




Also, although during reverse drive of the drive shaft


35


the first worm wheel


34


rotates in association with rotational drive of the black photosensitive drum


13


K and, by its meshing engagement with the first worm wheel


34


, the first worm gear


31


is driven to rotate in the opposite direction from the reverse rotation direction of the drive shaft


35


, the first one-way clutch mechanism


36


that corresponds to the black photosensitive drum


13


K prevents the drive force from being transmitted to the drive shaft


35


. Therefore, smooth reverse drive of the drive shaft


35


can be achieved.




Accordingly, by driving the motor M in reverse so that the drive shaft


35


rotates in reverse, the black photosensitive drum


13


K can be smoothly driven to rotate while the yellow photosensitive drum


13


Y, the magenta photosensitive drum


13


M, and the cyan photosensitive drum


13


C are stopped. A high-quality monochrome image can be formed.




In this way, when a full color image is to be formed, the drive shaft


35


is driven in the forward direction so that all of the photosensitive drums


14


are driven to rotate through the first worm gears


31


and the first worm wheels


34


. On the other hand, when a monochrome image is to be formed, the drive shaft


35


driven to rotate in the reverse direction so that only the black photosensitive drum


13


K is driven to rotate through the second worm gear


40


, the second worm wheel


41


, the second gear


33


, and the first gear


37


. That is, all four photosensitive drums


13


for forming a full color image or only the black photosensitive drum


13


K for forming a monochrome image can be selected by merely switching drive direction of the drive shaft


35


. With this configuration, color images and monochrome images can be selectively formed using a simpler configuration that is less costly to produce than other configurations, for example, than a configuration that provides a separate motor for each photosensitive drum or an electromagnetic clutch along the drive transmission path for transmitting force to the photosensitive drums. Moreover, because the drive direction of the drive shaft


35


is merely switched between forward and reverse, there is no need to provide a large drive as would be the case were an electromagnetic clutch provided. Therefore, running costs can be reduced.




Because the three photosensitive drums


13


Y,


13


M and


13


C are driven by forward drive of the drive shaft


35


and the single black photosensitive drum


13


K is driven by forward and reverse drive of the drive shaft


35


, when the drive shaft


35


drives in the forward direction, then all of the photosensitive drums


13


are driven. On the other hand, when the drive shaft


35


drives in the reverse direction, then only the black photosensitive drum


13


K is driven to rotate. The four photosensitive drums


13


K can be selectively driven in a reliable manner with a simple configuration by merely switching between forward and reverse drive of the drive shaft


35


Moreover, the black photosensitive drum


13


K is is driven to rotate in the same direction as the other three photosensitive drums


13


Y,


13


M, and


13


C during both forward and reverse drive of the drive shaft


35


. Therefore, images can be formed in a smooth manner.




First one-way clutch mechanisms


36


, which transmit drive force only during forward drive of the drive shaft


35


, are provided along the drive transmission path between the drive shaft


35


and the yellow photosensitive drum


13


Y, the magenta photosensitive drum


13


M, and the cyan photosensitive drum


13


C. Another of the first one-way clutch mechanisms


36


and also a second one-way clutch mechanism


39


, which transmits drive force only during reverse drive of the drive shaft


35


, are provided along the drive transmission path between the drive shaft


35


and black photosensitive drum


13


K. With this configuration, when the drive shaft


35


is driven in the forward direction, the drive force is transmitted through the first one-way clutch mechanisms


36


to drive the yellow photosensitive drum


13


Y, the magenta photosensitive drum


13


M, the cyan photosensitive drum


13


C, and the black photosensitive drum


13


K to form a color image. Also, when the drive shaft


35


is driven to rotate in the reverse direction, then the drive force is transmitted through the second one-way clutch mechanism


39


to drive only the black photosensitive drum


13


K. Drive force can be reliably and selectively transmitted to the photosensitive drums for forming color images and to the photosensitive drum for forming a monochrome image using a simple configuration for switching between driving the drive shaft


35


in the forward and reverse directions.




Further, because drive force is transmitted unit-directionally using the first one-way clutch mechanisms


36


and the second one-way clutch mechanism


39


, drive force can be simply and reliably transmitted in one direction. Manufacturing costs can be reduced and selective transmission of drive force can be reliably performed.




Although not show in the drawings, the color laser printer


1


includes a central processing unit (CPU) that judges whether to drive the motor M and the drive shaft


35


forward or in reverse, that is, in order to print multi-color or monochrome images, based on image data input to the color laser printer


1


.




