The present invention relates to an image forming device which forms an image on a sheet.
An image forming device which forms an image on a sheet has been conventionally known. An image forming device includes a photosensitive drum, an intermediate transfer belt, a primary transfer roller, and a secondary transfer roller. A toner image carried on the photosensitive drum is transferred onto the intermediate transfer belt by the primary transfer roller. Further, the toner image on the intermediate transfer belt is transferred onto a sheet by the secondary transfer roller. JP 2005-91613 A discloses a mechanism which makes the primary transfer roller contact and separate from the photosensitive drum and a mechanism which makes the secondary transfer roller contact and separate from the intermediate transfer belt. Additionally, a technique to rotatably support a secondary transfer roller in an opening/closing unit which can be opened/closed to a main body of an image forming device is also known.
In the above-described image forming device, the contact/separation mechanism of the primary transfer roller and the contact/separation mechanism of the secondary transfer roller are each provided with a dedicated driving source. This causes upsizing or cost increase of an image forming device. Additionally, with a technique having a secondary transfer roller rotatably supported in an opening/closing unit, at opening/closing of the opening/closing unit, the secondary transfer roller and the intermediate transfer belt rub against with each other in some cases.
An object of the present invention is to provide an image forming device capable of separating a transfer member from an image carrier in conjunction with moving operation of a plurality of moving members without increasing the number of driving sources.
An image forming device according to one aspect of the present invention is characterized by including an image carrier which carries a developer image; a transfer member in contact with the image carrier forms, together with the image carrier, a transfer nip portion through which a sheet passes, to transfer the developer image onto the sheet; a holding member which holds the transfer member; an urging member which urges the holding member toward the image carrier; a pressing member capable of changing a position between a first position at which the transfer member makes contact with the image carrier by an urging force of the urging member and a second position at which the holding member is pressed against the urging force of the urging member to separate the transfer member from the image carrier; a first moving member which is movable; a second moving member which is movable; a first interlocking mechanism which presses the pressing member in conjunction with the first moving member to change a position of the pressing member from the first position to the second position; and a second interlocking mechanism which presses the pressing member in conjunction with the second moving member to change a position of the pressing member from the first position to the second position, the pressing member including a first pressed portion which is pressed by the first interlocking mechanism, and a second pressed portion which is pressed by the second interlocking mechanism.
The present invention can provide an image forming device capable of separating a transfer member from an image carrier in conjunction with moving operation of a plurality of moving members without increasing the number of driving sources.
In the following, an embodiment of the present invention will be described in detail with reference to the drawings.
<Description of Image Forming Device>
The image forming device 1 includes a device main body 10 (casing) having a generally rectangular solid casing structure, and an automatic document feeder 20 arranged on the device main body 10. The device main body 10 houses a reading unit 25 which optically reads an original document image to be copied, an image forming portion 30 which forms a toner image on a sheet, a fixing portion 60 which fixes the toner image on a sheet, a sheet feeding portion 40 which stores a sheet to be transported to the image forming portion 30, and a transport path 50 which transports a sheet from the sheet feeding portion 40 or a sheet feeding tray 46 to a discharge space 10S via the image forming portion 30 and the fixing portion 60. A sheet S discharged to the discharge space 10S is loaded in a sheet discharge portion 101.
The automatic document feeder (ADF) 20 automatically feeds an original document sheet to be copied toward a predetermined original document reading position in the device main body 10. On the other hand, when a user places an original document sheet at a predetermined original document reading position by hand, the ADF 20 is opened upward. The reading unit 25 optically reads an image of an original document sheet automatically fed from the ADF 20 on an upper surface of the device main body 10 or an image of an original document sheet placed by hand.
The image forming portion 30, which is configured to generate a full-color toner image and transfer the same onto a sheet to form the image on the sheet, includes: an image forming unit 32 having four units 32Y, 32M, 32C, and 32Bk, which respectively form toner images of yellow (Y), magenta (M), cyan (C), and black (Bk), arranged in tandem; an intermediate transfer unit 33 arranged on and adjacent to the image forming unit 32; and a toner supply portion 34 arranged on the intermediate transfer unit 33.
Each of the image forming units 32Y, 32M, 32C, and 32Bk includes a photosensitive drum 321, and a charger 322, an exposure unit 323, a developing device 324, a primary transfer roller 325 (a first moving member, a stretching roller), and a cleaning device 326 which are arranged around the photosensitive drum 321.
