1. Field of the Invention
The present invention relates to an image forming system, an image forming device, and a post-processing device.
2. Description of Related Art
In an image forming system in which a post-processing device is connected to an image forming device, printing sheets on which an image is formed are post-processed and ejected to a sheet ejection tray. When the printing sheets are ejected, a matching operation can also be performed so that ends of the printing sheets are in alignment.
Conventionally, in order to maintain the productivity in the image forming device, and also to ensure the matching accuracy of the ejected printing sheets, a method is disclosed in which the plurality of printing sheets ejected from the image forming device are overlapped and are ejected to the post-processing device (see for example, Japanese Patent Application Laid-open Publication No. 11-322165, and Japanese Patent Application Laid-open Publication No. 2004-26481). By integrally ejecting a plurality of printing sheets to the post-processing device in this manner, the speed difference of the image forming operation and the matching operation is reduced.
Further, in the case where specialized printing sheets are used, a matching operation modified for the specialized printing sheets is performed. Thus, the matching accuracy is increased, and the productivity of the image forming is increased. Such a method is also disclosed (see for example, Japanese Patent Application Laid-open Publication No. 2007-91468).
As described above, conventionally, a balance between the productivity and the matching property has been considered. However, in accordance with the intention of a user, there may be cases in which the productivity is more emphasized, or in reverse, cases in which the matching accuracy is emphasized. For example, when the user is in a hurry, the user may emphasize the productivity rather than the matching property. Or, when the user has another apparatus, etc. for bookbinding, and sets the printing sheets on which an image is formed as they are to the bookbinding apparatus without the process by the post-processing device, the user may prefer to increase the matching accuracy.
However, the conventional method does not have an operating configuration in which either of the productivity or the matching property is prioritized.
According to a first aspect of the present invention, an image forming system comprises:
an image forming device;
a post-processing device comprising a sheet ejection tray; and
an operating section to select either a producing mode for prioritizing a productivity of an image forming or a loading mode for prioritizing a loading accuracy of printing sheets, wherein
the producing mode and the loading mode are operation modes for a series of operation from the image forming performed by the image forming device until a loading of the printing sheets for which the image forming is performed, on the sheet ejection tray by the post-processing device.
According to a second aspect of the present invention, an image forming device comprises:
an image forming section;
a sheet ejection tray; and
an operating section to select either a producing mode for prioritizing a productivity of an image forming or a loading mode for prioritizing a loading accuracy of printing sheets, wherein
the producing mode and the loading mode are operation modes for a series of operation from the image forming performed by the image forming section until a loading of the printing sheets for which the image forming is performed, on the sheet ejection tray.
According to a third aspect of the present invention, a post-processing device comprises:
a sheet ejection tray; and
a control section which corresponds to a producing mode for prioritizing a productivity of an image forming and a loading mode for prioritizing a loading accuracy of printing sheets, wherein
the producing mode and the loading mode are operation modes for a series of operation of a loading of the printing sheets for which the image forming is performed, on the sheet ejection tray.
These and other objects, advantages and features of the present invention will become more fully understood from the detailed description given hereinbelow and the appended drawings, and thus are not intended as a definition of the limits of the present invention and wherein;
Hereinbelow, an embodiment of the present invention concerning the image forming system, image forming device, and the post-processing device is explained with reference to the drawings.
First, the configuration is explained.
As shown in
The image forming system 1 forms an image on printing sheets by the image forming device 10. Then, a post-process such as a punching process, etc. is performed by the post-processing device 30 on the printing sheets on which the image has been formed. Thus, the printing sheets are ejected to a sheet ejection tray T. The intermediate conveying device 20 is provided in between the image forming device 10 and the post-processing device 30. The intermediate conveying device 20 mediates the conveying of the printing sheets and adjusts the speed difference of the image forming and the post-process. In the intermediate conveying device 20 and the post-processing device 30, a conveying passage (a path) of the printing sheets ejected from the image forming device 10 is formed.
