Image forming system including a print head having a plurality of ink channel pistons, and method of assembling the system and print head

Information

  • Patent Grant
  • 6273552
  • Patent Number
    6,273,552
  • Date Filed
    Friday, February 12, 1999
    26 years ago
  • Date Issued
    Tuesday, August 14, 2001
    23 years ago
Abstract
An image forming method including a print head having plurality of micromachined ink channel pistons, and method of assembling the method and print head. The method comprises a piston for pressurizing an ink body so that an ink meniscus extends from the ink body. An ink droplet separator is also provided for lowering surface tension of the meniscus as the meniscus extends from the ink body. The extended meniscus severs from the ink body to form an ink droplet as the droplet separator lowers the surface tension to a predetermined value.
Description




BACKGROUND OF THE INVENTION




This invention generally relates to printing devices and methods, and more particularly relates to an image forming system including a print head having plurality of ink channel pistons, and method of assembling the system and print head.




BACKGROUND ART




Ink jet printing is recognized as a prominent contender in digitally controlled, electronic printing because of its non-impact, low-noise characteristics, use of plain paper and avoidance of toner transfers and fixing. For these reasons, DOD (Drop-On-Demand) inkjet printers have achieved commercial success for home and office use.




For example, U.S. Pat. No. 3,946,398, which issued to Kyser et al. in 1970, discloses a drop-on-demand ink jet printer which applies a high voltage to a piezoelectric crystal, causing the crystal to bend. As the crystal bends, pressure is applied to an ink reservoir for jetting ink drops on demand. Other types of piezoelectric drop-on-demand printers utilize piezoelectric crystals in push mode, shear mode, and squeeze mode. However, patterning of the piezoelectric crystal and the complex high voltage drive circuitry necessary to drive each printer nozzle are disadvantageous to cost effective manufacturability and performance. Also, the relatively large size of the piezo transducer prevents close nozzle spacing making it difficult for this technology to be used in high resolution page width printhead design.




Great Britain Pat. No. 2,007,162, which issued to Endo et al. in 1979, discloses an electrothermal drop-on-demand ink jet printer that applies a power pulse to an electrothermal heater which is in thermal contact with water based ink in a nozzle. A small quantity of ink rapidly evaporates, forming a bubble which causes drops of ink to be ejected from small apertures along an edge of a heater substrate. This technology is known as thermal ink jet printing.




More specifically, thermal ink jet printing typically requires a heater energy of approximately 20 μJ over a period of approximately 2 μsec to heat the ink to a temperature 280-400° C. to cause rapid, homogeneous formation of a bubble. Rapid bubble formation provides momentum for drop ejection. Collapse of the bubble causes a pressure pulse due to the implosion of the bubble. The high temperatures needed with this device necessitates use of special inks, complicates driver electronics, and precipitates deterioration of heater elements through kogation, which is the accumulation of ink combustion by-products that encrust the heater with debris. Such encrusted debris interferes with thermal efficiency of the heater. In addition, such encrusted debris may migrate to the ink meniscus to undesirably alter the viscous and chemical properties of the ink meniscus. Also, the 10 Watt active power consumption of each beater prevents manufacture of low cost, high speed pagewidth printheads.




An inkjet printing system is disclosed in commonly assigned U.S. patent application Ser. No. 08/621,754 filed on Mar. 22, 1996, in the name of Kia Silverbrook. The Silverbrook device provides a liquid printing system incorporating nozzles having a meniscus poised at positive pressure extending from nozzle tip. A heater surrounding the nozzle tip applies heat to the edge of the meniscus. This technique provides a drop-on-demand printing mechanism wherein the means of selecting drops to be printed produces a difference in position between selected drops and drops which are not selected. However, the difference in position is insufficient to cause ink drops to overcome surface tension and separate from the body of ink. In this regard, separation means is provided to cause separation of the selected drops from the body of ink. However, this method of selection that uses surface tension reduction requires specialized inks and the requirement of poising the meniscus at a positive pressure may cause undesirable nozzle leakage due to contamination on any single nozzle. Application of an electric field or the adjustment of receiver proximity is thereafter used to cause separation of the selected drops from the body of the ink. However, the electric field strength needed to separate the selected drop is above the value for breakdown in air so that a close spacing between nozzle and receiver is needed, but there is still the possibility of arcing. Also, causing separation of the drop using proximity mode, for which the paper receiver must be in close proximity to the orifice in order to separate the drop from the orifice, is unreliable due to the presence of relatively large dust particles typically found in an uncontrolled environment.




