Image forming systems such a liquid electrophotography printing apparatus may include providing imaging oil to a fluid tank and a maintenance unit. The imaging oil may be mixed with ink concentrate in the fluid tank to form ink to be provided to a fluid applicator unit such as binary ink developers. The fluid applicator unit may provide the ink to a latent image on a photoconductive member to form fluid images. The photoconductive member may transfer the fluid images onto an image transfer member and/or substrate. The maintenance unit may use the imaging oil to perform a maintenance operation on the photoconductive member, for example, after the transfer of a respective fluid image there from.
Non-limiting examples of the present disclosure are described in the following description, read with reference to the figures attached hereto and do not limit the scope of the claims. In the figures, identical and similar structures, elements or parts thereof that appear in more than one figure are generally labeled with the same or similar references in the figures in which they appear. Dimensions of components and features illustrated in the figures are chosen primarily for convenience and clarity of presentation and are not necessarily to scale. Referring to the attached figures:
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is depicted by way of illustration specific examples in which the present disclosure may be practiced. It is to be understood that other examples may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims.
Image forming systems such a liquid electrophotography printing apparatus may include providing imaging oil to a fluid tank and a maintenance unit. The imaging oil may be mixed with ink concentrate in the fluid tank to form ink to be provided to a fluid applicator unit such as binary ink developers (BIDs). The maintenance unit may use the imaging oil to perform a maintenance operation. Previously used imaging oils in the image forming system may be reused therein. For example, previously used imaging oil may be recycled within the image forming system to form a first imaging oil having a first percent purity corresponding to a clean imaging oil. Additionally, previously used imaging oil may be filtered within the image forming system to form a second imaging oil having a second percent purity corresponding to a less-clean imaging oil than the first imaging oil. Percent purity may refer to the percent of a specified compound or element (e.g. imaging oil) in an impure sample. In other words, the percentage of the imaging oil that is pure and/or free from unwanted matter. Such imaging oils may be mixed corresponding to a fixed ratio to form an imaging oil with an acceptable percent purity to form high quality images. The fixed ratio, however, may be independent of the current state of the amount of the first imaging oil (e.g., clean imaging oil) presently in the image forming system. Thus, the use of the previously used first imaging oil may not be maximized and the amount of replaceable imaging oil supply needed to be added to the image forming system may increase.
In examples, an image forming system includes, among other things, a first imaging oil having a first percent purity, a second imaging oil having a second percent purity, and a ratio adjustment module. Imaging oil previously used in the image forming system may be reused therein. For example, previously used imaging oil may be recycled within the image forming system to form a first imaging oil having a first percent purity corresponding to a clean imaging oil. Additionally, previously used imaging oil may be filtered within the image forming system to form a second imaging oil having a second percent purity corresponding to a less-clean imaging oil than the first imaging oil. The ratio adjustment module may obtain a variable ratio value corresponding to a ratio of a first amount of the first imaging oil to a second amount of the second imaging oil based on a determination by a slope comparison module. That is, the variable ratio value may be dependent on a current amount of the previously used first imaging oil in a segregation tank of the image forming system based on real-time conditions. Thus, the use of the previously used first imaging oil is increased and the amount of replaceable imaging oil supply needed to be added to the image forming system may be decreased. Consequently, imaging oil waste may be reduced while maintaining and/or increasing print quality.
The slope identification module 114 may identify a first slope value corresponding to a first rate of flow of the first imaging oil 111 into the segregation tank 110 during a time interval minus a second rate of flow of the first imaging oil 111 out of the segregation tank 110 during the time interval. That is, in some examples, the slope identification module 114 may determine a net change in a total amount of the first imaging oil 111 in the segregation tank 110. The slope comparison module 115 may determine whether the first slope value is at least one of equal to, greater than, and less than a threshold slope value within a threshold slope range. For example, the threshold slope range may enable to the image forming system 100 to operate in a stable manner within a predetermine range. The ratio adjustment module 116 may obtain a variable ratio value corresponding to a ratio of a first amount of the first imaging oil 111 to a second amount of the second imaging oil 113 based on a determination by the slope comparison module 115.