The photosensitive drum 321 rotates around an axis thereof to have an electrostatic latent image formed on a surface thereof and carries a toner image (developer image) on the surface thereof. The charger 322 uniformly charges the surface of the photosensitive drum 321. The exposure unit 323, which has a laser light source and optical devices such as a mirror and a lens, irradiates a circumferential surface of the photosensitive drum 321 with a light based on image data of an original document image to form an electrostatic latent image.
The developing device 324 supplies a toner to the circumferential surface of the photosensitive drum 321 in order to develop an electrostatic latent image formed on the photosensitive drum 321. The primary transfer roller 325 is arranged to be opposed to the photosensitive drum 321 with an intermediate transfer belt 331 to be described later provided therebetween. The primary transfer roller 325 primarily transfers a toner image on the photosensitive drum 321 onto the intermediate transfer belt 331. The cleaning device 326 cleans the circumferential surface of the photosensitive drum 321 after toner image transfer.
The intermediate transfer unit 33 includes the intermediate transfer belt 331 (image carrier), a belt driving roller 332 (driving roller), and a belt driven roller 333. The intermediate transfer belt 331 is arranged to be opposed to a plurality of the photosensitive drums 321 and is driven to circulate. To an outer circumferential surface of the intermediate transfer belt 331, toner images (developer images) are transferred from the plurality of photosensitive drums 321 so as to laminate all of the toner images at the same position. The intermediate transfer belt 331 carries a toner image while rotating counterclockwise in
The belt driving roller 332 is connected to a driving mechanism not shown. The belt driving roller 332 is in contact with an inner circumferential surface of the intermediate transfer belt 331 to cause the intermediate transfer belt 331 to circulate. The belt driven roller 333 stretches the intermediate transfer belt 331 at a side opposite to the belt driving roller 332 so as to circulate. The plurality of primary transfer rollers 325 corresponding to the respective colors also functions, at a position different from that of the belt driving roller 332, as a stretching roller in contact with the inner circumferential surface of the intermediate transfer belt 331.
Opposed to a circumferential surface of the belt driving roller 332, a secondary transfer roller 35 (transfer member) is arranged. The secondary transfer roller 35 is rotated by a driving mechanism not shown to transfer a toner image onto a sheet. In particular, the intermediate transfer belt 331 with the inner circumference supported by the belt driving roller 332 and the secondary transfer roller 35 form a nip portion serving as a secondary transfer portion (transfer nip portion) which transfers a full-color toner image superimposed on the intermediate transfer belt 331 onto a sheet when the sheet passes through the secondary transfer portion.
The toner supply portion 34 includes a yellow toner container 34Y, a magenta toner container 34M, a cyan toner container 34C, and a black toner container 34Bk, and supplies the developing devices 324 of the respective image forming units 32Y, 32M, 32C, and 32Bk with toner of the respective colors from discharge screws 341 via supply paths whose figure is omitted.
The sheet feeding portion 40 includes two-staged sheet feeding cassettes 40A and 40B which house the sheet S to be subjected to image forming processing. These sheet feeding cassettes 40A and 40B can be drawn frontward from a front of the device main body 10.
The sheet feeding cassette 40A (40B) includes a sheet housing portion 41 which houses a bundle of sheets composed of stacked sheets S, and a lift plate 42 which lifts up the bundle of sheets to be fed. Above a right end side of the sheet feeding cassette 40A (40B), a pick-up roller 43, and a pair of rollers including a sheet feeding roller 44 and a retard roller 45 are arranged. Driving the pick-up roller 43 and the sheet feeding roller 44 dispenses an uppermost sheet S of the bundle of sheets in the sheet feeding cassette 40A one by one to be fed into an upstream end of the transport path 50.
The transport path 50 includes a main transport path 50A which transports the sheet S from the sheet feeding portion 40 to an output port of the fixing portion 60 via the image forming portion 30, a double-sided transport path 50B which, in a case of printing on both sides of the sheet S, returns a one-side printed sheet to the image forming portion 30, and an upper discharge path 50C and a lower discharge path 50D for directing the sheet S from a downstream end of the main transport path 50A toward the discharge space 10S. The sheet S transported through the upper discharge path 50C and the lower discharge path 50D is discharged to the discharge space 10S by a pair of upper discharge rollers 7B and a pair of lower discharge rollers 7A.