Another inkjet printing system is disclosed in commonly assigned U.S. patent application Ser. No. 09/017,827 filed Feb. 3, 1998, in the name of John Lebens et al. The Lebens, et al. device provides an image forming apparatus incorporating an ink jet printhead where a single transducer is used to periodically oscillate the body of ink in order to poise ink drops and form a meniscus. The Lebens device further comprises an ink drop separator associated with the transducer for lowering the surface tension of the meniscus in order to separate the meniscus from the ink body to form an ink droplet. Although the Lebens, et al. device operates satisfactorily for its intended purpose, use of the Lebens et al. device may nonetheless lead to propagation of unwanted pressure waves in an ink manifold belonging to the printhead. These unwanted pressure waves in the ink manifold can in turn lead to inadvertent ejection of drops. Therefore, it is desirable to localize the effects of the pressure to the ink cavities and their respective nozzles.




Therefore, there remains a long-felt need for an ink jet printer providing such advantages as reduced cost, increased speed, higher print quality, greater reliability, less power usage, and simplicity of construction and operation.




SUMMARY OF THE INVENTION




An object of the present invention is to provide an image forming system and method for forming an image on a recording medium, the system including a thermo-mechanically activated DOD (Drop On Demand) printhead including a DOD print head having a plurality of ink channel pistons, and method of assembling the system and print head.




With this object in view, the invention resides in an image forming system, comprising a piston adapted to momentarily pressurize an ink body so that an ink meniscus extends from the ink body, the meniscus having a predetermined surface tension; and an ink droplet separator associated with said piston for lowering the surface tension of the meniscus while the meniscus extends from the ink body, whereby said droplet separator separates the meniscus from the ink body to form an ink droplet while the surface tension lowers.




According to an embodiment of the present invention, the system includes a printhead defining a plurality of ink channels in the print head. Each channel holds an ink body therein and terminates in a nozzle orifice. A micromachined piston is disposed in each channel for alternately pressurizing and depressurizing the ink body. An ink meniscus extends from the ink body and out the nozzle orifice while the ink body is pressurized. In addition, the ink meniscus retracts into the nozzle orifice while the ink body is depressurized. An ink droplet separator is also provided for lowering surface tension of the meniscus as the meniscus extends from the orifice. The extended meniscus severs from the ink body to form an ink droplet as the droplet separator lowers the surface tension to a predetermined value.




A feature of the present invention is the provision of a single micromachined array of pistons in fluid communication with a plurality of ink meniscis reposed at respective ones of a plurality of nozzles for pressurizing the meniscis, so that the menisci extend from the nozzles as the menisci are pressurized and retract into the nozzles as the menisci are depressurized.




Another feature of the present invention is the provision of a plurality of heaters in heat transfer communication with respective ones of the ink menisci, the heaters being selectively actuated only as the meniscus extend a predetermined distance from the nozzles for separating selected ones of the menisci from their respective nozzles.




Another advantage of the present invention is that use thereof increases reliability of the printhead.




Another advantage of the present invention is that use thereof conserves power.




Yet another advantage of the present invention is that the heaters belonging thereto are longer-lived.




A further advantage of the present invention is that use thereof allows more nozzles per unit volume of the printhead to increase image resolution.




An additional advantage of the present invention is that use thereof allows faster printing.




Still another advantage of the present invention is that a vapor bubble is not formed at the heater, which vapor bubble formation might otherwise lead to kogation.




Yet another advantage of the present invention is that use thereof reduces propagation of unwanted pressure waves in the ink manifold of the printhead, which reduced propagation in turn reduces risk of inadvertent ejection of drops.




These and other objects, features and advantages of the present invention will become apparent to those skilled in the art upon a reading of the following detailed description when taken in conjunction with the drawings wherein there is shown and described illustrative embodiments of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS




While the specification concludes with claims particularly pointing-out and distinctly claiming the subject matter of the present invention, it is believed the invention will be better understood from the following description when taken in conjunction with the accompanying drawings wherein:





FIG. 1

shows a functional block diagram of an image forming system of the present invention including a first embodiment printhead;





FIG. 2

is a view in vertical section of the printhead including a plurality of ink channels formed therein, each channel having a micromachined ink channel piston therein for pressurizing and depressurizing the ink channel;





FIG. 3

is a view in vertical section of a printhead associated with each channel, the nozzle having an ink body therein and an ink meniscus connected to the ink body;





FIG. 4

is a view in vertical section of the printhead nozzle showing the ink meniscus outwardly extending from the nozzle, this view also showing a heater surrounding the nozzle and in heat transfer communication with the extended ink meniscus to lower surface tension of the extended ink meniscus in order to separate the extended ink meniscus from the nozzle;





FIG. 5

is a view in vertical section of the nozzle having the meniscus further outwardly extending from the nozzle as the surface tension lowers;





FIG. 6

is a view in vertical section of the nozzle, the meniscus shown in the act of severing from the nozzle and obtaining a generally oblong elliptical shape;





FIG. 7

is a view in vertical section of the nozzle, the meniscus having been severed from the nozzle so as to define a generally spherically-shaped ink droplet traveling toward a recording medium;





FIGS. 8



a


-


8




i


are views in vertical section of the print head during assembly of the printhead;





FIG. 9

is a view in vertical section of a second embodiment printhead belonging to the present invention; and





FIG. 10

is a view in vertical section of a third embodiment printhead belonging to the present invention.











