Image-forming device

Abstract
An image-forming device having, in an envelope, an electron-emitting element, an image-forming member for forming an image by irradiation of an electron beam emitted from the electron-emitting element, and an electroconductive supporting member for supporting the envelope. The potential of the supporting member is controlled to not be higher than the maximum potential applied to the electron-emitting element. The electron-emitting element and the image-forming member can be placed in juxtaposition on the same substrate, an electro-conductive substrate can be additionally provided in opposition to the face of the substrate, and the supporting member can be connected electrically to one of the electrodes and also to the electro-conductive substrate.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an image-forming device employing electron-emitting elements.




2. Related Background Art




Hitherto thin plate-type image-forming devices have been used, in which a plurality of electron-emitting elements are arranged in a plane and are counterposed to image-forming members for forming images by electron beam irradiation (a member which emits light, changes its color, become electrified, or denaturated by collision of electrons, e.g., a fluorescent material, and a resist material).

FIGS. 35 and 36

show an outline of construction of a conventional electron beam display device as an example of the image-forming device.

FIG. 36

shows a sectional view at A-A′ in FIG.


35


.




The construction of the conventional electron-beam display device shown in

FIGS. 35 and 36

is described below in detail. A rear plate


101


, an external frame


111


, and a face plate


109


constitute an envelope. The interior of the envelope is maintained in vacuum. Electrodes


103




a


and


103




b


, and an electron-emitting section


104


constitute an electron-emitting element


105


. A scanning electrode


102




a


and an information signal electrode


102




b


are wiring electrodes, and are connected respectively to the electrodes


103




a


and


103




b


. A glass substrate


106


, a transparent electrode


107


, and a fluorescent material (an image-forming member)


108


constitute the face plate


109


. The numeral


112


indicates a luminescent spot, and the numeral


110


indicates a supporting member for supporting the envelope against the atmospheric pressure. The electron-beam display device displays an image by application of signal voltages between scanning electrodes


102




a


and information signal electrodes


102




b


arranged in an X-Y matrix to project an electron beam onto the fluorescent material


108


in correspondence with information signals. As the electron-emitting element


105


, useful are thermoelectron-emitting elements in which electrons are emitted from the electron-emitting section


104


on heating; field emission elements disclosed in U.S. Pat. Nos. 3,755,704 and 4,904,895; and surface conduction type emitting elements disclosed in U.S. Pat. No. 5,066,883.




In the above-described plane type electron beam display device, the inside of the envelope is kept at a vacuum. A supporting member


110


is provided between the rear plate


101


and the face plate


109


as shown in

FIG. 36

to support the envelope internally against the external atmospheric pressure. The supporting member


110


is usually made of an insulating material to give dielectric strength against high voltage applied between the fluorescent material


108


(or the transparent electrode


107


) and the electron-emitting element


105


. The supporting member is indispensable for simplification, miniaturization, and weight reduction of the entire device, since an electron beam display device having a larger display surface is subjected to a larger total atmospheric pressure.




However, conventional electron beam display devices mentioned above, as shown in

FIGS. 35 and 36

, have a supporting member


110


made of an insulating material, which will be electrified at the surface by undesired collision of electrons and ions thereto. The electrification of the supporting member causes the problems as below: (1) The electron beam is deflected owing to the electrification, whereby the quantity of irradiation of electron beam onto the desired fluorescent material in the picture elements fluctuates to cause irregularity in luminance and color. In particular, when the quantity of the electrification is large, the electron beam is not projected to the desired fluorescent material but is directed to undesired adjacent fluorescent material to cause crosstalk; (2) The quantity of electrification varies with lapse of time, which causes time-variation of the electron path, resulting in variation in the intensity of the luminance; and (3) Electric discharge occurs at the electrified supporting member, which may damage the electron-emitting element or deteriorate the insulating property of the supporting member.




Thereby, the metal cover


113


is kept at the same voltage as the transparent electrode (fluorescent material


108


). Generally, the transparent electrode


107


is kept at a high potential so as to capture the electron beam. When the metal cover is kept at a high potential is placed in proximity to the electron-emitting element


105


, the electron beam emitted from the electron-emitting element


105


is deflected toward the side of the metal cover


113


, causing different problems mentioned below: (4) A fraction of the electron beam is captured by the metal cover, whereby the intensity of the electron beam is lowered and the luminance of the fluorescent material is lowered at the proximity to the supporting member, causing irregularity of the luminance; and (5) The potential applied to the transparent electrode (fluorescent material) cannot exceed a certain value, whereby the luminance is low, red-light emitting and blue-light emitting fluorescent material cannot be used, and therefore a full-color image cannot be displayed.




SUMMARY OF THE INVENTION




An object of the present invention is to provide an image-forming device having a sufficient supporting structure to withstand the atmospheric pressure, being free from cross talk, and being improved in picture image contrast and in uniformity of the luminance.




Another object of the present invention is to provide a stable image-forming device which is free from time-variation of the luminance.




A further object of the present invention is to provide an image-forming device which gives a color image with high contrast or with high luminance.




A still further object of the present invention is to provide an image-forming device which is free from discharging of the supporting member, and has a long life.




According to an aspect of the present invention, there is provided an image-forming device having, in an envelope, an electron-emitting element, an image-forming member for forming an image by irradiation of an electron beam emitted from the electron-emitting element, and an electroconductive supporting member for supporting the envelope (internally), wherein the device comprises a means for controlling the potential of the supporting member to not be higher than the maximum potential applied to the electron-emitting element.




According to another aspect of the present invention, there is provided an image-forming device having, in an envelope, an electron-emitting element for emitting an electron beam by application of voltage between electrodes, an image-forming member for forming an image by irradiation of the electron beam emitted from the electron-emitting element, and an electroconductive supporting member for supporting the envelope, wherein the supporting member is connected electrically to one of the electrodes.




According to still another aspect of the present invention, there is provided an image-forming device having, in an envelope, an electron-emitting element for emitting an electron beam on application of voltage between electrodes, an image-forming member for forming an image by irradiation of the electron beam emitted from the electron-emitting element, and an electroconductive supporting member for supporting the envelope, wherein the supporting member is connected electrically to a lower potential electrode of said electrodes.




According to a further aspect of the present invention, there is provided an image-forming device having, in an envelope, an electron-emitting element, an image-forming member for forming an image by irradiation of an electron beam emitted from the electron-emitting element, and an electroconductive supporting member for supporting the envelope, wherein the electron-emitting element and the image-forming member are placed in juxtaposition on the same substrate, a potential-defining electrode is additionally provided in opposition to the substrate to define the potential of the space where the electron beam is emitted, and the supporting member is connected electrically to the potential-defining electrode.




According to a still further aspect of the present invention, there is provided an image-forming device having, in an envelope, an electron-emitting element for emitting an electron beam by application of voltage between electrodes, an image-forming member for forming an image by irradiation of the electron beam emitted from the electron-emitting element, and an electroconductive supporting member for supporting the envelope, wherein the electron-emitting element and the image-forming member are placed in juxtaposition on the same substrate, an electroconductive substrate is additionally provided in opposition to the face of said substrate, and the supporting member is connected electrically to one of said electrodes and also to the electroconductive substrate.











BRIEF DESCRIPTION OF THE DRAWINGS





FIGS. 1 and 2

, and

FIGS. 10

to


16


are rough sketches of the image-forming devices of the present invention in which electron-emitting elements and image-forming members are placed in opposition.





FIGS. 17

to


19


,

FIGS. 21

to


25


, and

FIGS. 27

to


29


are rough sketches of the image-forming members of the present invention in which electron-emitting elements and image-forming members are placed in juxtaposition on the same substrate face.





FIGS. 30

to


34


are rough sketches of optical printers among the image-forming device of the present invention.





FIG. 3

is a rough sketch of an evaluation device regarding the potential applied to an electroconductive supporting member.





FIG. 4

is a rough sketch of a conventional vertical type field-emission element.





FIG. 5

is a rough sketch of a conventional horizontal type field-emission element.





FIGS. 6 and 7

are graphs showing the evaluation results regarding the potential applied to electroconductive supporting member by use of the evaluation device shown in FIG.


3


.





FIGS. 8 and 9

are rough sketches of a conventional surface conduction type emitting element.





FIGS. 20 and 26

are drawings for explaining locus of an emitted electron.





FIGS. 35

to


37


are rough sketches of conventional image-forming devices.











DESCRIPTION OF THE PREFERRED EMBODIMENT




The main feature of the present invention is to provide a supporting member kept at a controlled potential. The supporting member of the present invention is not only capable of improving the atmospheric pressure resistance of the envelope and preventing electrification of the surface of the supporting member, but also has functions of suppressing the time-variation of the path and intensity of the electron beam emitted by the electron-emitting element toward an image-forming member, and of ensuring efficient irradiation of the electron beam to the predetermined image-forming member.