Although not shown in the drawings, a cam mechanism is provided for moving the endless belt


22


selectively into contact with all of the photosensitive drums


13


or just the black photosensitive drum


13


K depending on whether a monochrome image or a multi-color image is being formed. That is, when a monochrome image is to be formed, the can mechanism is driven by reverse drive of the drive shaft


35


to move the second roller


24


downward from a first position indicated in

FIG. 1

by solid line to a second position indicated in

FIG. 1

in two-dot chain line. In this condition, the endless belt


22


is in contact with only the black photosensitive drum


13


K. The yellow photosensitive drum


13


Y, the magenta photosensitive drum


13


M, and the cyan photosensitive drum


13


C are separated from the endless belt


22


. On the other hand, when a multi-color image is to be formed, the cam mechanism is driven by forward drive of the drive shaft


35


to move the second roller


24


upward from the second position to the first position. In this condition, the endless belt


22


is in contact with all of the photosensitive drums


13


as indicated by solid line in FIG.


1


. With this configuration, images from either all of the photosensitive drums


13


or just the black photosensitive drum


13


Y can be selectively transferred onto the endless belt


22


by switching merely between driving the drive shaft


35


forward and reverse. As a result, the images formed by driving either all the photosensitive drums


13


to form a multi-color image or just the black photosensitive drum


13


K to form a monochrome image can be selectively transferred onto the endless belt


22


simply and reliably.




While the invention has been described in detail with reference to specific embodiments thereof, it would be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit of the invention, the scope of which is defined by the attached claims.




For example, the intermediate transfer mechanism


9


need not be provided, depending on the objectives and use the color laser printer


1


. That is, the embodiment described using the intermediate transfer mechanism


1


for transferring the different color images formed by the different photosensitive drums


13


one at a time onto the endless belt


22


and then, after a multi-color image is formed on the endless belt


22


, transferring the multi-color image in a single action onto the sheet


3


. However, the intermediate transfer mechanism


9


need not be provided. Instead, a transfer roller can be disposed in confrontation with each of the photosensitive drums, and the visible images formed at each of the photosensitive drums can be transferred directly onto a sheet


3


that passes between the photosensitive drums and the transfer rollers.




Also, the switching operation achieved by the first one-way clutch mechanisms


36


and the reverse clutch mechanism


39


is not limited to switching between multi-color and monochrome image formation. For example, the first one-way clutch mechanisms


36


and the reverse clutch mechanism


39


can be used for switching to two-color or to three-color image formation instead. Also, the first one-way clutch mechanisms


36


and the reverse clutch mechanism


39


can be used for switching between two different types of monochrome image formation, such as from black image to red image formation.




Also, in the embodiment, the second roller


24


was moved up and down by a cam mechanism driven by forward and reverse drive of the drive shaft


35


. However, the endless belt


22


can be switched between the first and second contact positions using other configurations, such as a solenoid and plunger.