Referring to
Additionally, in operation, the slope identification module 114 communicates with the pump 220a and the flow rate sensor 220b to obtain data, for example, to correspond to a net change of the first imaging oil 111 in the segregation tank 110 to provide to the slope comparison module 115. Alternatively, the net change of the slope may be determined by obtaining the difference between the previous level of first imaging oil 112 in the segregation tank 110 obtained at the last interval and the current level of first imaging oil 112 in the segregation tank 110 divided by the interval. The respective levels of first imaging oil 112 in the segregation tank 110 may be measured by a sensor 222 such as a level sensor and/or quantity sensor. The slope comparison module 115 may determine whether a first slope value is at least one of equal to, greater than, and less than a threshold slope value within a threshold slope range and communicate such data to the ratio adjustment module 116. Further, the segregation tank determination unit 221 communicates with the sensor 222 to obtain data, for example, to correspond to whether the segregation tank 110 is full of the first imaging oil 111 and provide such data to the ratio adjustment module 116. Still yet, the mixing unit 223 provides at least one of the first imaging oil 111 and the second imaging oil 113 corresponding to the variable ratio value obtained by the ratio adjustment module 116 to replenish depleted imaging oil and form a high quality ink such as liquid toner in the fluid tank 224. The replaceable ink concentrate supply 228b provides ink concentrate, or the like, to the fluid tank 224, as needed. Further, the replaceable imaging oil supply 228a may supply the first imaging oil 111 to the segregation tank 110, as needed.
Referring to
Referring to
The ratio adjustment module 116 may obtain the variable ratio value by decreasing a previous variable ratio value in response to the first determination obtained by the segregation tank determination module 221. For example, the first determination may correspond to the total amount of the first imaging oil 111 in the segregation tank 110 that is at least one of equal to and greater than the threshold amount value during the time interval. That is, the segregation tank 110 may currently have a great amount and/or full supply of first imaging oil. The slope identification module 114 may identify a second slope value in response to the second determination obtained by the segregation tank determination module 221. The second slope value may correspond to the first rate of flow of the first imaging oil 11 into the segregation tank 10 during the time interval minus the second rate of flow of the first imaging oil 111 out of the segregation tank 110 during the time interval. That is, the second slope value may be identified similar to the identification of the first slope value, but at a later time. For example, the second slope value may be identified at a subsequent time interval in which the first rate and second rate of flow of the first imaging oil 111 with respect to the segregation tank 110 may have changed.
The slope comparison module 115 may determine whether the second slope value is at least one of equal to, greater than, and less than the threshold slope value within the threshold slope range in response to the second determination obtained by the segregation tank determination module 221. The ratio adjustment module 116 may obtain the variable ratio value based on the determination by the slope comparison module 115 in response to the second determination obtained by the segregation tank determination module 221. For example, the second determination may correspond to the total amount of the first imaging oil 11 in the segregation tank 110 being less than the threshold amount value during the time interval. That is, the segregation tank 10 may not currently have a full supply of the first imaging oil 111.
Referring to
Still yet, the variable ratio value may remain the same as the previous variable ratio value in response to the second determination obtained by the segregation tank determination module 221 and a determination that the second slope value is equal to the threshold slope value within the threshold slope range by the slope comparison module 115. The mixing unit 223 may add at least one of the first imaging oil 111 from the segregation tank 110 and the second imaging oil 113 from the reservoir 112 to the fluid tank 224 corresponding to the respective variable ratio value based on a determination by the ratio comparison unit 116 and in response to a decrease in an amount of at least one of the first imaging oil 111 and the second imaging oil 113 in the fluid tank 224. The decrease in the respective amount of imaging oil 111 and 113 may be due to printing demands of the image forming system 100 including an amount of printing and the type of images printed.
Referring to
The pump 220a may transport a first imaging oil 111 from the recycler 225 to the segregation tank 110. In some examples, the pump 220a, be selectively activated and transport a predetermined amount of the first imaging oil 111 into the segregation tank 110 per activation and/or time period. That is, the pump 220a may transport the first imaging oil 111 at the first rate of flow into the segregation tank 110. The flow rate sensor 220b may detect the second rate of flow of the first imaging oil 111 out of the segregation tank 110. The replaceable imaging oil supply 228a may supply the first imaging oil 111 to the segregation tank 110, as needed. However, the frequency in which the replacement imaging oil supply 228a is added may be reduced due to the mixing unit 223 using the respective variable ratio value obtained by the ratio adjustment module 116 to provide at least one of the first and second imaging oil 111 and 113 to the fluid tank 224. The replaceable ink concentrate supply 228b may supply the ink concentrate to the fluid tank 224, for example, to be combined with the imaging oil to form ink such as liquid toner, for example, ElectroInk, trademarked by Hewlett-Packard Company, as needed. The ink may be supplied to the fluid applicator unit 230. For example, the fluid applicator unit 230 such as BIDs to apply ink to the photoconductive member 280 to form a respective fluid image thereon.
The image forming system 100 may also include a segregation ratio comparison unit (not illustrated). The segregation ratio comparison unit may determine whether the variable ratio value is at least one of equal to and greater than a threshold ratio value. That is, in some examples, the variable ratio value may be maintained within a segregation range to enable the image forming system 100 to respond to imaging oil changes therein in a reasonable time frame and/or within fewer time intervals.
