This application claims priority from Japanese Patent Application No. 2008-243104 filed Sep. 22, 2008. The entire content of the priority application is incorporated herein by reference.
The present invention relates to an image forming device and more particularly, to an electrophotographic type image forming device.
An electrophotographic type image forming device generally includes a photosensitive drum, a charge unit, an LED array, and a developing unit. The charge unit is adapted for uniformly charging a surface of the photosensitive drum. The LED array is adapted for forming an electrostatic latent image on the charged surface of the photosensitive drum. The developing unit is adapted for forming a visible developer agent image with charged developer agent at the electrostatic latent image. The visible image is then transferred onto an image recording medium such as a sheet fed from a sheet cassette, so that the visible image can be formed on the sheet.
In such a conventional image forming device, a process cartridge is detachably provided to a frame of the device. The process cartridge accommodates therein the photosensitive drum, the charge unit, and the developing unit. The process cartridge can be exchanged with a new process cartridge upon consumption of developer agent or upon degradation of the photosensitive drum. In order to perform such exchange, one of the photosensitive drum, the charge unit and the developing unit may be mechanically interfered with the LED array. Such interference may occur easily in a front access type image forming device in which the frame has a front side provided with a cover, and the process cartridge can be detached from the frame through a front opening after opening the cover.
In order to avoid such mechanical interference, a link mechanism has been proposed that retracts an LED array to a non-interference position with respect to the process cartridge when a door is open. This structure can facilitate removal of the process cartridge from the frame.
However, operating position of the LED array may be varied in accordance with a repeated retracting movement thereof, which degrades imaging quality. Instead of moving the LED array, the latent image is maintained stationary whereas the process cartridge is moved for its detachment and attachment away from the LED array. However, in the latter case, a sheet feed mechanism and the sheet cassette may become an obstacle for the moving the process cartridge away from the LED array.
That is, the sheet cassette and the sheet feed mechanism for feeding the sheet from the sheet cassette are generally disposed at a lower portion of the frame and below the process cartridge. On the other hand, the LED array is disposed at an upper portion of the frame and above the process cartridge. Therefore, the process cartridge may be mechanically interfered with the sheet feed mechanism and the sheet cassette by the movement of the process cartridge in a direction away from the LED array.
It is therefore an object of the present invention to provide an image forming device facilitating detachment of the process cartridge avoiding mechanical interference of the process cartridge with the LED array without any movement of the LED array and without any mechanical interference with the sheet feed mechanism and the sheet cassette when the door is open.
This and other objects of the invention will be attained by providing an image forming device including a frame, a process cartridge, a sheet cassette, a sheet feed unit, an LED array, and a guide structure. The frame has a front opening provided with a door. The process cartridge is detachably assembled in the frame and is accessible through the front opening upon opening the door. The process cartridge is movable to an operating position in the frame for image formation. The process cartridge includes a casing, a photosensitive drum, a charger and a developing roller. The casing is movably supported by the frame. The photosensitive drum is disposed in the casing and has an outer surface in which an electrostatic latent image is formable. The charger is disposed in the casing for uniformly charging the photosensitive drum. The developing roller is disposed in the casing for supplying charged developer agent to the photosensitive drum. The sheet cassette is detachably installed to the fame at a position below the process cartridge for accommodating a stack of sheets. The sheet feed unit is supported to the process cartridge for feeding each one of sheets on the sheet cassette toward the photosensitive drum. The LED array is supported to the frame and is provided independent of the casing for forming an electrostatic latent image on the photosensitive drum after the photosensitive drum is charged by the charger. The process cartridge and the sheet feed unit are positioned between the LED array and the sheet cassette at the operating position, and the photosensitive drum is positioned close to the LED array at the operating position. The guide structure is provided at the frame to guide movement of the process cartridge along with the sheet feed unit from the operating position toward the door and away from the LED array.
In the drawings,
An image forming device according to a first embodiment of the present invention will be described with reference to
The image forming device 1 includes a frame 2 having a front opening provided with a door 2A which can be opened and closed. The front side is a side toward which a sheet P formed with an image is ejected. The frame 2 has a lower portion at which a sheet cassette 3 is movable in frontward/rearward direction. In the sheet cassette 3, a plurality of cut sheets is stacked. A process cartridge 5 is detachably attached to the frame 2. The process cartridge 5 can be accessible through the front opening when the door is open for detachment and attachment of the process cartridge 5 with respect to the frame 2.