The inventors of the present invention have found that a supporting member having simultaneously the above functions is most suitable in simplification, miniaturization and weight-reduction of the entire device because the above functions are required more for a larger image-forming face (larger picture) of the device, and a larger picture of the device necessitates more the supporting member as a constitutional member. Therefore, the inventors investigated the optimum potential to be applied to the supporting member for imparting the above functions to the supporting member as below.





FIG. 3

shows the evaluation device employed in the investigation. The device as shown in

FIG. 3

, has fluorescent materials


25




a


,


25




b


; transparent electrodes


24




a


,


24




b


for capturing electron beam projected to the fluorescent materials


25




a


,


25




b


; a power source


28


for applying a voltage V


1


to the transparent electrodes; a face plate


22


; ammeters


29




a


,


29




b


for measuring electric current flowing in each of the fluorescent materials (hereinafter the current flowing in the fluorescent material


25




a


is referred to as “picture element current I


1


” and the current flowing in the fluorescent material


25




b


is referred to as “crosstalk current I


2


”), an electron-emitting element


20


placed on a rear plate


23


counter to the fluorescent body


25




a


, a power source


21


for applying a voltage V


2


to the electron-emitting element


20


, and a supporting member


26


suitably placed near the electron-emitting element


20


. The supporting member


26


is made of an insulating material or an electroconductive material. If the supporting member is made of an electroconductive material, a potential V


3


is applied to the supporting member by a power source


27


.




Evaluation is conducted with the evaluation device of

FIG. 3

as below.




The electron-emitting elements employed are classified into: (a) surface-conduction type emitting elements as described later in Embodiments, (b) vertical type field-emitting elements as described in U.S. Pat. No. 3,755,704, and (c) horizontal type field-emitting elements as described in U.S. Pat. No. 4,904,895. The construction of the above electron-emitting elements (b) and (c) is roughly shown in FIG.


4


and FIG.


5


. The vertical type field-emitting element shown in

FIG. 4

(sectional view) is constructed from a substrate


30


, a pair of a low potential electrode


31




a


and high potential electrode


31




b


with interposition of an insulating layer


32


therebetween, and an electron-emitting section


33


which is provided at the opening


34


of the high potential electrode


31




b


and insulating layer


32


and is electrically connected with the low potential electrode


31




a


. This vertical type field-emitting element emits an electron beam from the electron emitting section


33


on application of a prescribed voltage. The horizontal type field emitting electrode shown in

FIG. 5

is constructed from a substrate


40


, a pair of a low potential electrode


41




a


and a high potential electrode


41




b


, and an electron-emitting section


43


which is electrically connected with the low potential electrode


41




a


and is placed parallel to the substrate


40


without contacting thereto. The lateral type field-emitting element emits an electron beam from the electron-emitting section on application of a prescribed voltage between the electrodes


41




a


and


41




b


. The above electron-emitting elements (b) and (c) emit an electron beam from the tip of the electron-emitting section generally on application of a voltage as high as from 50 V to 200 V, whereby electrons are projected with a velocity component directing to the high potential electrode


31




b


or


41




b.






Evaluation I-1




With the electron-emitting element


20


of the above electron-emitting element (a) and the supporting member


26


made of an insulating material, the time-variation of the picture element current I


1


and the crosstalk current I


2


were observed at a V


1


value within a range of from 1 kV to 4 kV, a V


2


value within a range of from 5 V to 30 V, and a vacuum degree of the device within a range of from 2×10


−5


to 3×10


−7


torr. The result of the observation is shown in FIG.


6


.





FIG. 6

shows that, when an insulating supporting member is used, the picture element current I


1


rapidly decreased after the driving for a certain time (T


1


), and crosstalk current I


2


rapidly increased after the driving for a certain time (T


2


). The time lengths of T


1


and T


2


depend on the vacuum degree in the device, V


1


, and V


2


. Within the aforementioned ranges, nearly the same tendency as shown in

FIG. 6

was obtained at T


1


of from 1 second to 60 minutes, and at T


2


of from several minutes to 120 minutes. Such phenomena of the decrease of picture element current I


1


and generation of the crosstalk current I


2


were similarly observed with the electron-emitting elements (b) and (c).




Evaluation I-2




With an electroconductive supporting member as the supporting member


26


, the time-variation of the picture element current I


1


and the crosstalk current I


2


is evaluated in the same manner as in Evaluation I-1 except that V


3


was set within a range of from −30 V to 30 V. The results are shown in FIG.


6


. As shown in

FIG. 6

, in the case where an electroconductive supporting member is used, no time variation is observed in the picture element current I


1


and the crosstalk current I


2


regardless of the set values of the vacuum degree of the device, V


1


, V


2


, and V


3


. Thus in this image-forming device employing an electroconductive supporting member, neither time-variation of electron beam irradiation to the respective picture elements for forming a picture image nor undesired electron beam irradiation to the picture elements occurs, thereby satisfactory uniformity in image contrast and image luminance being achieved without occurrence of crosstalk.




Evaluation II-1




With the above electron-emitting element


20


of the above (a) and the supporting member


26


made of an electroconductive material, the dependence of the picture element current I


1


on V


3


is evaluated in a range of from −30 V to 30 V at the values of the vacuum degree of the device, V


1


, and V


2


arbitrarily set within the same range as in Evaluation I-1. The result is shown in FIG.


7


.




Evaluation II-2




With the above electron-emitting element of (b) as the electron-emitting element


20


, the picture element current I


1


is measured in the same manner as in Evaluation II-1 except that V


2


is arbitrarily set within a range of from 50 V to 200 V, and V


3


is changed from −50 V to 200 V. The result is shown in FIG.


7


.




Evaluation II-3




With the above electron-emitting element (c) as the electron-emitting element


20


, the picture element current I


1


is measured in the same manner as in Evaluation II-2. The result is shown in FIG.


7


.




The results of the Evaluations II-1 to II-3 are summarized in

FIG. 7

, where Ie denotes the maximum picture element current, and Vd denotes the V


2


value set, in the above conditions for the respective Evaluations. In the above Evaluations, V


2


is equal to the maximum potential applied to the electron-emitting element employed since the low potential electrode is set at a potential of zero volt.




As shown in

FIG. 7

, each of the lines in

FIG. 7

has two inflection points at V


3


=0 V and V


3


=Vd, independently of the kind of electron-emitting element, and the set values of the vacuum degree of the device, V


1


, and V


2


within the above ranges: at the V


3


value of 0 V or lower, the picture element current I


1


is kept unchanged at Ie; at the V


3


value in the range of from 0 V to Vd, the picture element current I


1


decreases slightly; and at the V


3


value exceeding Vd, the picture element current I


1


decreases remarkably.




The inventors of the present invention found, as described above, that the efficiency of electron beam irradiation onto an image-forming member, and unexpected electron beam irradiation onto an adjacent image-forming member (crosstalk) depend greatly on an electron-emitting voltage (V


2


) applied to an electron-emitting element and a voltage (v


3


) applied to a supporting member. The inventors further found that the above irradiation efficiency and the crosstalk are remarkably improved by controlling the potential of the supporting member not to exceed the maximum potential (Vd) applied so as to control the electron-emitting element, and consequently accomplished the present invention.




The means for controlling the potential of the supporting member are classified into (a) voltage-applying means for applying an electron-emitting voltage to an electron-emitting element, and (b) separate voltage applying means provided independently of the voltage-applying means for applying an electron-emitting voltage to an electron-emitting element.




In the voltage-applying means (a), the potential of the supporting member is controlled at a desired value by connecting one of the electron-emitting element electrode (a pair of electrodes for applying a voltage to the electron-emitting section). In this case, the supporting member is preferably connected to the low potential electrode of the electrode pair.




In the voltage applying means (b), another potential-applying means in the device may be utilized which is capable of controlling the potential of the supporting member, but a voltage-application means may be independently provided for the purpose only and be connected electrically to the supporting member. In such a case, the applied voltage is preferably not higher than 0 V (not higher than the potential of the lower potential electrode of the electron-emitting element) as is clear from the results of the above investigation.




Other construction members of an image-forming member of the present invention are described below in detail.




The electron-emitting element may be either a hot cathode or a cold cathode which are employed in conventional image-forming devices. However, with the hot cathode, the electron emitting efficiency and the response rate will decrease owing to diffusion of heat to the substrate supporting the cathode. Furthermore, the image-forming member may deteriorate by action of heat. Therefore, the density of arrangement of the hot cathodes and the image-forming members is limited. From the consideration above, as the electron-emitting element, preferred are cold cathodes including surface conduction type emitting elements as described below, semiconductor type electron-emitting elements, and field emitting elements. From among these cold electrodes, particularly preferred are the surface conduction type emitting elements because of the advantages such as: (1) high electron-emitting efficiency, (2) ease of production of the element and high density of arrangement of the elements on a substrate because of the simple element structure; (3) high response rate; and (4) excellent contrast of luminance.