With reference to
As shown in
The control section 11 comprises a CPU (Central Processing Unit), RAM (Random Access Memory), etc. The control section 11 performs various operations by collaboration with a control program which is stored in the storing section 14 to control the operations of each section, such as the image forming operation.
Incidentally, the control section 11 is linked with control sections 21 and 31 of the intermediate conveying device 20 and of the post-processing device 30 respectively, by sending and receiving a control signal through I/Fs 17, 25 and 35. The control section 11 integrally controls not only the image forming device 10, but also the conveying operation in the intermediate conveying device 20, and the post-processing operation, the matching operation in the post-processing device 30.
The operating section 12 comprises a touch panel, etc. which is integrally comprised by operation keys and the displaying section 13. A setting operation of various image forming conditions, post-processing conditions is possible through the operating section 12. The operating section 12 generates an operation signal appropriate for the operation of the operation keys, etc. to output the operation signal to the control section 11.
The displaying section 13 comprises a display, and displays the operation screen of the setting screens, etc. concerning the image forming or the post-process according to the displaying control of the control section 11.
The storing section 14 comprises a large-capacity memory, etc. and stores the control program, a parameter, etc.
The image reading section 15 comprises an ADF (Auto Document Feeder), a scanner, etc. The image reading section 15 reads the image of a document, and performs a process of generating a data of the image.
The image forming section 16 forms an image on the printing sheets based on the data of the image input from the control section 11. Any image forming method can be used in the image forming section 16. Here, a case in which an electrographic method is used is explained as an example. In a case of the electrographic method, the image forming section 16 comprises a feeding section, an exposing section, a transfer belt, an image developing section, a photographic fixing section, etc. The image forming section 16 performs an exposing by irradiating a laser beam on a photoconductive drum from a laser light source of the exposing section to form an electrostatic latent image. Then, a toner image is generated by spraying toners to the photoconductive drum by the image developing section. The image forming section 16 performs the image forming by transferring the toner image to the printing sheets conveyed from the feeding section.
The printing sheets on which the image is formed are conveyed to the intermediate conveying device 20 by a conveying section (not shown).
The I/F 17 is an interface which is connected to the I/F 25 of the intermediate conveying device 20. The I/F 17 performs an input and an output of the control signal, etc. which interacts between the intermediate conveying device 20 or the post-processing device 30 and the image forming device 10.
Next, the intermediate conveying device 20 is explained.
As shown in
The basic configuration of the control section 21 is the same as that of the control section 11 in the image forming device 10. The control section 21 controls the conveying operation of the printing sheets including the overlapping of the printing sheets in the overlapping section 24 according to the control signal from the control section 11.
The storing section 22 stores the control program performed in the control section 21, the parameter, etc.
The sensor 23 is a light sensor, etc. provided near the entrance of the overlapping section 24. The sensor 23 detects the printing sheets conveyed to the overlapping section 24. The detecting result of the sensor 23 is output to the control section 21.
The overlapping section 24 is configured so that the printing sheets conveyed from the image forming device 10 can be conveyed to the post-processing device 30 in a state of being two-ply overlapped printing sheets simultaneously. That is to say, by performing the overlapping of the printing sheets in the overlapping section 24, the conveying time of the printing sheets to the post-processing device 30 is adjusted. Further, the speed difference between the image forming in the upstream side in which the processing speed is fast, and the post-process in the downstream side in which the speed thereof is slower than that of the image forming, is adjusted.
The overlapping section 24 is capable of the normal conveying operation in which printing sheets are conveyed one sheet each, and of the conveying operation in which two-ply overlapped printing sheets are conveyed. In the case of the normal conveying operation, the printing sheets conveyed from the image forming device 10 are sequentially conveyed through the path conveying to the post-processing device 30. On the other hand, a buffer-roller is provided on the path in the overlapping section 24. In the case where two-ply overlapped printing sheets are conveyed, the precedent printing sheet is conveyed not to the normal path but to the buffer-roller, and the buffer-roller is revolved. Thus, the printing sheet is wound around the buffer-roller. Then, the following printing sheet is conveyed to the normal path, and when the following printing sheet reaches the position of the overlapping, the buffer-roller is revolved. Thus, the precedent printing sheet is conveyed on top of the following printing sheet and is overlapped. The two printing sheets of the precedent and the following which are overlapped, are conveyed to the post-processing device 30 through the path.