The process cartridge 5 integrally provides a sheet feed unit 4. More specifically, the process cartridge 5 includes a cartridge case 5A having a front lower portion to which the sheet feed unit 4 is fixed. Further, a developing cartridge 50 is detachably attached to the cartridge case 5A. The developing cartridge 50 and the sheet feed unit 4 define a sheet passage therebetween as shown by two dotted chain line in
The sheet cassette 3 is detachably assembled to the lower portion of the frame 2, and includes a pressure plate 31 at a lower portion of a body of the cassette 3. The pressure plate 31 has a rear end pivotally connected to the body of the sheet cassette 3 so that a front end of the pressure plate 31 can be moved upward for lifting the sheet stack on the pressure plate 31. Further, a separation pad 32 made from an elastic material is provided at a front side of the body of the cassette 3. The separation pad 32 is urged upward by a spring (not shown)
The sheet feed unit 4 includes a sheet supply roller 41 and a separation roller 42. The sheet supply roller 41 is provided to contact an uppermost sheet P of the sheet stack in the sheet cassette 3. The separation roller 42 is positioned immediate downstream of the sheet supply roller in a sheet feeding direction and in confrontation with the separation pad 32. The uppermost sheet P supplied from the sheet supply roller 41 is nipped between the separation roller 42 and the separation pad 32 for separating the uppermost sheet P from the remaining sheet stack.
The sheet feed unit 4 also includes a feed roller 44, and a registration roller 47. The process cartridge 5 includes sheet guides 43 positioned immediate downstream of the separation roller 42, a feed roller 45 in direct confrontation with the sheet feed roller 44 and immediate downstream of the sheet guide 43, and a sheet guide 46 immediate downstream of the feed rollers 44, 45. The developing cartridge 50 includes a registration roller 51 in direct confrontation with the registration roller 47 and downstream of the sheet guide 46.
The sheet P moved past the separation roller 42 is fed to the feed rollers 44, 45 through the sheet guide 43. The sheet fed from the feed rollers 44, 45 is fed to the pair of registration rollers 47, 51 through the sheet guide 46 and the sheet passage defined between the sheet feed unit 4 and the developing cartridge 50, whereupon an orientation of a leading edge of the sheet P is corrected, and the sheet P provisionally stayed at the registration rollers 47, 51 is then fed into the process cartridge 5 at a prescribed timing.
The process cartridge 5 also includes a photosensitive drum 53, a transfer roller 54, a cleaner 55, a charger 56, and a developing roller 59. Further, an LED array 57 is provided adjacent the process cartridge 5, i.e., adjacent to the photosensitive drum 11.
The photosensitive drum 53 includes a drum body grounded, and a photosensitive layer formed thereover and made from a positively chargeable material such as polycarbonade. The drum body includes a rotation shaft 53A as shown in
The cleaner 55, the charger 56, the LED array 57, and the developing roller 59 are disposed around the photosensitive drum 53 in the order from the transfer roller 54 in the rotating direction of the photosensitive drum 53. The cleaner 55 is in the form of a roller in rolling contact with the photosensitive drum 53 for removing residual toner (developer agent) remaining on the surface of the photosensitive drum 53. The charger 56 is a positively charging scorotron type charger having a tungsten wire from which a corona discharge occurs so as to uniformly charge the surface of the photosensitive drum 53 with positive polarity.
The LED array 57 includes a plurality of light emitting elements arrayed in a lateral direction (widthwise direction of the sheet P) for exposing the outer peripheral surface of the photosensitive drum 53 to light in accordance with image data. As the light emitting element, a semiconductor diode and an electro-luminescence element are available. The LED array 57 is fixed to the frame 2 independent of the process cartridge 5 at a position immediately above the photosensitive drum 53 and above and rearward of the process cartridge 5. In other words, the process cartridge 5 is positioned between the sheet feed unit 4 and the LED array 57.
The developing roller 59 is provided in the developing cartridge 50 defining therein a toner container 58 in which positively chargable non-magnetic single component type toner is accommodated. The developing roller 59 is adapted for supplying such toner to the outer peripheral surface of the photosensitive drum 53 to form a positively charged thin toner layer thereover.
After the cleaner 55 removes residual toner on the photosensitive drum 53 during its rotation, the surface of the photosensitive drum 53 is uniformly positively charged by the charger 56. Then, the surface is exposed to light by the LED array 57, whereupon electrostatic latent image based on the image data is formed on the surface of the photosensitive drum 53. The latent image area has a potential lower than that of the remaining portion.
Then, positively charged toner is supplied to the photosensitive drum 53 from the developing roller 59. As a result, a visible toner image corresponding to the electrostatic latent image is formed on the surface of the photosensitive drum 53.
The transfer roller 54 is rotatable in a clockwise direction in
The rotation shaft 53A of the photosensitive drum 53 protrudes laterally outward from the cartridge case 5A, so as to engage the guide groove 71. Further, the cartridge case 5A is provided with bosses 5B protruding from lateral sides thereof and positioned frontward of the rotation shaft 53A so as to engage the guide groove 71. The process cartridge 5 is thus movably supported to the support frame 70 by way of sliding engagement of the rotation shaft 53A and the bosses 5B with the guide grooves 71.