On an upper stream side of the main transport path 50A than a secondary transfer portion 35A, a pair of resist rollers 51 is arranged. The sheet S is stopped once at the pair of resist rollers 51 in a stopped state to perform skew correction. Thereafter, driving the pair of resist rollers 51 to rotate by a driving motor (illustration omitted) at predetermined timing for image transfer results in feeding out the sheet S to the secondary transfer roller 35.
The fixing portion 60 is an induction heating type fixing device which performs fixing processing of fixing a toner image to the sheet S. The fixing portion 60 has a fixing nip portion. Passing of the sheet S through the fixing nip portion results in fixing, to the sheet, a toner image transferred onto the sheet S.
Further, the image forming device 1 includes a transport unit 8 (
Next, the intermediate transfer unit 33 according to the present embodiment will be detailed.
The intermediate transfer unit 33 includes a unit housing 3311, and a roller contact/separation mechanism 33T (the first interlocking mechanism) (
The roller contact/separation mechanism 33T is provided with a contact/separation function of making the primary transfer roller 325 be in contact with or separating the same from the photosensitive drum 321. Specifically, the roller contact/separation mechanism 33T causes the primary transfer rollers 325 of the respective colors to move between a first position at which the primary transfer roller 325 presses the intermediate transfer belt 331 to the photosensitive drum 321 and a second position at which the primary transfer roller 325 is separated from the photosensitive drum 321. The roller contact/separation mechanism 33T includes the roller contact/separation rack 334 (rack), a driving mechanism 335, a transmission shaft 336, the bearing holder 337 (supporting member), a bearing 338, and a roller spring 339.
The roller contact/separation racks 334 are members arranged as a pair with an interval in a front-rear direction and extending in a left-right direction. Each of the roller contact/separation racks 334 is movably supported in the unit housing 3311. The pair of roller contact/separation racks 334 supports both end portions of the plurality of primary transfer rollers 325. Then, the roller contact/separation racks 334 are configured to be movable in a direction linking axes of the plurality of primary transfer rollers 325 (the left-right direction). With reference to
The driving mechanism 335 is arranged within the unit housing 3311. The driving mechanism 335 is a unit including a motor, and a plurality of gears. The driving mechanism 335 generates a driving force which moves the roller contact/separation rack 334. The transmission shaft 336 is arranged adjacent to the driving mechanism 335 within the unit housing 3311. Additionally, the transmission shaft 336 extends in the front-rear direction so as to bridge the pair of roller contact/separation racks 334. The transmission shaft 336 is connected to the gear of the driving mechanism 335. In both end portions of the transmission shaft 336, transmission gears 336G are provided (
The bearing holder 337 (
The above-described first rail 334B regulates the bearing holder 337 such that the primary transfer roller 325 is arranged at the first position. Additionally, the second rail 334C is arranged at an interval from the first rail 334B in a moving direction of the roller contact/separation rack 334 to regulate the bearing holder 337 such that the primary transfer roller 325 is arranged at the second position.
Further, the roller contact/separation rack 334 of the intermediate transfer unit 33 includes a rack pressing portion 334A (
In
The image forming device 1 further includes a bush 81 (holding member), a pressing spring 82 (urging member), the separating lever 83 (pressing member), and a separation interlocking mechanism 35T.
With reference to
The spring engaging portion 81Q is arranged in a lower end portion of the bush 81. With the spring engaging portion 81Q, one end of the pressing spring 82 is engaged. The spring engaging portion 81Q is urged upward and leftward by the pressing spring 82. The bush pressed portion 81P is arranged between the bush bearing portion 81J and the spring engaging portion 81Q. The bush pressed portion 81P has an arch-shape with a protrusion protruding toward the bush bearing portion 81J. The bush pressed portion 81P is pressed by a lever pressing portion 83P3 to be described later of the separating lever 83 toward a direction in which the secondary transfer roller 35 is separated from the intermediate transfer belt 331 (the belt driving roller 332).
The pressing spring 82 is a spring member arranged to be compressed between the bush 81 and a wall surface of the transport unit 8. The pressing spring 82 urges the bush 81 toward the intermediate transfer belt 331.