Next, the post-processing device 30 is explained.
As shown in
The basic configuration of the control section 31 is the same as that of the control section 11 in the image forming device 10. The control section 31 controls the post-processing operation by the punching section 37, etc., the matching operation by the matching section 40, and the like according to the control signal from the control section 11.
The operating section 32 comprises the operation keys, etc. to perform a setting operation of the post-processing. The operating section 32 generates the operation signal appropriate for the operation, and outputs the operation signal to the control section 31. When a setting for the post-process is done at the same time as a setting for the image forming per one job in the operating section 12 of the image forming device 10, the post-processing device 30 performs the post-process in the series of operation of the job. However, the post-processing device 30 can also perform only the post-process in a state of being separate from the image forming. In this case, a setting operation of the post-process is possible through the operating section 32.
The displaying section 33 comprises a display, and displays an operation screen, etc. regarding the post-process.
The storing section 34 stores the control program, the parameter, etc. performed in the control section 31.
When a specialized printing sheet such as tab paper, etc. is inserted for performing the job, or when only the post-process is performed in a state of being separate from the image forming job, the paper inserter section 36 inserts the printing sheets in order that the post-process is performed. The paper inserter section 36 comprises a feeding tray, and conveys the printing sheets set to the feeding tray to the path for the printing sheets inside the post-processing device 30. Then, the printing sheets are conveyed to the punching section 37 and the smooth binding section 38 by the conveying section (not shown).
The punching section 37 and the smooth binding section 38 are provided on the path, and perform the post-process to the printing sheets conveyed through the path according to the control of the control section 31. The punching section 37 performs a punching process in which a punch hole is provided on the printing sheets. The smooth binding section 38 performs a smooth binding process in which a smooth binding is performed to the printing sheets. The printing sheets on which the post-process is performed are further conveyed and ejected to the sheet ejection tray T. Incidentally, in the case where the setting is that only the image forming is performed and the post-process is not performed, the printing sheets pass through the punching section 37 and the smooth binding section 38, and are ejected to the sheet ejection tray T as it is without receiving the post-process.
The sensor 39 is a light sensor, etc. provided near the ejecting port to the sheet ejection tray T. The sensor 39 detects the printing sheets ejected to the sheet ejection tray T, and outputs the detected information to the control section 31.
The matching section 40 performs the matching of the printing sheets ejected to the sheet ejection tray T.
As shown in
As shown in
The matching operation is explained with reference to
Before an image is formed, the matching plates 44 are positioned at an opening position shown in
Next, when the printing sheets are actually ejected to the sheet ejection tray T, the starting of the ejection is detected by the sensor 39. Then the matching section 40 performs the closing operation in which the matching plates 44 are closed at a timing instructed by the control section 31. Subsequently, the opening operation of the matching plates is performed and the matching plates are returned to the waiting position after a certain amount of time. The closing and opening operations are repeated to each of the ejected printing sheets. After the closing operation to the last printing sheet is performed, the matching plates 44 are returned to the opening position. Here, when the closing operation is performed by the matching plates 44, a pair of the matching plates 44 is moved toward the closing position so as to sandwich the printing sheet. In reverse, when the opening operation is performed by the matching plates 44, each of the plates are moved respectively towards the waiting positions located in the left edge side and the right edge side in the horizontal direction. By the matching operation, the right and left edges of the printing sheets can be matched.
Next, the operation of the image forming system 1 is explained.
The image forming system 1 comprises a producing mode in which the productivity is prioritized and a loading mode in which the matching property of the printing sheets when loaded to the sheet ejection tray T is prioritized, as a series of operation mode from the image forming to the post-process. The user can set either of the operation modes. The setting is performed in the image forming device 10.