An example of the surface conduction type emitting elements is the cold cathode element disclosed by M.I. Elinson, et al. (Radio Eng. Electron Phys., Vol. 10, pp. 1290-1296 (1965). This element, generally called a surface conduction type electron-emitting element, utilizes electron emission phenomenon caused by an electric current flowing in a thin film formed in a small area on a substrate in a direction parallel to the thin film. The surface conduction type electron-emitting element includes those utilizing a thin film of SnO


2


developed by Elinson et al. (loc. cit), those utilizing a thin film of Au (G. Dittmer: “Thin Solid Films”, Vol. 9, p. 317 (1972)), and those utilizing a thin film of ITO (M. Hartwell and C.G. Fonstad: “IEEE Trans. ED Conf.” p. 519 (1975).




The typical construction of such a surface conduction type electron-emitting element is illustrated in FIG.


8


. The element comprises electrodes


51




a


and


51




b


for electric connection, a thin film


52


formed from an electron-emitting material, a substrate


54


, and an electron-emitting section


53


. In preparation of such a surface conduction electron-emitting element, an electron-emitting section is formed by electric heating treatment called a forming treatment before the use for the electron emission. In the forming treatment, a voltage is applied between the electrode


51




a


and the electrode


51




b


to flow electric current through the thin film


52


, thereby the thin film


52


being locally destroyed, deformed, or destroyed by generated Joule's heat to form an electron-emitting section


53


in a high electric resistance state. Thus electron-emitting function is attained. Here, the “high electric resistance state” means a discontinuous state of the film that a crack of 0.5 μm to 5 μm long having an “island structure” is formed in a portion of the thin film


52


. The island structure means generally a state of the film that fine particles of some tens of angstroms to several micron meters in diameter are disposed on a substrate and the particles are spacially discontinuous mutually but are electrically continuous. Conventional surface conduction type electron-emitting elements emit electrons from the above fine particles on application of voltage to the above high-resistance discontinuous film through the electrodes


51




a


and


51




b


to flow electric current on the surface of the elements




The inventors of the present invention disclosed in U.S. Pat. No. 5,066,883 a novel surface conduction type electron-emitting element in which particles to emit electrons are scattered between the electrodes. This electron-emitting element is advantageously capable of giving higher electron-emitting efficiency than conventional surface conduction type emitting elements.

FIG. 9

illustrates typical construction of the element. The element comprises electrodes


51




a


and


51




b


for electrical connection, a thin film (an electron-emitting section)


55


on which fine particles


56


of a size of 10 Å to 10 μm are scattered, and an insulating planar substrate


54


. In particular, in

FIG. 9

, the thin film


55


has preferably a sheet resistance in a range of from 10


3


Ω/square to 10


9


Ω/square, and electrode interval in a range of from 0.01 μm to 100 μm.




As discussed above, various types of electron-emitting elements are useful in the present invention. Among them, the cold cathodes involve the notable disadvantages of decrease of electron-emitting efficiency, and crosstalk: cold cathodes such as surface conduction type emitting elements and field emitting elements in which initial velocity of emitted electrons are large; in particular, electron-emitting elements in which the initial velocity of emitted electrons is in a range of from 4.0 eV to 200 eV, and the electron beam is deflected from the perpendicular direction toward a high resistance electrode side because the electrons in a beam emitted from an electron-emitting section have velocity component directing to the high resistance electrode on application of a voltage. Hence, the technique of control of the potential of the supporting member according to the present invention is significantly effective in the image-forming device employing the above electron-emitting elements.




The image-forming member in the present invention may be made from any material which, on irradiation of electron-beam emitted for the electron-emitting element, causes luminescence, color change, electrification, denaturing, deformation, or a like change. The example of the material includes fluorescent materials and resist materials. In the case where fluorescent materials are used, the image formed is a luminescent image or a fluorescent image, and for formation of full-color luminescent image the image-forming member is formed from luminescent materials of three primary colors of red, green, and blue.




The electron-emitting element and the image-forming member are arranged in such manners as: (A) the electron-emitting elements


5


and the image-forming member


8


as shown in

FIGS. 1 and 2

are respectively disposed on counterposed substrate faces


6


and


1


in an envelope; or (B) the electron-emitting elements


75


and the image-forming member


78


are disposed on the one and the same face of the substrate


71


as shown in FIG.


17


. In the case of(B), since the positive ions generated by collision of emitted electrons collide less against the residual gas in the envelope, deterioration of the electron-emitting element is remarkably prevented, thereby giving longer life of the electron-emitting elements than in the case of (A). Furthermore, the arrangement as in the case of (B) is preferred particularly for the electron-emitting elements in which the electron beam is deflected from the perpendicular direction toward the high resistance electrode as in the case of surface conduction type emitting elements and field emitting elements.




The supporting member in the present invention may be a member constituted of an electroconductive materials or an insulating member such as glass which is coated with an electroconductive material. Otherwise the supporting member may be an insulating material on which electroconductivity is imparted partially. In this case, the electroconductivity-imparted region is placed in vicinity to the electron-emitting section of the electron-emitting element. Further, in the present invention, the supporting members can be arranged on any pattern provided they are capable of maintaining the envelope against atmospheric pressure. Consequently, it is not necessary for them to be stationed at every electron-emitting sections.




In a case where an electron beam emitted from the electron-emitting element is modulated in accordance with an information signal (control of the quantity of emitted electrons, including on-off control of electron emission), a modulation means is additionally provided. Such a modulation means includes: (I) means in which voltage is applied in accordance with an image information signal to a modulation electrode


18




a


placed on the same plane of the substrate


1


as an electron-emitting element


5


as shown in

FIG. 11

, or a modulation electrode


60


formed by lamination on an electron-emitting element


5


with interposition of an insulating layer


62


as shown in

FIG. 15

to form a desired potential plane in vicinity to the electron-emitting section, thereby controlling the quantity of electron emission; and (II) means in which potential is applied in accordance with image information signals to scanning electrodes


2




a


and information signal electrodes


2




b


arranged in an XY matrix and connected to respective electron-emitting sections


4


arranged also in an XY matrix.




The above constituting members are placed in the envelope. The inside of the envelope is kept at a vacuum degree in a range of from 10


−5


to 10


−9


torr in view of the electron emission characteristics of the electron-emitting elements. The aforementioned supporting member is placed so as to support sufficiently the envelope against the external atmospheric pressure, the shape, the arrangement, and the position being suitably decided.




The image-forming device of the present invention includes the optical printers described below.




As shown in

FIGS. 31

to


33


, the optical printer of the present invention employs, as a light source


83


, the above image-forming member of the above image-forming device formed by luminescent material. A luminescent pattern is formed in accordance with information signals as described above, and the light beam emitted from the luminescent material in accordance with the luminescent pattern is projected to a recording medium (


86


,


88


,


89


) to form an optical pattern if the recording medium is a photosensitive material, or a thermal pattern if the recording medium is a heat-sensitive material. The optical printer has a support (e.g., a drum


87


, and a delivering rollers


85


) for supporting or delivering the recording medium. The recording medium may be a photosensitive drum


89


as shown in FIG.


33


.




The present invention is described specifically and in more detail by reference to Embodiments.




Embodiment 1





FIG. 1

illustrates a rough perspective view of an image-forming device of a first embodiment of the present invention.

FIG. 2

is a cross-sectional view of the image-forming device viewed at A-A′ in FIG.


1


.




In the drawing, a rear plate


1


, an external frame


11


, and a face plate


9


constitute an envelope. An electron-emitting section


4


, and electrodes


3




a


and


3




b


for applying voltage to the electron-emitting section constitute an electron-emitting element


5


. Wiring electrodes


2




a


and


2




b


(


2




a


: a scanning electrode, and


2




b


: an information signal electrode) are connected respectively to the above electrodes


3




a


and


3




b


. A glass substrate


6


, a fluorescent material (image-forming member)


8


, and a transparent electrode


7


for applying voltage to the fluorescent material constitute the face plate


9


. The numeral


12


denotes a luminescent spot, the numeral


10


denotes an electroconductive supporting member to support the envelope against external atmospheric pressure, and the numeral


13


denotes a power source for applying prescribed voltage to the electroconductive supporting member.




As shown in the drawing, the electron-emitting element


5


and the fluorescent material


8


as the image-forming member are placed respectively on counterposed substrates (a rear plate


1


and a glass plate


6


). The electroconductive supporting member


10


is placed between the substrates so as to support the rear plate


1


and the face plate


9


against the atmospheric pressure. As shown in

FIG. 2

, the supporting member


10


is positioned between the electron-emitting elements


5


on the rear plate side, and is positioned on the face plate side without electrical contact with the fluorescent materials


8


and the transparent electrode


7


, so that the potential of the supporting member


10


is decided certainly by the potential applied by the power source


13


.