The first front end portion 83B is arranged in an upper end portion (front end portion) of the lever main body 83A. The first front end portion 83B extends from lower right to upper left. Additionally, in an upper end portion of the first front end portion 83B, a lever first pressed portion 83P1 (first pressed portion) is arranged. The lever first pressed portion 83P1 is a pressed surface pressed by the rack pressing portion 334A of the roller contact/separation rack 334 of the above-described roller contact/separation mechanism 33T. The second front end portion 83C is a generally trapezoid box-shaped part in a front view, which is arranged in a connection part between the lever main body 83A and the first front end portion 83B. In an upper surface portion of the second front end portion 83C, a lever second pressed portion 83P2 (second pressed portion) is formed. The lever second pressed portion 83P2 is a pressed surface which is pressed by a first link 84 of the cover interlocking mechanism 10Q to be described later.
Further, the lever main body 83A includes the lever pressing portion 83P3 (pressing portion). The lever pressing portion 83P3 is arranged on a lower side surface of the lever main body 83A, between the lever supporting point portion 83S, and the lever first pressed portion 83P1 and the lever second pressed portion 83P2. The lever pressing portion 83P3 has a function of pressing the bush pressed portion 81P of the above-described bush 81.
With reference to
Along with rocking around the lever supporting point portion 83S of the separating lever 83, the separating lever 83 changes a position between the first position (
The separation interlocking mechanism 35T (
The opening/closing cover 10P includes the grasping portion 10P1 (the second moving member, the grasping lever) (
The cover interlocking mechanism 10Q includes the first link 84, a second link 85, and a lever link 86.
The first link 84 is rotatably supported on the upper right of the separating lever 83 in the transport unit 8 (
The second link 85 is rotatably supported, between the first link 84 and the opening/closing cover 10P, in the transport unit 8 as shown in
The pressing pin 85P1 is a pin provided at the left side of the second link supporting point portion 85S so as to project backward from a side surface at a rear side of the second link 85. The pressing pin 85P1 is inserted into the right side recessed portion of the first link 84. The pressing pin 85P1 has a function of pressing the first link pressed portion 84P2. The second link pressed portion 85P2 is an upper surface portion of a hook part formed at the right side of the second link supporting point portion 85S. The second link pressed portion 85P2 is pressed by the lever link 86.
The lever link 86 (
Next, detailed description will be made of how in the present embodiment, the secondary transfer roller 35 is separated from the intermediate transfer belt 331 (the belt driving roller 332) in conjunction with separating operation of the primary transfer roller 325. When in the image forming device 1, image forming operation ends, a tension (tensile force) of the intermediate transfer belt 331 is desirably weakened. This suppresses the intermediate transfer belt 331 to have plastic deformation (flexure or a habit of winding) as a result. In the present embodiment, as described above, movement of the roller contact/separation rack 334 by a driving force of the driving mechanism 335 causes the primary transfer roller 325 to move from the first position to the second position and separate from the photosensitive drum 321.
With reference to
Thus, in the present embodiment, in conjunction with separating operation of the primary transfer roller 325, the secondary transfer roller 35 is separated from the intermediate transfer belt 331. Accordingly, in addition to plastic deformation of the intermediate transfer unit 33, generation of hysteresis on a circumferential surface of the secondary transfer roller 35 due to plastic deformation or a nip pressure can be prevented. On this occasion, by the roller contact/separation mechanism 33T and the separating lever 83, the primary transfer roller 325 and the secondary transfer roller 35 are separated simultaneously. As a result, no dedicated driving source is required for each separating operation and therefore reduction in a space and cost-down of the image forming device 1 can be realized.
Next, detailed description will be made of how the secondary transfer roller 35 is separated from the intermediate transfer belt 331 (the belt driving roller 332) in conjunction with opening operation of the opening/closing cover 10P and the transport unit 8 in the present embodiment.
When the main transport path 50A or the double-sided transport path 50B of the image forming device 1 is clogged with the sheet S, a user opens the opening/closing cover 10P or the transport unit 8 to expose the main transport path 50A or the double-sided transport path 50B to the outside of the device main body 10. This enables removal of the sheet S as a result. In the present embodiment, as shown in
In the present embodiment, in order to solve such a problem, separating operation of the secondary transfer roller 35 is realized in conjunction with opening operation of the opening/closing cover 10P and the transport unit 8. Specifically, with reference to
Thus, in the present embodiment, in conjunction with user's grasping operation at the time of grasping the grasping portion 10P1, the secondary transfer roller 35 is separated from the intermediate transfer belt 331. Therefore, when the opening/closing cover 10P is opened, rubbing of the secondary transfer roller 35 with the belt driving roller 332 can be suppressed. Additionally, since the secondary transfer roller 35 is separated by using a user's grasping force, no dedicated driving source is required for separating operation of the secondary transfer roller 35.