Hereinbelow, a mode process performed by the image forming device 10 at the setting is explained with reference to
First, a setting screen for selecting the producing mode or the loading mode is displayed on the displaying section 13 by the control of the control section 11. When the loading mode is selectively operated through the operating section 12 in the setting screen (step S11; Y), the control section 11 instructs the storing section 14 to store the setting information of the loading mode (step S12). On the other hand, when not the loading mode but the producing mode is selected (step S11; N), the control section 11 instructs the storing section 14 to store the setting information of the producing mode (step S13), and ends the process. Incidentally, there may be a configuration in which the producing mode is preliminarily set as a default, and the loading mode is selected only when the matching property is emphasized rather than the productivity.
Subsequently, the setting of the job is performed. That is to say, conditions regarding the image forming such as the number of image forming copies, a sheet size, a sheet type, etc., and conditions regarding the post-process such as the number of punch holes in the punching process, a binding method in the smooth binding process, etc. are input by an input operation of a user. Then, the control section 11 instructs the storing section 14 to store these conditions as the setting information of the job. Thus, a document on which an image is formed is read by the image reading section 15, and the performing of the job is started.
The image forming device 10 first performs the condition setting process shown in
As shown in
Next, the control section 11 refers to the setting information of the operation mode, and determines whether the loading mode is set (step S23). When the loading mode is set (step S23; Y), an additional interval of the image forming interval is calculated. Then, the additional interval is added to the calculated image forming interval in the producing mode so that the image forming interval in the state of the loading mode is calculated (step S24). By adding the additional interval, the time used for the matching operation at the loading is extended, and more accurate matching operation is possible.
The setting information in the loading mode is output to the control section 31 of the post-processing device 30 from the control section 11 with the setting information of the job, as the control information of the matching operation of the printing sheets in the post-processing device 30.
Next, the control section 11 performs a feeding process shown in
Even after the image formed printing sheets are ejected to the intermediate conveying device 20, in order to control the conveying operation of the printing sheets in the intermediate conveying device 20, the control section 11 generates feeding information to each of the printing sheets used for the image forming. The feeding information is control information which instructs the intermediate conveying device 20 to convey the printing sheets in a state of either one sheet each or two-ply sheets. The feeding information is output to the intermediate conveying device 20 at the same time when the printing sheets are ejected to the intermediate conveying device 20. The feeding process is a process in which the feeding information is set. Incidentally, the feeding process shown in
As shown in
Next, the control section 11 determines whether the determining information is already set in the obtained feeding information (step S32). When the determining information is included in the feeding information, and is already set (step S32; Y), the process is ended.
On the other hand, when it is determined that the determining information is not included in the feeding information, and is not yet set (step S32; N), it is migrated to an overlapping determining process in step S33.
The overlapping determining process is explained with reference to
As shown in
Next, the control section 11 refers to the setting information of the operation mode, and determines whether the loading mode is set (step S53). When the loading mode is set (step S53; Y), in order to perform the loading accurately, the two-ply overlapping is not performed. Thus, the control section 11 provides an overlapping flag for the printing sheet and the next printing sheet intended to be determined. The control section 11 sets the overlapping flag to “OFF” indicating that the two-ply overlapping is not performed (step S60). Incidentally, the overlapping flag is information stored in RAM, etc. in the control section 11 for the entire printing sheets. On the other hand, in the case where not the loading mode but the producing mode is set (step S53; N), the control section 11 refers to the setting information of the printing sheet condition, and determines whether the sizes of the printing sheet and the next printing sheet intended to be determined are the same (step S54).
When the sizes are not the same (step S54; N), the two-ply overlapping cannot be performed. Thus, the control section 11 determines that the two-ply overlapping is not performed in this case and sets the overlapping flag to “OFF” (step S60).
On the other hand, even when the sizes are the same (step S54; Y), but when the types of the printing sheets are not the same (step S54; N), the two-ply overlapping cannot be performed. Thus, the control section 11 determines that the two-ply overlapping is not performed and sets the overlapping flag to “OFF” (step S60).