The electron-emitting element


5


is the aforementioned surface conduction type emitting element. A plurality of electron-emitting elements are arranged in an XY matrix. All of the electrodes


3




a


of the electron-emitting elements are connected to the scanning electrodes


2




a


. The electrodes


3




b


are connected to the information signal electrodes


2




b


. Thus the electron-emitting element has a simple matrix construction which emits electrons on application of voltage between the electrodes


2




a


and


2




b


in correspondence with information signals.




The transparent electrode


7


constructing the face plate


9


is connected to an external power source although it is not shown in the drawing. Therefore a prescribed voltage is applied through the transparent electrode


7


to the fluorescent material


8


placed adjacent to the transparent electrode


7


. This voltage is usually in the range of from 800 V to 6 kV, but is not limited thereto. In the case where a color image is displayed, the fluorescent material


8


is replaced with three-primary color fluorescent materials of red, green, and blue.




A process for producing an image-forming device of this Embodiment is briefly described below.




(1) An insulating substrate, as a rear plate


1


, is sufficiently washed. Thereon electrodes


3




a


,


3




b


are formed according to conventional vapor deposition technique and photolithography technique. Subsequently an information electrodes


2




b


is formed similarly.




(2) For electrical insulation of an information signal electrode


2




b


from a scanning electrode


2




a


, an insulating layer is formed at the site where the electrodes will intersect (not shown in the drawing). Then a scanning electrode


2




a


is provided according to a vapor deposition technique and a patterning technique (including photolithography and etching).




In the above steps (1) and (2), the electrodes are formed with a material mainly composed of nickel, gold, aluminum, or the like to have sufficiently low electric resistance. The insulating layer is formed mainly from SiO


2


, or the like. In surface conduction type emitting elements, the gap G between the electrodes


3




a


and


3




b


(electrode gap) is preferably in a range of from 0.01 μm to 100 μm, more preferably from 0.1 μm to 10 μm in view of the electron-emitting efficiency. In this Embodiment, the gap is 2 μm, the length L of the electron-emitting section


4


is 300 μm, and the arrangement pitch of the electron-emitting elements


5


is 1.2 mm.




(3) Then an ultrafine Pd particle film having particle diameter of about 100 Å is formed between the opposing electrodes


3




a


and


3




b


. As the material for the ultrafine particle film, suitable are metals such as Ag and Au, and oxides such as SnO


2


and In


2


O


3


in addition to the above-mentioned Pd. In surface conduction type emitting elements, the particle diameter is preferably in a range of from 10 Å to 10 μm especially in view of the electron-emitting efficiency. The ultrafine particle film is adjusted to have a sheet resistance preferably in a range of from 10


3


Ω/square to 10


9


Ω/square. The ultrafine particle film having desirable characteristics can be prepared, for example, by applying a dispersion of an organometal and heat-treating the applied organometal to form an ultrafine particle film between the electrodes, instead of gas deposition method mentioned above.




(4) Then, on a glass substrate


6


, a transparent electrode


7


is formed with a material of ITO according to conventional technique of vacuum deposition and patterning, and thereon a fluorescent material


8


is laminated, thus completing a face plate


9


.




(5) An electroconductive supporting member


10


is placed as shown in FIG.


2


. The electroconductive supporting member employed here is prepared by working photosensitive glass


10




a


and providing an electroconductive film


10




b


on the surface thereof. The electroconductive support has a thickness T


2


of 150 μm, a height T


1


of 1500 μm.




(6) An external frame


11


of 1.5 mm thick is placed between rear plate


1


and the the face plate


9


. Then frit glass is applied between the face plate


9


and the external frame


2


, and also between the rear plate


1


and the external frame


2


. The applied matter is fired at 410° C. for 10 minutes or longer to bond them. The electroconductive supporting member


10


is placed in a direction perpendicular to the rear plate


1


so as to serve an atmospheric pressure-supporting column.




(7) The atmosphere in the envelope thus prepared is evacuated by a vacuum pump to a vacuum degree of 10


−6


to 10


−7


torr. It is subjected to a forming treatment, and then the envelope is sealed.




The driving procedure of the image-forming device of this Embodiment is explained below.




Firstly, an electron-emitting voltage of 14 V is applied to a desired one line of the scanning electrodes out of the plurality of scanning electrodes


2




a


, and a voltage of a half of the electron-emitting voltage (namely 7 V) is applied to other lines. Simultaneously, a voltage of 0 V is applied to an information electrode


2




b


connected to an element to emit electrons in accordance with an image information signal for one line, and a voltage of a half of the electron-emitting voltage (namely 7 V) is applied respectively to the information signal electrodes


2




b


connected to other electron-emitting elements. Such a procedure is conducted sequentially with the adjacent scanning electrodes


2




a


to emit electrons for one image, thus obtaining a luminescent image of a fluorescent material


8


. The electroconductive supporting member


10


is kept preliminarily by the power source


13


at a potential not exceeding 14 V which is the maximum potential applied to the electron-emitting elements.




With the image-forming device of this Embodiment, an extremely stable luminescent image was formed without irregularity and time-variation of the luminance. Moreover, no discharge occurred which gives fatal damage to the electron-emitting elements during the drive of the device. A long life of image display is practicable. The fluorescent material may be set at a voltage of 1 kV or higher. Color image display was practicable by replacing the fluorescent material


8


in the device with three primary color fluorescent materials.




Embodiment 2




An image-forming device is prepared in the same manner as in Embodiment 1 except that the construction of the electroconductive supporting member


10


of Embodiment 1 is changed as shown in

FIG. 10

(sectional view). That is, the electroconductive supporting member


15


of this Embodiment is formed such that the electroconductivity-imparting region (electroconductive film


15




b


) covers the supporting member only in the vicinity of the electron-emitting element


5


, and the electroconductive film


15




b


does not cover the area of the supporting member in the vicinity of the fluorescent material


8


.




The same effect as in Embodiment 1 was confirmed in this Embodiment also. Since the area near the fluorescent material


8


of the electroconductive supporting member


15


is insulated (photosensitive glass


15




a


), the voltage of the fluorescent material given by the transparent electrode


7


can be made higher than that in Embodiment 1. Therefore, much higher luminance of image display could be achieved, and color image could be obtained more readily.




Embodiment 3





FIG. 11

is a rough perspective view of the image-forming device of this Embodiment.

FIG. 12

is a cross-sectional view at A-A′ in FIG.


11


.




In FIG.


11


and

FIG. 12

, wiring electrodes


17




a


and


17




b


of the electron-emitting element are connected respectively to the electrodes


3




a


and


3




b


. A plurality of electron-emitting elements


5


(surface conduction type emitting elements) are arranged between the wiring electrodes


17




a


and


17




b


. On the rear plate


1


, electron sources are formed in lines. Modulation electrodes


18




a


, which control ON/OFF of electron beams emitted by the electron-emitting elements, are arranged in an XY matrix relative to the lines of the electron source. The wiring electrodes


17




a


and


17




b


are insulated from the modulation electrodes


18




a


, which is not shown in the drawing. Electroconductive supporting member


16


is arranged on the electrode


3




b


, and is connected electrically to the electrode


3




b


so that the both are at the same potential. The image-forming device of this Embodiment is prepared approximately in the same manner as in Embodiment 1.




The procedure of driving the image-forming device of this Embodiment is described below.




A voltage of 0.8 to 6.0 kV is applied to the fluorescent material


8


through the transparent electrode


7


. A voltage is applied to the desired electron sources in lines by applying a voltage of 0 V to the wiring electrodes


17




a


and a voltage of 14 V to the wiring electrodes


17




b


. Simultaneously, a prescribed voltage is applied to a plurality of modulation electrodes


18




a


in correspondence with information signals, whereby electron beams are emitted from desired electron-emitting elements according to the information signal. The potential of the electroconductive supporting member


16


is controlled not to exceed 14 V, namely the maximum potential applied to the electron-emitting elements


5


through the wiring electrodes


17




b


and the electrodes


3




b


. The modulation electrodes can control the electron beam to be in an off state by application of a voltage of −50 V or lower, and control it to be in an on state by application of a voltage of 20 V or higher. The quantity of the electron of the electron beam can be continuously varied in a range of the voltage from −60 V to 40 V, and tone displaying is practicable.




Such procedure is sequentially conducted for adjacent electron sources in lines to emit electrons for one picture to obtain a luminescent image on the fluorescent material.