As described above, in case of separating the secondary transfer roller 35 in conjunction with the separating operation of the primary transfer roller 325, an aim is to relieve a tension mainly of the intermediate transfer belt 331. On the other hand, in case of separating the secondary transfer roller 35 in conjunction with the opening operation of the opening/closing cover 10P and the transport unit 8, an aim is to expose the main transport path 50A to the outside of the device main body 10. Then, in particular, for preventing the opening/closing cover 10P and the transport unit 8 from opening with the secondary transfer roller 35 rubbing against the intermediate transfer belt 331, it is desirable to satisfy the relationship of L1<L2 as described above. As a result, prior to opening of the opening/closing cover 10P, the secondary transfer roller 35 can be largely separated from the belt driving roller 332 in conjunction with the operation of grasping the grasping portion 10P1.
When the roller contact/separation mechanism 33T or the cover interlocking mechanism 10Q presses the separating lever 83, the lever supporting point portion 83S functions as a fulcrum in the principle of the leverage. Additionally, the lever first pressed portion 83P1 or the lever second pressed portion 83P2 functions as a point of effort in the principle of the leverage. Then, the lever pressing portion 83P3 which presses the bush pressed portion 81P of the bush 81 and functions as a point of load in the principle of the leverage is arranged between the lever first pressed portion 83P1 and the lever second pressed portion 83P2, and the lever supporting point portion 83S. As a result, just applying a force smaller than an urging force of the pressing spring 82 to the lever first pressed portion 83P1 or to the lever second pressed portion 83P2 enables the secondary transfer roller 35 to be separated from the belt driving roller 332.
Further, in the present embodiment, since the separating lever 83 includes the lever first to-be-pressed portion 83P1 and the lever second pressed portion 83P2, a pressing force can be acted on the separating lever 83 from different directions. In particular, the separating lever 83 is arranged between the intermediate transfer unit 33 and the opening/closing cover 10P. Then, the pressing force to the lever first pressed portion 83P1 is transmitted from the side of the intermediate transfer unit 33 toward the side of the opening/closing cover 10P. Additionally, the pressing force to the lever second pressed portion 83P2 is transmitted from the side of the opening/closing cover 10P toward the side of the intermediate transfer unit 33.
In the foregoing, the image forming device 1 according to the embodiment of the present invention has been described. The above configuration enables the secondary transfer roller 35 to be separated from the intermediate transfer belt 331 in conjunction with moving operation of a plurality of moving members without increasing the number of driving sources. The present invention is not limited thereto and for example, such modified embodiments as follows can be adopted.
(1) Although the above embodiment has been described with respect to a mode in which the transport unit 8 functions as a housing which rotatably supports the secondary transfer roller 35, the present invention is not limited thereto. In other modified embodiment, separately from the transport unit 8, other housing which supports the secondary transfer roller 35 may be provided in the image forming device 1.
(2) The above embodiment has been described with respect to a mode in which the roller contact/separation mechanism 33T separates the secondary transfer roller 35 from the belt driving roller 332 in conjunction with the separating operation of the primary transfer roller 325. The present invention is not limited thereto. A roller separated by the roller contact/separation mechanism 33T may be other stretching roller in contact with the inner circumferential surface of the intermediate transfer belt 331. In this case, the roller contact/separation mechanism 33T moves the stretching roller between a first position at which the stretching roller presses the inner circumferential surface of the intermediate transfer belt 331 and a second position more separate from the inner circumferential surface of the intermediate transfer belt 331 than the first position. Further, the roller contact/separation mechanism 33T need only press the lever first pressed portion 83P1 of the separating lever 83 in conjunction with moving of the stretching roller from the first position to the second position.
Number | Date | Country | Kind |
---|---|---|---|
2015-077613 | Apr 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/060610 | 3/31/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/163292 | 10/13/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5930564 | Ookaji | Jul 1999 | A |
20080145084 | Toizumi | Jun 2008 | A1 |
20100278557 | Somemiya | Nov 2010 | A1 |
20120163863 | Murashima | Jun 2012 | A1 |
20150168879 | Mori | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
2005-091613 | Apr 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20180024472 A1 | Jan 2018 | US |