When the types of the printing sheets are the same (step S55; Y), the control section 11 refers to the setting information of the conditions of the printing sheets and the post-process. Then the control section 11 determines whether either of the printing sheet or the next printing sheet intended to be determined is a specialized printing sheet (step S56). In a case where either one of them is a specialized printing sheet such as tab paper, etc. (step S56; Y), the two-ply overlapping cannot be performed and the control section 11 sets the overlapping flag to “OFF” (step S60). On the other hand, in a case where either of them is not a specialized printing sheet, but where fixing paper and non-fixing paper are mixed (step S57; Y), the control section 11 sets the overlapping flag to “OFF” in the same manner (step S60).
When fixing paper and non-fixing paper are not mixed (step S57; N), the control section 11 determines whether the image forming surfaces are the same (step S58). When the image forming surfaces are not the same (step S58; N), the control section 11 sets the overlapping flag to “OFF” (step S60). When the image forming surfaces are the same (step S58; Y), the control section 11 sets the overlapping flag to “ON” which indicates that the two-ply overlapping is performed (step S59).
As described above, when the overlapping flag is set to either “ON” or “OFF”, the overlapping determining process is ended, and it is migrated to a process in step S34 shown in
In step S34 shown in
On the other hand, when the overlapping flag is set to “OFF” (step S34; N), the control section 11 sets the determining information to the feeding information of the printing sheets intended to be determined (the feeding information obtained in the overlapping determining process in step S51), so that it is instructed that the conveying is performed in a state of being one sheet each (step S38). Subsequently, the control section 11 sets the determining information to the feeding information of the next printing sheet (the feeding information obtained in the overlapping determining process in step S52), so that it is instructed that the conveying is performed in a state of being one sheet each (step S39).
When the determining information is set respectively, the overlapping flag is reset to “OFF” (step S37), and the process is ended.
As described above, when the setting of the feeding information is ended, the control section 11 instructs the image forming section 16 to start image forming. During this process, the image forming is performed by the image forming interval which is set in the condition setting process (see
In the intermediate conveying device 20, when the printing sheets are conveyed from the image forming device 10, a conveying control process shown in
As shown in
In a case where the determining information is that the conveying in a state of being two-ply overlapped is instructed (step S72; Y), the control section 11 controls the conveying operation of the printing sheets by the overlapping section 24. Thus, the conveying is performed in a state of being two-ply overlapped with the following printing sheet instructed to be performed with the two-ply overlapping. The overlapping section 24 conveys the precedent printing sheet instructed to be performed with the two-ply overlapping to the two-ply overlapping path, and conveys the following printing sheet to the normal path, according to the control of the control section 21. Thus, two-ply overlapping is performed at the overlapping position, and the printing sheets are ejected to the post-processing device 30 as they are (step S73).
Alternatively, in a case where the determining information is that the conveying in a state of being one sheet each is instructed (step S72; N), the control section 11 controls the conveying operation of the printing sheets by the overlapping section 24, so that the printing sheets are conveyed in a state of being one sheet each. The overlapping section 24 conveys the instructed printing sheets to the normal path, and ejects the printing sheets to the post-processing device 30 per one sheet, according to the control of the control section 21 (step S74).
On the other hand, in the post-processing device 30, based on the post-processing condition included in the setting information of the job which is input from the image forming device 10, the punching section 37, etc. perform the post-process to the printing sheets conveyed from the intermediate conveying device 20. The printing sheets on which the post-process is performed are conveyed to the sheet ejection tray T through the conveying section (not shown) by the control of the control section 31. The ejecting process performed during this process is explained with reference to
As shown in
The matching processes appropriate for each mode are explained with reference to
In the post-processing device 30, the setting information of the loading mode, which is set in the image forming device 10 is input. As a result, as shown in
In the producing mode, as shown in
In the loading mode, as shown in
In this manner, in the loading mode, the printing sheets are stabilized by the first closing operation, and then the second closing operation is performed. Thus, the loading mode has a configuration in which neater and more accurate matching operation can be performed compared to the producing mode.