Claims
  • 1. An image forming device using a plurality of image forming units, comprising:a plurality of photosensitive bodies, each image forming unit having a photosensitive body, each photosensitive body forming an image having a different color; and a single drive unit that switches between driving at least one of the photosensitive bodies and at least a different one of the photosensitive bodies, wherein the drive unit selectively switches between forward drive and reverse drive to switch between driving the at least one and the at least a different one of the photosensitive bodies.
  • 2. An image forming device as claimed in claim 1, wherein the at least one of the photosensitive bodies is driven to move in a direction by only one of forward drive and reverse drive of the drive unit, and the at least a different one of the photosensitive bodies is driven to move in the same direction as the at least one of the photosensitive bodies by both forward drive and reverse drive of the drive unit.
  • 3. An image forming device as claimed in claim 2, further comprising:a first transmission unit provided along a drive transmission path between the drive unit and the at least one of the photosensitive bodies, the first transmission unit transmitting drive of only one of forward drive and reverse drive from the drive unit to the at least one of the photosensitive bodies; and a second transmission unit provided in a drive transmission path between the drive unit and the at least a different one of the photosensitive bodies, the second drive transmission unit transmitting drive of only the other of forward drive and reverse drive from the drive unit to the at least a different one of the photosensitive bodies.
  • 4. An image forming device as claimed in claim 3, wherein both the first transmission unit and the second transmission unit each include a one way clutch.
  • 5. An image forming device as claimed in claim 2, further comprising a transfer member that, in association with the drive unit switching between forward drive and reverse drive, selectively switches between a first contact position in contact with both the at least one of the photosensitive bodies and the at least a different one of the photosensitive bodies and a second contact position in contact with only the at least a different one of the photosensitive bodies.
  • 6. An image forming device as claimed in claim 1, wherein the photosensitive bodies are each supported at its outer peripheral surface to be rotatable by at least the drive unit.
  • 7. An image forming device as claimed in claim 6, wherein each photosensitive body is provided at its outer peripheral surface with a worm wheel, the drive unit including worm gears that are meshingly engaged with the worm wheels of the photosensitive bodies to transmit drive force from the drive unit to all of the photosensitive bodies.
  • 8. An image forming device as claimed in claim 1, wherein the at least a different one of the photosensitive bodies is a single photosensitive body for forming a monochrome image and the at least one of the photosensitive bodies is a plurality of photosensitive bodies for forming a multi-color image.
  • 9. An image forming device as claimed in claim 1, wherein the at least a different one of the photosensitive bodies is a single photosensitive body for forming a black image and the at least one of the photosensitive bodies is a different single photosensitive body for forming a red image.
  • 10. An image forming device as claimed in claim 1, wherein the at least a different one of the photosensitive bodies is a single black-image forming photosensitive body for forming a black image and the at least one of the photosensitive bodies includes the black-image forming photosensitive body, a cyan-image forming photosensitive body for forming a cyan image, a magenta-image forming photosensitive body for forming a magenta image, and a yellow-image forming photosensitive body for forming a yellow image, the single drive unit switching to one of the forward drive and the reverse drive to drive all of the black-image forming photosensitive body, the cyan-image forming photosensitive body, the magenta-image forming photosensitive body, and the yellow-image forming photosensitive body to form a multicolor image.
  • 11. An image forming device, comprising:a plurality of developing units, each developing unit being provided for a different one of a plurality of colors; a plurality of photosensitive bodies provided in correspondence with the developing units; a transfer unit disposed in confrontation with the photosensitive bodies; a single drive unit that generates drive force; and a transmission mechanism that switches transmission of the drive force from the drive unit to photosensitive bodies selected in accordance with drive condition of the drive unit, wherein the drive unit switches between forward drive and reverse drive, the transmission mechanism transmitting the drive force to at least one of the photosensitive bodies when the drive unit is driving in forward drive and to at least a different one of the photosensitive bodies when the drive unit is driving in reverse drive.
  • 12. An image forming device as claimed in claim 11, wherein the transmission mechanism drives the photosensitive bodies in the same direction using both forward drive and reverse drive from the drive unit.
  • 13. An image forming device as claimed in claim 11, wherein the drive unit switches between forward drive and reverse drive depending on whether a monochrome image or a multicolor image is to be formed.
  • 14. An image forming device as claimed in claim 11, wherein the transmission mechanism transmits the drive force to only a particular single one of the photosensitive bodies when a monochrome image is to be formed and to all of the photosensitive bodies including the particular single one of the photosensitive bodies when a multicolor image is to be formed.
  • 15. An image forming device as claimed in claim 11, wherein the transmission mechanism includes:a first transmission unit provided along a drive transmission path between the drive unit and the at least one of the photosensitive bodies, the first transmission unit transmitting drive of only one of forward drive and reverse drive from the drive unit to the at least one of the photosensitive bodies; and a second transmission unit provided in a drive transmission path between the drive unit and the at least a different one of the photosensitive bodies, the second drive transmission unit transmitting drive of only the other of forward drive and reverse drive from the drive unit to the at least a different one of the photosensitive bodies.
  • 16. An image forming device as claimed in claim 11, wherein the transfer unit, in association with the drive unit switching between forward drive and reverse drive, selectively switches between a first contact position in contact with the at least one of the photosensitive bodies and the at least a different one of the photosensitive bodies and a second contact position in contact with only the at least a different one of the photosensitive bodies.
  • 17. An image forming device comprising:a plurality of developing units, each developing unit being provided for a different one of a plurality of colors; a plurality of photosensitive bodies provided in correspondence with the developing units; a transfer unit disposed in confrontation with the photosensitive bodies; a single drive unit that switchingly generates forward drive force and reverse drive force; and a transmission mechanism that transmits drive force from the drive unit to the photosensitive bodies, the transmission mechanism transmitting the same direction of drive force to the photosensitive bodies regardless of whether the drive unit generates forward drive force or reverse drive force.
  • 18. An image forming device as claimed in claim 17, wherein the drive unit switches between forward drive and reverse drive depending on whether a monochrome image or a multicolor image is to be formed.
  • 19. An image forming device as claimed in claim 17, wherein the transmission mechanism transmits the drive force to only a particular single one of the photosensitive bodies when a monochrome image is to be formed and to all of the photosensitive bodies including the particular single one of the photosensitive bodies when a multicolor image is to be formed.
  • 20. An image forming device as claimed in claim 17, wherein the transmission mechanism includes:a first transmission unit provided along a drive transmission path between the drive unit and at least one of the photosensitive bodies, the first transmission unit transmitting drive of only one of forward drive and reverse drive from the drive unit to the at least one of the photosensitive bodies; and a second transmission unit provided in a drive transmission path between the drive unit and at least a different one of the photosensitive bodies, the second drive transmission unit transmitting drive of only the other of forward drive and reverse drive from the drive unit to the at least a different one of the photosensitive bodies.
  • 21. An image forming device as claimed in claim 17, wherein the transfer unit, in association with the drive unit switching between forward drive and reverse drive, selectively switches between a first contact position in contact with the at least one of the photosensitive bodies and the at least a different one of the photosensitive bodies and a second contact position in contact with only the at least a different one of the photosensitive bodies.
Priority Claims (1)
Number Date Country Kind
2001-147970 May 2001 JP
US Referenced Citations (3)
Number Name Date Kind
5386286 Kinouchi et al. Jan 1995 A
5933687 Okuno et al. Aug 1999 A
5970286 Numazu et al. Oct 1999 A