DETAILED DESCRIPTION OF THE INVENTION




The present description will be directed in particular to elements forming part of, or cooperating more directly with, apparatus in accordance with the present invention. It is to be understood that elements not specifically shown or described may take various forms well known to those skilled in the art.




Therefore, referring to

FIG. 1

, there is shown a functional block diagram of an image forming system, generally referred to as


10


, for forming an image


20


on a recording medium


30


. Recording medium


30


may be, for example, cut sheets of paper or transparency. System


10


comprises an input image source


40


, which may be raster image data from a scanner (not shown) or computer (also not shown), or outline image data in the form of a PDL (Page Description Language) or other form of digital image representation. Image source


40


is connected to an image processor


50


, which converts the image data to a pixel-mapped page image comprising continuous tone data. Image processor


50


is in turn connected to a digital halftoning unit


60


which halftones the continuous tone data produced by image processor


50


. This halftoned bitmap image data is temporarily stored in an image memory unit


70


connected to halftoning unit


60


. Depending on the configuration selected for system


10


, image memory unit


70


may be a full page memory or a so-called band memory. For reasons described more fully hereinbelow, output data from image memory unit


70


is read by a master control circuit


80


, which controls both a piston array driver circuit


90


and a heater control circuit


100


.




Referring again to

FIG. 1

, system


10


further comprises a micro-controller


110


connected to master control circuit


80


for controlling master control circuit


80


. As previously mentioned, control circuit


80


in turn controls piston array in driver circuit


90


and heater control circuit


100


. Controller


110


is also connected to an ink pressure regulator


120


for controlling regulator


120


. A purpose of regulator


120


is to regulate pressure in an ink reservoir


130


connected to regulator


120


, which reservoir


130


contains a reservoir of ink therein for marking recording medium


30


. Ink reservoir


130


is connected, such as by means of a conduit


140


, to a printhead


150


, which may be a DOD inkjet printhead. In addition, connected to controller


110


is a transport control unit


160


for electronically controlling a recording medium transport mechanism


170


. Transport mechanism


170


may include a plurality of motorized rollers


180


aligned with printhead


150


and adapted to intimately engage recording medium


30


. In this regard, rollers


180


rotatably engage recording medium


30


for transporting recording medium


30


past printhead


150


. It may be understood that for the purpose of so-called “pagewidth” printing, printhead


150


remains stationary and recording medium


30


is moved past stationary printhead


150


. On the other hand, for the purpose of so-called “scanning-type” printing, printhead


150


is moved along one axis (in a sub-scanning direction) and recording medium


30


is moved along an orthogonal axis (in a main scanning direction), so as to obtain relative raster motion.




Turning now to

FIG. 2

, printhead


150


comprises an array of micromachined ink channel pistons


250


positioned above nozzles


190


, each nozzle


190


capable of ejecting ink droplet


200


. Each nozzle


190


is etched in an orifice plate or substrate


195


, which may be silicon, and defines a channel shaped chamber


210


in nozzle


190


. Chamber


210


is in communication with reservoir


130


, such as by means of previously mentioned conduit


140


, for receiving ink from reservoir


130


. In this manner, ink flows through conduit


140


and into chamber


210


such that an ink body


220


is formed in chamber


210


. In addition, nozzle


190


defines a nozzle orifice


230


communicating with chamber


210


. By way of example only and not by way of limitation, orifice


230


may have a radius of approximately 8 μm. Pistons


250


are actuated by the vertical movement of a motive source


251


via the movement of a plate


252


and membrane


253


covering the top of printhead


150


. It may be appreciated that the ink covers a shaft portion of piston


250


, but not does not touch the inside portion of plate


252


and membrane


253


. Downward movement can be provided by an elastic seal


254


interconnecting plate


252


and body of print head


150


.




Referring to

FIG. 3

, each piston


250


is positioned above its respective nozzle


190


. Of course, each nozzle


190


is capable of ejecting ink droplet


200


(see

FIG. 7

) therefrom to be intercepted by recording medium


30


. In addition, nozzle


190


defines a nozzle orifice


230


communicating with chamber


210


. An ink meniscus


240


is disposed at orifice


230


when ink body


220


is disposed in chamber


210


.