As described above, according to the embodiment, the setting information of the operation mode which is selectively operated by the user from either the producing mode or the loading mode is stored. The operation control such as the image forming, etc. is performed according to the operation mode. Thus, the user can operate the device by prioritizing either the productivity or the matching property in accordance with the intention of the user.
The operation control controls the image forming operation such as the image forming interval in the image forming device 10, etc.
Thus, in the producing mode in which the productivity is prioritized, the image forming interval is set so that the image forming can be performed in the highest speed. Thus a number of image forming can be performed in a shorter time than in the loading mode, and the productivity is increased. Further, in the loading mode in which the loading accuracy is prioritized, the image forming interval is made longer than in the producing mode by adding additional intervals to the image forming interval. Thus, the interval of ejecting the printing sheets are extended in the post-processing device 30, the matching time can be ensured, and the matching can be performed with a high accuracy.
Further, the operation control controls the conveying operation such as overlapping the printing sheets or not in the intermediate conveying device 20, etc.
That is to say, in the producing mode, the printing sheets are conveyed in a two-ply overlapping so that the image forming is possible in a high speed. In the loading mode, the printing sheets are conveyed not in a two-ply overlapping but in one sheet each so that the accuracy can be increased when matching.
Further, the operation control controls the matching operation such as the matching time, the number of times of matching of the printing sheets, and the position of the matching plates 44 in the post-processing device 30, etc.
That is to say, in the producing mode, the time required for the matching can be shortened by performing the closing operation once during the printing sheet ejecting interval. Thus, it can be configured so that the productivity of the image forming is increased. On the other hand, in the loading mode, the printing sheet ejecting interval is longer than in the producing mode, and the matching is performed for a long time. During the matching, the closing operation is performed twice. In the closing operation, the position of the matching plates 44 is not moved to the closing position at once, but is moved thereto by performing the closing operation twice. Alternatively, the number of the matching may be set the same as that in the producing mode, and the time after the closing operation until the opening operation may be made longer. By this neat matching operation, the matching accuracy of the printing sheets can be increased.
As described above, by controlling the series of operation from the image forming to the loading of the printing sheets on the sheet ejection tray T, the productivity is increased in the producing mode, and the matching accuracy of the printing sheets is increased in the loading mode. As a result, the user can prioritize the productivity by selecting the producing mode, or the user can prioritize the matching accuracy by selecting the loading mode, when performing the series of operation.
Incidentally, the above described embodiment is a preferred example of the present invention, and the present invention is not limited to this.
For example, in the above described embodiment, the image forming operation in the image forming device 10, the conveying operation in the intermediate conveying device 20, and the matching operation in the post-processing device 30 are all controlled. However, a combination of either one or two of them may be controlled.
Further, it is not limited to execution/non-execution of the two-ply overlapping of the printing sheets performed in accordance with the operation mode in the intermediate conveying device 20. The number of sheets for overlapping may be changed, the conveying speed may be switched, or the combination thereof may be applied.
Alternatively, in accordance with the configuration system, the intermediate conveying device 20 may not intervene. In this case, only the image forming image forming operation device 10 and the matching operation of the post-processing device 30 are controlled in accordance with the set operation mode so that the productivity and the matching property are adjusted.
Further, in the above explanation, the image forming system 1 is described. However, a case in which the image forming device 10 or the post-processing device 30 is of a single body can be applied to the present invention.
For example, even in a case of the image forming device 10 single body, when the matching section is provided in the sheet ejection tray of the image forming device 10, the matching operation of the matching section is controlled by the control section 11 in accordance with the set operation mode. Thus, the same effect as that of the above described embodiment can be obtained.
Further, the configuration in which the operation mode is selectively set through the operating section 12 of the image forming device 10 was explained. However, the operation mode may be selectively set through the operating section 32 of the post-processing device 30.