With the image-forming device of this Embodiment, similarly in Embodiment 1, an extremely stable luminescent image was formed without irregularity and time variation of the luminance. Moreover, no discharge occurred which gives fatal damage to the electron-emitting elements during the drive of the device, whereby a long life of image display is practicable. The fluorescent material may be set at a voltage of 1 kV or higher. Color image display is practicable by replacing the fluorescent material


12


in the device with a three primary color fluorescent material. Furthermore, the image-forming device of this Embodiment can be made simple at low cost in comparison with the one of Embodiment 1, because no separate power source is required for controlling the potential of the electroconductive supporting member


18


.




Embodiment 4




The image-forming device of Embodiment 4 was driven in the same manner as in Embodiment 3 except that the voltages of the wiring electrodes


17




b


and


17




a


are respectively 0 V, and 14 V. Therefore, in this Embodiment, the potential of the electroconductive supporting member


16


is kept at 0 V through the wiring electrode


17




b


and the electrode


3




b


(low potential electrode).




With the image-forming device of this Embodiment, the effect is almost the same as in Embodiment 3. Furthermore, even when the voltage applied to the modulation electrode


18




a


is set lower as a whole in comparison with Embodiment 3, nearly the same quality of image could be displayed.




Embodiment 5





FIG. 13

is a rough perspective view of the image-forming device of this Embodiment.

FIG. 14

is a cross-section thereof viewed at A-A′ in FIG.


13


. The numeral


18




b


denotes a modulation electrode, and the numeral


19


denotes an electroconductive supporting member.




The image-forming device of this Embodiment has the same construction as that of Embodiment 3, except that the modulation electrode


18




a


of Embodiment 3 is placed so as to surround both sides of the electron-emitting element as indicated by the numeral


18




b


in

FIG. 13

, and the electroconductive supporting member of Embodiment 3 is electrically connected with the wiring electrode


17




a


as indicated by the numeral


19


in

FIG. 13

so that the surface of the electroconductive supporting member may be at the same potential as that of the wiring electrodes


17




a.






The image-forming device of this Embodiment is driven in the same manner as that of Embodiment 3. In this Embodiment, the potential of the electroconductive member


19


is controlled through the wiring electrode


17




a


to be 14 V, which is the maximum potential applied to the electron-emitting element


5


.




With the image-forming device of this Embodiment, similarly in Embodiment 3, an extremely stable luminescent image was formed without irregularity and time-variation of the luminance. Moreover, no discharge occurred which gives fatal damage to the electron-emitting elements during the drive of the device, whereby a long life of image display is practicable. The fluorescent material may be set at a voltage of 1 kV or higher. Color image display is practicable by replacing the fluorescent material


9


in the device with three primary color fluorescent materials. Furthermore, even when the voltage applied to the modulation electrode


18




b


is set lower as a whole than Embodiment 3, nearly the same quality of image could be displayed.




Embodiment 6




The image-forming device of Embodiment 6 is driven in the same manner as in Embodiment 5 except that the voltage of the wiring electrodes


17




b


is 14 V, and the voltage of the wiring electrode


17




a


is a 0 V. Therefore, in this Embodiment, the potential of the electroconductive supporting member


19


is kept at 0 V through the wiring electrode


17




a


(low potential electrode).




With the image-forming device of this Embodiment, the effect was almost the same as in Embodiment 5. Furthermore, the displayed image was more uniform than that in Embodiment 5.




Embodiment 7





FIG. 15

is a rough perspective view of the image-forming device of this Embodiment.

FIG. 16

is a cross-sectional view thereof at A-A′ in FIG.


15


. The numeral


60


denotes modulation electrodes, the numeral


62


denotes an insulating layer, and the numeral


61


denotes an electroconductive supporting member.




The image-forming device of this Embodiment has the same construction as that of Embodiment 5, except that the modulation electrode


60


is provided under the electron-emitting element


5


with interposition of an insulating layer


62


. The image-forming device of this Embodiment is driven in the same manner as that of Embodiment 5. In this Embodiment, the potential of the electroconductive member


61


is controlled through the wiring electrode


17




a


to be at 14 V, which is the maximum potential applied to the electron-emitting element


5


.




With the image-forming device of this Embodiment, similarly in Embodiment 5, an extremely stable luminescent image was formed without irregularity and time variation of the luminance. Moreover, no discharge occurred which gives fatal damage to the electron-emitting elements during the drive of the device, whereby a long life of image display is practicable. The fluorescent material may be set at a voltage of 1 kV or higher. Color image display is practicable by replacing the fluorescent material


8


in the device with three primary color fluorescent materials.




Embodiment 8




The image-forming device of Embodiment 7 was driven in the same manner as in Embodiment 7 except that the voltage of the wiring electrodes


17




b


is 14 V, and the voltage of the wiring electrode


17




a


is 0 V. Therefore, in this Embodiment, the potential of the electroconductive supporting member


61


was kept at 0 V through the wiring electrode


17




a


(low potential electrode).




With the image-forming device of this Embodiment, the effect is almost the same as in Embodiment 7. Furthermore, the displayed image is more uniform than that in Embodiment 7.




Embodiment 9





FIG. 17

is a perspective view of an image-forming device of a ninth embodiment.

FIG. 18

is a sectional view of the device illustrated in FIG.


17


.

FIG. 19

is a sectional view of one electron emitting section of the device. In this device, as shown in the drawings, an electron-emitting element


75


emits electrons by application of voltage between opposing electrodes of a positive (high potential) electrode


73




a


and a negative (low potential) electrode


73




b


. An image-forming member


78


forms images by irradiation of an electron beam emitted by the electron-emitting element


75


. The electron-emitting element


75


and the image-forming member


78


are provided in juxtaposition on the same insulating substrate


71


. The insulating substrate


71


, supporting frame


80


, and face plate


79


constitute a vacuum vessel (or an envelope). An electroconductive member wall (or an atmospheric pressure-supporting member)


76


is placed such that at least a portion of the end thereof is situated on a part of the negative electrode


73




b.






The electroconductive member wall


76


is connected electrically with the negative electrode


73




b


, and is at the same potential with that of the negative electrode


73




b.






A plurality of the electron-emitting elements are arranged in lines. In each line, the positive electrodes


73




a


and the negative electrodes


73




b


are connected respectively by element-wiring electrodes


72




a


and


72




b


. The electron-emitting elements


75


connected by the same element-wiring electrodes


72




a


and


72




b


constitute one electron-emitting element line which is driven simultaneously.




The image-forming members


78


are constituted by a fluorescent material, and are provided corresponding to respective electron-emitting elements, and form electron-emitting element lines, each line being connected in a direction perpendicular to the above electron-emitting element lines. The connection in the lines is made by image-forming member wiring electrode


77


, through which voltage is applied to each image-forming member


78


. Between the image-forming member wiring electrodes


77


and the element-wiring electrodes


72




a


and


72




b


, an insulation film is provided to secure electrical insulation. For obtaining a color image, image-forming members


78


made of fluorescent material of R (red), G (green), and B (blue) are sequentially provided.




The electron-emitting element


75


is of a surface conduction type cold cathode, and has electron-emitting section


74


between the positive and negative electrodes


73




a


and


73




b


. From the electron-emitting section, electrons are emitted on application of voltage between the electrodes.




The face plate


79


is transparent, and is supported by an external frame


80


to confront the insulating substance


71


. The face plate


79


, an insulating substrate


71


, and the external frame


80


constitute a panel vessel (or an envelope). The pressure in the vessel is kept at 10


−5


to 10


−7


torr in view of electric characteristics of the electron-emitting elements.




A process for producing the device is described below.




An insulating substrate


71


is sufficiently washed. Thereon, element electrodes


73




a


and


73




b


and image-forming member wiring electrode


77


are prepared from a material mainly composed of nickel according to conventional techniques of deposition and photolithography. Any material may be used if the electrode is made to have sufficiently low electric resistance.




An insulating layer is formed between image-forming member wiring electrodes


77


and element-wiring electrodes


72




a


and


72




b


and at the position corresponding to the element-wiring electrodes


72




a


and


72




b


on the image-forming member wiring electrodes


77


for electric insulation according to a film forming technique for thin film and thick film formation. The insulating layer consists of SiO


2


. In this Embodiment, the thickness of the insulation film is 5 μm.




Then element-wiring electrodes


72




a


and


72




b


are prepared from a material mainly composed of Ni according to vapor deposition and etching such that the element electrodes


73




a


and


73




b


form an opposing electron-emitting section


74


. In surface conduction type emitting elements, the electrode gap G (see

FIG. 19

) between the element electrodes


73




a


and


73




b


is preferably in a range of from 0.01 μm to 100 μm, more preferably 0.1 μm to 10 μm. In this Embodiment, the gap is 2 μm. The length L (see

FIG. 17

) of the portion corresponding to the electron-emitting section


74


is 300 μm. The width S


2


(see

FIG. 19

) of the element electrodes


73




a


and


73




b


are desired to be narrower, but are practically in a range of from 1 μm to 100 μm, preferably 1 μm to 50 μm. In this Embodiment (see FIG.