The photosensitive drum 53 can be subjected to positioning at a position immediately below the LED array 57 as a result of push-in movement of the process cartridge 5 until the rotation shaft 53A reaches a rearmost end of the guide groove 71, that is, the highest end of the slanting groove 71A. This position is an operable position of the process cartridge 5 for image formation. For detaching the process cartridge 5 from the frame 2, the rotation shaft 53A is slidingly moved along the slanting groove 71A downward so that the process cartridge 5 is gradually moved away from the LED array 57 as a result of pull-out movement of the process cartridge 5.
As shown in
In the laser printer according to the first embodiment the process cartridge 5 can be moved away from the LED array 57 in case of attachment and detachment of the process cartridge 5. Therefore, mechanical interference of the process cartridge 5 with the LED array 57 can be avoided without any movement of the LED array 57. Further, since the process cartridge 5 is integrally provided with the sheet feed unit 4, mechanical interference of the process cartridge 5 with the sheet cassette 3 and with the sheet feed unit 4 can be avoided in case of attachment and detachment of the process cartridge 5 after the door 2 is opened and the sheet cassette 3 is removed from the frame 2 as shown in
A laser printer according to a second embodiment of the invention will next be described with reference to
In the second embodiment, the sheet supply roller 143 is rotatably supported to one end portion of a lever 142, and another end portion of the lever 142 is pivotally movably supported to a pivot shaft 141 provided in the sheet feed unit 104. The lever 142 is pivotally movable between a sheet supply position in which the sheet supply roller 143 is in pressure contact with an uppermost sheet P in the sheet cassette 103 and a retracting position in which the lever 142 is retracted into a space in the sheet feed unit 104. A biasing spring (not shown) is connected to the lever 142 for biasing the lever 142 in a clockwise direction in
A conventional planetary gear mechanism (oscillating gear mechanism) is provided for transmitting rotation of the motor (not shown) to rotate the sheet supply roller 143 in a clockwise direction in
Since the sheet supply roller 143 is retracted into the sheet feed unit 104, the sheet feed unit 104 can reduce its height at its non-operational phase. Therefore, attachment and detachment of the process cartridge 105 can be facilitated without removal of the sheet cassette 103, and a compact device can be realized. Incidentally, the laser printer can further be downsized if the process cartridge can be attached to and detached from the frame 2 after removal of the sheet cassette 103 as long as the above-described pivotable sheet supply roller 143 is employed.
Various modifications may be conceivable. For example, in the foregoing embodiments, the sheet feed unit 4, 104 is fixed to the process cartridge case. However, the sheet feed unit can be detachably attached thereto. Further, the sheet guide 43 can be provided at the cassette 3, 103 instead of the sheet feed unit 4, 104. Further, in the above-described embodiments, the process cartridge 5, 105 is pivotally moved about the bosses 5B when the rotation shaft 53A is moved along the slanting guide groove 71A because of the configuration of the guide groove 71 including a horizontal portion and the slanting portion. However, a guide groove that allows the process cartridge 5, 105 to move without changing its posture is also available. Still however, the above-described guide groove 71 is advantageous in that the photosensitive drum 53 can be moved upward with a lesser force.
While the invention has been described in detail with reference to the embodiments thereof, it would be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2008-243104 | Sep 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5485244 | Gotoda et al. | Jan 1996 | A |
5486898 | Fujii et al. | Jan 1996 | A |
6330410 | Okabe et al. | Dec 2001 | B1 |
6473576 | Koshimizu et al. | Oct 2002 | B1 |
6941094 | Omata et al. | Sep 2005 | B2 |
7384033 | Asada | Jun 2008 | B2 |
7496315 | Mase | Feb 2009 | B2 |
20050194733 | Asada | Sep 2005 | A1 |
20050276630 | Nishimura | Dec 2005 | A1 |
20060220309 | Igarashi | Oct 2006 | A1 |
20070122187 | Mase | May 2007 | A1 |
Number | Date | Country |
---|---|---|
H05-53378 | Mar 1993 | JP |
H06-051574 | Feb 1994 | JP |
H07-152302 | Jun 1995 | JP |
H10-312096 | Nov 1998 | JP |
10-339982 | Dec 1998 | JP |
2001-34144 | Feb 2001 | JP |
2001-53919 | Feb 2001 | JP |
2001-75457 | Mar 2001 | JP |
2001-209220 | Aug 2001 | JP |
2002-311723 | Oct 2002 | JP |
2003-11412 | Jan 2003 | JP |
2003-15500 | Jan 2003 | JP |
2003-246480 | Sep 2003 | JP |
2005-247539 | Sep 2005 | JP |
2005-352058 | Dec 2005 | JP |
2006-256807 | Sep 2006 | JP |
2006-301385 | Nov 2006 | JP |
2007-155793 | Jun 2007 | JP |
2007-286127 | Nov 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20100074648 A1 | Mar 2010 | US |