According to one aspect of the preferred embodiment of the present invention, an image forming system comprises:
an image forming device;
a post-processing device comprising a sheet ejection tray; and
an operating section to select either a producing mode for prioritizing a productivity of an image forming or a loading mode for prioritizing a loading accuracy of printing sheets, wherein
the producing mode and the loading mode are operation modes for a series of operation from the image forming performed by the image forming device until a loading of the printing sheets for which the image forming is performed, on the sheet ejection tray by the post-processing device.
According to the image forming system, a user can operate the system so that the user can prioritize either the productivity or the matching accuracy in accordance with the intention of the user.
Preferably, the image forming system further comprises a control section to control an image forming operation of the image forming device so as to change an interval of the image forming, in accordance with one of the operation modes, which is selected by the operating section.
According to the image forming system, when the producing mode is selected, a number of images can be formed in a short time by decreasing the image forming intervals. Thus the productivity can be increased. On the other hand, when the loading mode is selected, the matching time can be ensured by increasing the image forming intervals. Thus the matching accuracy can be increased.
Preferably, when the loading mode is selected, the control section controls the image forming operation of the image forming device so that the interval of the image forming in the loading mode is longer than the interval of the image forming in the producing mode.
According to the image forming system, the matching time is ensured so that the matching can be performed in a neat manner. Thus, the matching accuracy can be prioritized in the series of operation.
Preferably, the image forming system further comprises:
a matching section to match edges of the printing sheets ejected on the sheet ejection tray; and
a control section to control a matching operation of the matching section so as to change a degree of matching of the edges of the printing sheets, in accordance with one of the operation modes, which is selected by the operating section.
Preferably, the matching section comprises a pair of matching plates to match the edges of the printing sheets by opening and closing the pair of matching plates, and
the control section controls at least one of an opening and closing time of the matching plates, the number of times the matching plates are opened and closed, and a closing position of the matching plates.
According to the image forming system, by adjusting the opening and closing time, the number of opening and closing, and the position of the matching plates, and in the producing mode, by decreasing the matching degree so that the image forming can be performed in a high speed, the productivity can be increased. In the loading mode, the matching accuracy can be increased by increasing the matching degree.
Preferably, when the loading mode is selected, the control section controls the number of times the matching plates are closed in the loading mode so as to be more than the number of times the matching plates are closed in the producing mode.
According to the image forming system, in the loading mode, the number of closing of the matching plates is increased so that the matching degree is increased. Thus, the matching accuracy is increased.
Preferably, the image forming system further comprises:
an intermediate conveying device to convey the printing sheets ejected from the image forming device to the post-processing device, the intermediate conveying device being provided in between the image forming device and the post-processing device; and
a control section to control a conveying operation for conveying the printing sheets by the intermediate conveying device, in accordance with one of the operation modes, which is selected by the operating section.
Preferably, the control section controls at least one of a conveying speed of the printing sheets by the intermediate conveying device, execution/non-execution of an overlapping in which the printing sheets are ejected so as to be overlapped, and the number of the printing sheets to be overlapped.
According to the image forming system, the conveying speed, whether or not the overlapping is performed, and the number of sheets to be overlapped in the intermediate conveying device can be adjusted. Thus the image forming can be performed in a high speed in the producing mode, or the matching accuracy is increased in the loading mode.
Preferably, when the loading mode is selected, the control section does not execute the overlapping of the printing sheets, and conveys the printing sheets per one printing sheet.
According to the image forming system, in the loading mode, the matching in a state of being one sheet each is possible by conveying the printing paper one sheet each. Thus the matching accuracy is increased.
According to a second aspect of the present invention, an image forming device comprises:
an image forming section;
a sheet ejection tray; and
an operating section to select either a producing mode for prioritizing a productivity of an image forming or a loading mode for prioritizing a loading accuracy of printing sheets, wherein
the producing mode and the loading mode are operation modes for a series of operation from the image forming performed by the image forming section until a loading of the printing sheets for which the image forming is performed, on the sheet ejection tray.