19


), the distance S


1


between the element electrodes


73




a


and the adjacent image-forming member


78


is 80 μm; the breadth S


2


of the element electrodes


73




a


and


73




b


is 50 μm; the distance S


3


between the element electrode


73




b


and the adjacent image-forming member


78


is 200 μm. The arrangement pitch of the element-wiring electrodes


72




a


and


72




b


is 1 mm, and the arrangement pitch of the electron-emitting section


74


is 1 mm.




As the electron-emitting section


74


, an ultrafine particle film is formed between the opposing electrodes with Pd as the material by gas deposition. Other preferred materials include metals such as Ag and Au, and oxides such as SnO


2


and In


2


O


3


, but are not limited thereto. In surface conduction type emitting elements, the diameter of the ultrafine particles is preferably in a range of from 10 Å to 10 μm particularly in view of electron emission efficiency, and the sheet resistance of the ultrafine particle film is preferably in a range of from 10


3


Ω/square to 10


9


Ω/square. In this Embodiment, the diameter of the Pd particles is about 100 Å. No by the gas deposition method mentioned above, desired characteristics of the ultrafine particle film can be prepared, for example, by applying a dispersion of an organometal and heat-treating the applied organometal to form an ultrafine particle film between the electrodes.




An image-forming member


78


mainly composed of a fluorescent material is prepared in a thickness of about 10 μm by a printing method. It may be formed by another method such as a slurry method, and a precipitation method.




An electroconductive member wall


76


is placed on the negative element electrode


73




b


. The atmospheric pressure-supporting member


76


is constituted of an electroconductive material. In this Embodiment, it is made by working ordinary photosensitive glass and providing an electrode over the entire surface thereof. However, the member is not limited thereto, but may be made of a metal fabricated in a prescribed dimension. The electroconductive member wall


76


is formed to have a thickness T


2


of 150 μm, and a height T


1


of 1200 μm (see FIG.


18


).




Between the insulating substrate


71


having the electron-emitting elements thereon and a face plate


79


, an external frame


80


of about 1.2 mm thick is placed. The interstices thereof are bonded by applying frit glass and firing it at 430° C. for 10 minute or longer. The electroconductive member


76


is placed perpendicularly to the insulating substrate


71


to serve an atmospheric pressure-supporting column between the insulating substrate


71


and the face plate


79


.




The glass vessel completed thus is evacuated with a vacuum pump to attain a sufficient vacuum degree, then subjected to a forming treatment, and is sealed. The vacuum degree is 10


−6


to 10


−7


torr to obtain a stable performance.




The operation of the device is explained below.




With the above construction, when a voltage pulse is applied to a certain electron-emitting element line, 0 V to an element-wiring electrode


72




b


and 14 V to a corresponding element-wiring electrode


72




a


, then electrons are emitted from the electron-emitting elements


75


connected thereto. Simultaneously, the voltage of 0 V is applied to the electroconductive supporting member


76


through the negative element electrode


73




b


, and a voltage corresponding to information signal for the electron-emitting element line is applied to the image-forming member


78


through the image-forming member wiring electrode


77


.




The electron beam emitted from an electron-emitting element


75


is deflected toward the positive electrode


73




a


, and is turned on or off by the voltage applied to the image-forming member


78


adjacent to the positive electrode


73




a


. If a positive high voltage is applied to the corresponding image-forming member


78


, the electron beam is attracted by the image-forming member


78


and collides against it to cause luminescence of the luminescent material thereon, namely it being in an on state. If a relatively low positive voltage is applied to the image-forming member


78


, the image-forming member does not emit light, and in an off state. The voltage applied to the image-forming member


78


is in a range of from 10 to 1000 V, but depends on the kind of the employed fluorescent material and require luminance, and is not limited to the above range. In such a manner, one line of information signals are displayed by the image-forming member


78


corresponding to the electron-emitting element line.




Subsequently, the pulse voltage of 14 V is applied between the element-wiring electrodes


72




b


and


72




a


in the adjacent line of electron-emitting elements, and the information of the one line is displayed. This step is sequentially conducted to form one face of a picture image. Briefly, an picture image is displayed by utilizing the group of element-wiring electrodes as the scanning electrodes and image-forming member lines in an XY matrix.




In the case where image is made extremely fine or a high voltage is applied to the image-forming member


78


as in this Embodiment, if the electroconductive member wall


76


is not provided, the electron beam e emitted fro the electron-emitting element


75


can collide against two image-forming members


78


for two image elements and cause crosstalk as shown in

FIG. 20

, even if the construction is the same except for the absence of the electroconductive wall element. On the contrary, in this Embodiment, crosstalk does not occur since the electroconductive supporting member


76


is provided at each interval of the image elements. Furthermore, the electroconductive supporting member


76


is connected to the negative element electrode


73




b


, whereby, the electron beam e emitted from the electron-emitting element


75


collides effectively against the image-forming member


78


to give an image of high resolution.




According to this Embodiment, with surface conduction type emitting elements which can be driven in response to a voltage pulse of 100 picoseconds or less, 10,000 or more scanning line can be formed for 1/30 second of one image display.




In this Embodiment, uniform image display is realized for a long time without irregularity of luminance caused by damage of the electron-emitting element


75


caused by ion impact, since the electron-emitting element


75


and the image-forming member


78


are formed on the same substrate


71


, and the electron beam is made to collide against the image-forming member


78


under the voltage applied thereto. With a surface conduction type electron-emitting element, in which electrons are emitted into a vacuum space at an initial velocity of several electron volts, modulation can be highly effectively conducted according to the present invention.




In the production of the device, alignment of the electron-emitting element


75


with the image-forming member


78


is easily conducted according to a thin-film forming technique, which enables the production of a large image area display with high resolution at low cost. Further, the gap between the electron-emitting section


74


and the image-forming portion


78


can be made precise, so that an image-display device can be obtained without irregularity of luminance with extremely high uniformity of the image.




The face plate


79


and the insulating substrate


71


are pressed by the atmospheric pressure as the envelope is evacuated. This atmospheric pressure is supported by the electroconductive supporting member


76


between the face plate


79


and the insulating substrate


71


. Accordingly, the face plate


79


and the insulating substrate


71


can be constructed from thinner materials, which enables a lighter weight of the device and a larger image area.




Embodiment 10





FIG. 21

is a perspective view of the image-forming device of this embodiment.

FIG. 22

is a sectional view of the device illustrated in FIG.


21


. This device is made by modifying the device of Embodiment 9 by providing a transparent electrode


81


on the face plate


79


opposing the substrate


71


, and providing an insulator


82


between the electro-conductive supporting member


76


and the transparent electrode


81


. A power source for applying voltage to the transparent electrode


81


is provided although it is not shown in the drawing. The transparent electrode


81


is made of an ITO (indium tin oxide) film, but is not limited thereto. The insulator


82


insulates electrically the transparent electrode


81


from the electroconductive member wall


76


, and is preferably in a size nearly equal to the breadth T


2


of the electroconductive member wall


76


. Otherwise, the device has the same construction, and prepared in the same manner as in Embodiment 9.




The voltage applied to the transparent electrode


81


is preferably decided so that the electron beam emitted from the electron-emitting element


75


may collide against the image-forming-member uniformly. The voltage depends on the voltage applied to the electron-emitting element


75


and the image-forming member


78


, and the structure of the electron-emitting element


75


, generally being selected in a range of from 0 V to the voltage applied to the image-forming member


78


.




This device was evaluated by driving it in the same manner as in Embodiment 9. As the results, the same effect as in Embodiment 9 was achieved, and further, finer and higher quality of image display could be obtained because of more uniform collision of electrons on the image-forming member


78


.




Embodiment 11





FIG. 23

is a perspective view of an image-forming device of this embodiment.

FIG. 24

is a sectional view of the device illustrated in FIG.


23


. This device has the same construction as that of Embodiment 10 except that an electroconductive member wall


76


is placed such that the lower end thereof is not on a negative electrode


73




b


but is on a portion of a substrate


71


between the negative electrode


73




b


and an image-forming member


78


adjacent thereto and the upper end of the electroconductive member wall comes into direct contact with a transparent electrode (a potential-defining electrode)


81


. This device is prepared in the same manner as the device of Embodiment 10. Therefore, the conductive supporting member


76


is at the same potential as the transparent electrode


81


.




On driving, the transparent electrode


81


is set preliminarily at a potential within the range mentioned in Embodiment 10 to give satisfactory luminance and uniformity of luminescent spots. The device is driven in the same manner as in Embodiment 9. In the driving, the electron path e is as shown in

FIG. 24

like in Embodiment 9, thus the same effect being obtained as in Embodiment 10 by aid of the transparent electrode


81


without crosstalk in comparison with the case of

FIG. 26

having no electroconductive member wall


76


.