The method may also include determining whether a total amount of the first imaging oil in the segregation tank is at least one of equal to and greater than a threshold amount value during the time interval by a segregation tank determination module to obtain one of a first determination and a second determination. For example, a sensor may detect when a level of the first imaging oil corresponding to the total amount of the first imaging oil in the segregation tank corresponds to the threshold amount value. The first determination may correspond to the total amount of the first imaging oil in the segregation tank being at least one of equal to and greater than the threshold amount value during the time interval. The second determination may correspond to the total amount of the first imaging oil in the segregation tank being less than the threshold amount value during the time interval.
The method may also include a second slope value corresponding to the first rate of flow of the first imaging oil into the segregation tank during the time interval minus the second rate of flow of the first imaging oil out of the segregation tank during the time interval that is identified by the slope identification module in response to the second determination obtained by the segregation tank determination module. Additionally, whether the second slope value is at least one of equal to, greater than, and less than the threshold slope value within the threshold slope range may be determined by the slope comparison module in response to the second determination obtained by the segregation tank determination module. Further, the variable ratio value may be obtained by the ratio adjustment module based on the determination by the slope comparison module in response to the second determination obtained by the segregation tank determination module. For example, a previous variable ratio value may be increased, decreased or remain the same to obtain the variable ratio value.
That is, the previous variable ratio value may be decreased by the ratio adjustment module by the slope comparison module to obtain the variable ratio value. The decrease to the previously variable ratio value may be in response to the second determination obtained by the segregation tank determination module and a determination that the second slope value is greater than the threshold slope value within the threshold slope range. Alternatively, the previous variable ratio value may be increased by the ratio adjustment module in response to the second determination obtained by the segregation tank determination module and a determination that the second slope value is less than the threshold slope value within the threshold slope range by the slope comparison module. Still yet, the previous variable ratio value may be used as the variable ratio value in response to the second determination obtained by the segregation tank determination module and a determination that the second slope value is equal to the threshold slope value within the threshold slope range by the slope comparison module. That is, the newly obtained variable ratio value may be equal to the previously obtained variable ratio value.
The method may also include adding at least one of the first imaging oil and the second imaging oil to the fluid tank by a mixing unit corresponding to the respective variable ratio value in response to a decrease in an amount of at least one of the first imaging oil and the second imaging oil in a fluid tank. That is, the decrease in the respective amount of the respective imaging oil in the fluid tank may be due to printing demands of the image forming system including an amount of printing and the type of images printed. The method may also include periodically determining the respective variable ratio values at predetermined time periods. That is, the method may be continually repeated, for example, to periodically determine respective various ratio values that correspond to current conditions in real-time.
In block S420, whether a total amount of the first imaging oil in the segregation tank is at least one of equal to and greater than a threshold amount value during a time interval is determined by a segregation tank determination module. If the determination of block S420 is yes, in block S460, the respective variable ratio is obtained by the ratio adjustment module by decreasing a previous variable ratio value by the ratio adjustment module. Further, the operation may continue by proceeding to block S410.
Alternatively, if the determination of block S420 is no, the respective variable ratio is obtained by operations S430 through S450. That is, in block S430, a first slope value corresponding to a first rate of flow of the first imaging oil into the segregation tank during the time interval minus a second rate of flow of the first imaging oil out of the segregation tank during the time interval is determined by a slope identification module. In block S440, whether the first slope value is at least one of equal to, greater than, and less than a threshold slope value within a threshold slope range is determined by a slope comparison module. In block S450, the respective variable ratio value corresponding to a ratio of the first amount of the first imaging oil to the second amount of the second imaging oil is obtained by a ratio adjustment module based on a determination by the slope comparison module. Further, the operation may continue by proceeding to block S410.
It is to be understood that the flowcharts of
The present disclosure has been described using non-limiting detailed descriptions of examples thereof and is not intended to limit the scope of the present disclosure. It should be understood that features and/or operations described with respect to one example may be used with other examples and that not all examples of the present disclosure have all of the features and/or operations illustrated in a particular figure or described with respect to one of the examples. Variations of examples described will occur to persons of the art. Furthermore, the terms “comprise,” “include,” “have” and their conjugates, shall mean, when used in the present disclosure and/or claims, “including but not necessarily limited to.”
It is noted that some of the above described examples may include structure, acts or details of structures and acts that may not be essential to the present disclosure and are intended to be exemplary. Structure and acts described herein are replaceable by equivalents, which perform the same function, even if the structure or acts are different, as known in the art. Therefore, the scope of the present disclosure is limited only by the elements and limitations as used in the claims.