According to the image forming device, the user can operate the device so that the user can prioritize either the productivity or the matching accuracy in accordance with the intention of the user.
Preferably, the image forming device further comprises a control section to control an image forming operation of the image forming section so as to change an interval of the image forming, in accordance with one of the operation modes, which is selected by the operating section.
According to the image forming device, when the producing mode is selected, a number of images can be formed in a short time by decreasing the image forming intervals. Thus the productivity can be increased. On the other hand, when the loading mode is selected, the matching time can be ensured by increasing the image forming intervals. Thus the matching accuracy can be increased.
Preferably, when the loading mode is selected, the control section controls the image forming operation of the image forming section so that the interval of the image forming in the loading mode is longer than the interval of the image forming in the producing mode.
According to the image forming device, the matching time is ensured so that the matching can be performed in a neat manner. Thus, the matching accuracy can be prioritized in the series of operation.
Preferably, the image forming device further comprises:
a matching section to match edges of the printing sheets loaded on the sheet ejection tray; and
a control section to control a matching operation of the printing sheets loaded on the sheet ejection tray of the matching section so as to change a degree of matching of the edges of the printing sheets, in accordance with one of the operation modes, which is selected by the operating section.
Preferably, the matching section comprises a pair of matching plates to match the edges of the printing sheets by opening and closing the pair of matching plates, and
the control section controls at least one of an opening and closing time of the matching plates, the number of times the matching plates are opened and closed, and a position of the matching plates.
According to the image forming device, by adjusting the opening and closing time, the number of opening and closing, and the position of the matching plates, and in the producing mode, by decreasing the matching degree so that the image forming can be performed in a high speed, the productivity can be increased. In the loading mode, the matching accuracy can be increased by increasing the matching degree.
Preferably, when the loading mode is selected, the control section controls the number of times the matching plates are closed in the loading mode so as to be more than the number of times the matching plates are closed in the producing mode.
According to the image forming device, in the loading mode, the number of closing of the matching plates is increased so that the matching degree is increased. Thus, the matching accuracy is increased.
According to the third aspect, a post-processing device comprises:
a sheet ejection tray; and
a control section which corresponds to a producing mode for prioritizing a productivity of an image forming and a loading mode for prioritizing a loading accuracy of printing sheets, wherein
the producing mode and the loading mode are operation modes for a series of operation of a loading of the printing sheets for which the image forming is performed, on the sheet ejection tray.
According to the post-processing device, a user can operate the system so that the user can prioritize either the productivity or the matching accuracy in accordance with the intention of the user.
Preferably, the post-processing device further comprises:
a matching section to match edges of the printing sheets loaded on the sheet ejection tray; and
a control section to control a matching operation of the matching section so as to change a degree of matching of the edges of the printing sheets, in accordance with one of the operation modes.
Preferably, the matching section comprises a pair of matching plates to match the edges of the printing sheets by opening and closing the pair of matching plates, and
the control section controls at least one of an opening and closing time of the matching plates, the number of times the matching plates are opened and closed, and a closing position of the matching plates.
According to the post-processing device, by adjusting the opening and closing time, the number of opening and closing, and the position of the matching plates, and in the producing mode, by decreasing the matching degree so that the image forming can be performed in a high speed, the productivity can be increased. In the loading mode, the matching accuracy can be increased by increasing the matching degree.
Preferably, when the loading mode is selected, the control section controls the number of times the matching plates are closed in the loading mode so as to be more than the number of times the matching plates are closed in the producing mode.
According to the post-processing device, in the loading mode, the number of closing of the matching plates is increased so that the matching degree is increased. Thus, the matching accuracy is increased.
The present U.S. patent application claims a priority under the Paris Convention of Japanese patent application No. 2007-221207 filed on Aug. 28, 2007, which shall be a basis of correction of an incorrect translation.
Number | Date | Country | Kind |
---|---|---|---|
2007-221207 | Aug 2007 | JP | national |