Embodiment 12





FIG. 27

is a sectional view of an image-forming device of a twelfth embodiment of the present invention. In this Embodiment, the insulator


82


is eliminated from the image-forming device of Embodiment 10, thereby the electroconductive supporting member


76


is connected with the transparent electrode


81


, and the electroconductive supporting member


76


and the transparent electrode


81


being at the same potential (0 V) as the element electrode


73




b.






The device of this Embodiment was found to give the same effect as in Embodiment 10 as the result of driving in the same manner.




Embodiment 13





FIG. 28

is a perspective view of an image-forming device of a thirteenth Embodiment of the present invention.

FIG. 29

is a sectional view of the device. This device has the same construction as that of Embodiment 12 except that the electroconductive supporting member


76


is placed on the negative electrode


73




b


and an insulator is provided between the electroconductive supporting member


76


and the negative electrode


73




b


. This device is prepared in the same manner as in Embodiment 12.




The insulator


82


serves to maintain electric insulation between the electroconductive supporting member


76


and the negative element electrode


73




b


. The insulator may be made from any insulating material such as SiO


2


, glass and the like. In this Embodiment, it is made from SiO


2


. The size of the insulator


82


is desired to be as small as possible provided that the electric insulation is maintained, because, with its size much larger than that of the electroconductive supporting member


76


, the insulator


82


will be charged up by action of a charged beam such as ions and electrons. Therefore, the insulator


82


is preferably made smaller than the thickness T


2


of the electroconductive supporting member


76


.




This device was evaluated by driving in the same manner as in Embodiment 9, and found that the effect is the same as that of Embodiment 9, and further that bright image display could be obtained without crosstalk even with a smaller arrangement pitch of image-forming members


78


and the electron-emitting elements


75


.




Embodiment 14





FIG. 30

illustrates roughly the constitution of an optical printer according to a fourteenth Embodiment of the present invention. In

FIG. 30

, the reference numerals correspond to those in

FIG. 17

, denoting the same parts. This device is provided with a light source


130


, a lens array


124


, and a recording medium


125


. The lens array is constructed generally by a SELFOC lens, and is placed between the light source


130


and the recording medium


125


to form a pattern of the light emitted by the image-forming member


78


on the recording medium


125


. The light source


130


is a linear light source comprising only one row of electron-emitting elements, and is prepared in the same manner as in Embodiment 9. The electroconductive supporting member


76


is in a shape of a comb as shown in FIG.


30


. The device is provided also with a vacuum glass vessel


99


, a rear plate


97


, an electrode


121


for applying voltage to an element-wiring negative electrode


72


of electron-emitting elements


75


, electrodes


120


for applying voltage to positive element electrodes


73




a


, an image-forming member wiring electrode


48


connected to each of image-forming members


78


composed of a fluorescent material, and an electrode


123


for applying voltage to the image-forming member wiring electrode


98


.




The recording medium


125


is prepared by applying uniformly a photosensitive composition in a thickness of 2 μm on a polyethylene terephthalate film. This photosensitive composition is prepared by dissolving, in 70 parts by weight of methyl ethyl ketone, a mixture of (a) 10 parts by weight of polyethylene methacrylate (tradename: Dianal BR, made by Mitsubishi Rayon Co., Ltd.) as a binder; (b) 10 parts by weight of trimethylolpropane triacrylate (tradename TMPTA, made by Shin Nakamura Kagaku K.K.) as a monomer; and (c) 2.2 parts by weight of 2-methyl-2-morpholino(4-thiomethylphenyl)propan-1-oxy (tradename: Irugacure 907, made by Ciba Geigy Co.) as a polymerization initiator. The fluorescent material constituting the image-forming member


78


employed is mainly composed of a silicate fluorescent material (Ba,Mg,Zn)


3


Si


2


O


7


:Pb


2+


.




With this construction, a voltage of 10 to 500 V is applied through the electrode


123


to the image-forming member


78


, while a voltage of 0 V is applied to the negative element electrode


73




b


of the electron-emitting element


75


and also to the electroconductive supporting member


76


.




In this state, a pattern of light is emitted for one line of an image, on applying modulation voltage of one line of image through the electrodes


120


to the positive element electrode


73




a


in corresponding with information signals for the image to be formed. This pattern of emitted light is projected through the lens array


124


to the recording medium


125


to form an image. Thereby photopolymerization occurs in the recording medium


125


to cause curing of the medium and formation of one line of image. Then the light-emitting source


130


and the recording medium


125


move relatively for one line of image, and next one line of image is formed in the same manner. Such steps of image formation and relative movement are repeated to complete the whole image.




The synchronous movement of the light-emitting source


130


relative to the recording medium


125


may be conducted by driving the recording medium supported by a supporting member


87


by means of a conveying roller


85


as shown in

FIG. 31

, or otherwise by moving the light-emitting source


83


as shown in FIG.


32


. In either synchronous movement, a photopolymerization pattern is formed on the recording medium in accordance with the information signal. Therefrom, an optical recording pattern is formed on the polyethylene terephthalate film in accordance with the information signal.




In this Embodiment, a sharp and uniform optical recording pattern is obtained at a high speed with high contrast, and with high resolution without crosstalk owing to the provision of electroconductive supporting member


76


.




Additionally, an optical printer having a similar effect is produced by utilizing the construction of any of Embodiment 1 to 4 as the light-emitting source for the optical printer of this Embodiment.




Embodiment 15





FIG. 33

illustrates roughly the construction of an optical printer according to a fifteenth embodiment of the present invention. This apparatus has a light-emitting source


83


and a lens array


84


operating similarly as that of Embodiment 14, a drum-shaped electrophotographic sensitive member


89


as the recording medium, an electrifier


94


, a developer


90


, a static eliminator


91


, and a cleaner


93


, and forms an image finally on a paper sheet. The fluorescent material used for the light-emitting source


83


is a yellowish green fluorescent material, Zn


2


SiO


4


:Mn (P


1


fluorescent material). The electrophotographic sensitive member


89


is made of an amorphous silicon sensitive material.




With this construction, as described above, the recording medium


89


rotates synchronously relative to the light-emitting source


83


in the direction indicated by the arrow mark


92




b


, and simultaneously the paper sheet


95


also moves synchronously in the direction indicated by the arrow mark


92




a


. During the rotation, the recording medium


89


is electrified positively by the electrifier


94


, a patterned light is projected imagewise from the light-emitting source


83


through the lens array


84


to remove static charge at the irradiated portion to form a static latent image pattern. The electrifying voltage is suitably in a range of from 100 to 500 V, but is not limited thereto. This latent image pattern is developed with tonner particles by means of a developing device


90


. The adhering toner moves with the rotation of the recording medium


89


, and falls on to the paper sheet


95


placed between the recording medium


89


and the static eliminator


91


on eliminating the static charge by the static eliminator


91


. Thereafter the paper sheet having received the toner is subjected to a fixing treatment to reproduce on the paper sheet


95


the image having been formed by the light-emitting source


83


. The toner remaining on the recording medium


89


is cleaned off by the cleaner


93


, and again electrified by the electrifier


94


.




In this Embodiment, a sharp image is formed with high contrast and high resolution without uneveness of light exposure at a high speed, owing to the advantage of the light-emitting source


83


. Furthermore, owing to the aforementioned effect of the electroconductive supporting member


76


, a toner image of high quality is formed without running of the image.




Additionally, an optical printer having a similar effect is produced by utilizing the construction of any of Embodiments 1 to 4 as the light-emitting source for the optical printer of this Embodiment.




Embodiment 16





FIG. 34

illustrates roughly the constitution of an optical printer according to a sixteenth embodiment of the present invention. This device has the same constitution as that of Embodiment 14 except that a transparent electrode


81


is additionally provided on the face plate


79


which is brought into contact with the electroconductive supporting member


76


, and an insulator


96


is provided between the electroconductive supporting member


76


and the negative electrode


73




b


. This device is prepared in the same manner as in Embodiment 14. Although not shown in the drawings, a power source is provided to apply voltage through the electrode


122


to the transparent electrode


81


.




This device is driven in the same manner as that in Embodiment 14 except that an appropriate voltage is applied preliminarily through the electrode


122


to the transparent electrode


81


, and the electroconductive supporting member


76


is at the same potential as the transparent electrode


81


.




In this Embodiment, not only the same effect as in Embodiment 14 is obtained, but also finer and higher-quality image display is attained. Further, by using this device


131


as the light-emitting source


83


, finer and higher-quality image is obtained.




The image-forming device of the present invention gives uniform and stable images without crosstalk and time-variation. Further, with this device, a lighter weight of an apparatus and a larger size of a screen can be obtained by reducing the thicknesses of the members for forming the vacuum envelop. In particular, in a displaying apparatus employing a fluorescent material for the image-forming member, the device of the present invention gives images with fidelity to information signals, little luminance variation, little unevenness of luminance, and little irregularity of color tone.




In particular, in a device having the electron-emitting member and the image-forming member on the same substrate, the advantages below are obtained: the damage of the electron-emitting device being prevented because of non-occurrence of collision of positive ions against the electron-emitting element; no strict registration of the positions of the electron-emitting element and the image-forming member being required, thereby the image-forming member being placed extremely easily; and no variation of relative position of the electron-emitting elements to the image-forming member occurring after completion of the device.



Claims
  • 1. A method for manufacturing an electron source comprising the steps of:providing an electron-emitting element of a cold cathode type having electrodes, with electrons being emitted from the electron-emitting element when applying a voltage between the electrodes; providing a spacer; forming an envelope which encloses the electron-emitting element and the spacer so that the spacer supports the envelope against atmospheric pressure; electrically connecting the spacer to one of the electrodes of the electron-emitting element within the envelope; and covering the sidewall of the spacer and one end of the spacer at the side of which the spacer is electrically connected to the one electrode with an electrically conductive film.
  • 2. The method according to claim 1, wherein the spacer is electrically connected to the one electrode at a position on the one electrode.
  • 3. The method according to claim 1, wherein a potential applied to the one electrode is lower than that of other electrodes.
  • 4. A method for manufacturing an electron source comprising the steps of:providing an electron-emitting element of a cold cathode type having electrodes, with electrons being emitted from the electron-emitting element when applying a voltage between the electrodes; providing a spacer; forming an envelope which encloses the electron-emitting element and the spacer so that the spacer supports the envelope against atmospheric pressure; contacting the spacer with one of the electrodes of the electron-emitting element within the envelope; and covering the sidewall of the spacer and one end of the spacer at the side of which the spacer is contacted with the one electrode with an electrically conductive film.
  • 5. The method according to claim 4, wherein the spacer is contacted with the one electrode at a position on the one electrode.
  • 6. The method according to claim 4, wherein a potential applied to the one electrode is lower than that of other electrodes.
  • 7. A method for manufacturing an electron source comprising the steps of:providing an electron-emitting element of a cold cathode type, with electrons being emitted from the electron-emitting element when applying different potentials respectively to two wiring electrodes; providing a spacer; forming an envelope which encloses the electron-emitting element, the wiring electrodes and the spacer so that the spacer supports the envelope against atmospheric pressure; electrically connecting the spacer with a first of the wiring electrodes within the housing; and covering the sidewall of the spacer and one end of the spacer at the side of which the spacer is electrically connected to the first wiring electrode with an electrically conductive film.
  • 8. The method according to claim 7, wherein the spacer is electrically connected to the first wiring electrode at a position on the first wiring electrodes.
  • 9. The method according to claim 7, wherein a potential applied to the first wiring electrode is lower than that of the other wiring electrode.
  • 10. A method of manufacturing an electron source comprising the steps of:providing an electron-emitting element of a cold cathode type, with electrons being emitted from the electron-emitting element when applying different potentials respectively to two wiring electrodes; providing a spacer; forming an envelope which encloses the electron-emitting element, the wiring electrodes and the spacer so that the spacer supports the envelope against atmospheric pressure, contacting the spacer with a first wiring electrode within the envelope; and covering the sidewall of the spacer and one end of the spacer at the side of which the spacer is contacted with the first wiring electrode with an electrically conductive film.
  • 11. The method according to claim 10, wherein the spacer is contacted with the first wiring electrode at a position on the first wiring electrodes.
  • 12. The method according to claim 11, wherein a potential applied to the first wiring electrode is lower than that of the other wiring electrode.
  • 13. A method for manufacturing an image forming apparatus comprising the steps of:providing an electron-emitting element of a cold cathode type having electrodes, with electrons being emitted from the electron-emitting element when applying a voltage between the electrodes; providing an image forming member for forming an image on irradiation of the electrons emitted from the electron-emitting element; providing a spacer; forming an envelope which encloses the electron-emitting element, the spacer and the image forming member so that the spacer supports the envelope against atmospheric pressure; electrically connecting the spacer to one of the electrodes of the electron-emitting element within the envelope; and covering the sidewall of the spacer and one end of the spacer at the side of which the spacer is electrically connected to the one electrode with an electrically conductive film.
  • 14. A method for manufacturing an image forming apparatus comprising the steps of:providing an electron-emitting element of a cold cathode type having electrodes, with electrons being emitted from the electron-emitting element when applying a voltage across the electrodes; providing an image forming member for forming an image on irradiation of the electrons emitted from the electron-emitting element; providing a spacer; forming an envelope which encloses the electron-emitting element, the spacer and the image forming member so that the spacer supports the housing against atmospheric pressure; contacting the spacer with one of the electrodes of the electron-emitting element within the housing; and covering the sidewall of the spacer and one end of the spacer at the side of which the spacer is contacted with the one electrode with an electrically conductive film.
  • 15. A method for manufacturing an image forming apparatus comprising the steps of:providing an electron-emitting element of a cold cathode type, with electrons being emitted from the electron-emitting element when applying different potentials respectively to wiring electrodes; providing an image forming member for forming an image on irradiation of the electrons emitted from the electron-emitting element; providing a spacer; and forming an envelope which encloses the electron-emitting element, the wiring electrodes, the spacer and the image forming member so that the spacer supports the envelope against atmospheric pressure; electrically connecting the spacer to one of the wiring electrodes of the electron-emitting element within the envelope; and covering the sidewall of the spacer and one end of the spacer at the side of which the spacer is electrically connected to the one wiring electrode with an electrically conductive film.
  • 16. A method for manufacturing an image forming apparatus comprising the steps of:providing an electron-emitting element of a cold cathode type, with electrons being emitted from the electron-emitting element when applying different potentials respectively to wiring electrodes; providing an image forming member for forming an image on irradiation of the electrons emitted from the electron-emitting element; providing a spacer; forming an envelope which encloses the electron-emitting element, the wiring electrodes, the spacer and the image forming member so that the spacer supports the envelope against atmospheric pressure; contacting spacer with one of the wiring electrodes of the electron-emitting element within the envelope; and covering the sidewall of the spacer and one end of the spacer at the side of which the spacer is contacted with the one wiring electrode with an electrically conductive film.
Priority Claims (1)
Number Date Country Kind
3-201162 Jul 1991 JP
Parent Case Info

This is a divisional application of Application No. 09/145,208, filed on Sep. 1, 1998 now U.S. Pat. No. 6,366,265, which is a continuation of application Ser. No. 08/321,465, filed on Oct. 11, 1994, now U.S. Pat. No. 5,828,352, issued Oct. 27, 1998, which is a continuation of application Ser. No. 07/913,483, filed on Jul. 14, 1992, now abandoned.

US Referenced Citations (16)
Number Name Date Kind
3755704 Spindt et al. Aug 1973 A
4451759 Heynisch May 1984 A
4769575 Murata et al. Sep 1988 A
4904895 Tsukamoto et al. Feb 1990 A
4988913 Kawauchi et al. Jan 1991 A
5063327 Brodie et al. Nov 1991 A
5066883 Yoshioka et al. Nov 1991 A
5245249 Sakurai et al. Sep 1993 A
5347292 Ge et al. Sep 1994 A
5430459 Clerc Jul 1995 A
5606225 Levin et al. Feb 1997 A
5726529 Dean et al. Mar 1998 A
5757123 Nomura et al. May 1998 A
5760538 Mitsutake et al. Jun 1998 A
5828352 Nomura et al. Oct 1998 A
6011567 Nakamura et al. Jan 2000 A
Foreign Referenced Citations (4)
Number Date Country
0 201 609 Nov 1986 EP
0 405 262 Jan 1991 EP
6-441150 Feb 1989 JP
WO9000808 Jan 1990 WO
Non-Patent Literature Citations (3)
Entry
M. I. Elinson, et al. “The Emission of Hot Electrons and the Field Emission of Electrons From Tin Oxide”, Radio Engineering and Electronic Physics, pp. 1290-1296 (Jul. 1965).
G. Dittmer, “Electrical Conduction and Electron Emission of Discontinuous Thin Films”, Thin Solid Films, 9, pp. 317-328 (1972).
M. Hartwell, et al., “Strong Electron Emission From Patterned Tin-Indium Oxide Thin Films”, International Electron Devices Meeting, pp. 519-521 (1975).
Continuations (2)
Number Date Country
Parent 08/321465 Oct 1994 US
Child 09/145208 US
Parent 07/913483 Jul 1992 US
Child 08/321465 US