Referring again to

FIG. 3

, in the absence of an applied heat pulse, meniscus


240


is capable of oscillating between a first position


245




a


(shown, for example, as a dashed curved line) and an extended meniscus second position


245




b


. It may be appreciated that, in order for meniscus


240


to oscillate, ink body


220


must itself oscillate because meniscus


240


is integrally formed with ink body


220


, which ink body


220


is a substantially incompressible fluid. To oscillate each ink body


220


, piston


250


, which is in fluid communication with ink body


220


in chambers


210


, is moved in a vertical direction by motive source


251


. Motive source


251


may be formed of a piezoelectric material capable of accepting, for example, a 25 volt, 50 μs square wave electrical pulse, although other pulse shapes, such as triangular or sinusoidal may be used, if desired. In any event, motive source


251


is capable of vertical movement so as to evince oscillatory motion on piston


250


from its unstressed position


255




a


to a downwardly position


255




b


. More specifically, when piston


250


moves to downward position


255




b


, volume of chamber


210


decreases and meniscus


240


is extended outward from orifice


230


as shown by position


245




b


. Similarly, when piston


250


returns to its unstressed position


255




a


, volume of chamber


210


returns to its initial state and ink is retracted into nozzle with meniscus


240


returning to concave first position


245




a


. As described hereinabove, the movement of array of micromachined pistons


250


spans all chambers


210


and therefore simultaneously pressurizes and depressurizes all chambers


210


to confine the effects of pressure pulses produced by motion of motive source


251


. These pressure effects are confined to each chamber


210


and are localized to its associated piston


250


. In other words, the motion of motive source


251


produces a pressure pulse in a particular chamber


210


substantially due only to the motion of the piston


250


associated with that chamber and not, for example, with the motion of other pistons


250


associated with other chambers


210


or with the motion of plate


252


. This is because ink covers only a portion of shaft


250


but does not touch inside portion of plate


252


.




Still referring to

FIG. 3

, it is seen that as piston


250


is moved downwardly to position


255




b


, volume of chamber


210


decreases so that meniscus


240


extends from the orifice


230


as shown by position


245




b


. If the amplitude of the piston


250


motion is further increased by, for example, approximately 20%, necking of the meniscus occurs with ink drops separating from nozzles


190


during movement of piston


250


to its position


255




b


. With proper adjustment of the amplitude of oscillatory motion of piston


250


, repeated extension and retraction of the meniscus


240


is possible without the separation of drops in the absence of a heat pulse. To ensure necking instability of meniscus


240


when a heat pulse is applied, the ink is formulated to have a surface tension which decreases with increasing temperature. Consequently, as described in detail hereinbelow, a heat pulse is applied to meniscus


240


to separate an ink droplet from nozzle


190


.




Therefore, as best seen in

FIGS. 4

,


5


and


6


, an ink droplet separator, such as an annular heater


270


, is provided for separating meniscus from orifice


230


, so that droplet


200


leaves orifice


230


and travels to recording medium


30


. More specifically, an intermediate layer


260


, which may be formed from silicon dioxide, covers substrate


195


. Heater


270


rests on substrate


195


and preferably is in fluid communication with meniscus


240


for separating meniscus


240


from nozzle


190


by lowering surface tension of meniscus


240


. More specifically, annular heater


270


surrounds orifice


230


and is connected to a suitable electrode layer


280


which supplies electrical energy to heater


270


, so that the temperature of heater


270


increases. Moreover, annular heater


270


forms a generally circular lip or orifice rim


285


encircling orifice


230


. Although heater


270


is preferably annular, heater


270


may comprise one or more arcuate-shaped segments disposed adjacent to orifice


230


, if desired. Heater


270


may advantageously comprise arcuate-shaped segments in order to provide directional control of the separated ink drop. By way of example only and not by way of limitation, heater


270


may be doped polysilicon. Also, by way of example only and not by way of limitation, heater


270


may be actuated for a time period of approximately 20 μs. Thus, intermediate layer


260


provides thermal and electrical insulation between heater


270


and electrode layer


280


on the one hand and electrical insulation between heater


270


and substrate


195


on the other hand. In addition, an exterior protective layer


290


is also provided for protecting substrate


195


, heater


270


, intermediate layer


260


and electrode layer


280


from damage by resisting corrosion and fouling. By way of example only and not by way of limitation, protective layer


290


may be polytetrafluroethylene chosen for its anti-corrosive and anti-fouling properties. In the above configuration, printhead


150


is relatively simple and inexpensive to fabricate and also easily integrated into a CMOS process.




Returning briefly to

FIG. 1

, piston array


250


and heater


270


are controlled by the previously mentioned piston array driver circuit


90


and heater control circuit


100


, respectively. Piston array driver circuit


90


and heater control circuit


100


are in turn controlled by master control circuit


80


. Master control circuit


80


controls piston array driver circuit


90


so that pistons


250


oscillate at a predetermined frequency. Moreover, master control circuit


80


reads data from image memory unit


70


and applies time-varying electrical pulses to predetermined ones of heaters


270


to selectively release droplets


200


in order to form ink marks at pre-selected locations on recording medium


30


. It is in this manner that printhead


150


forms image


20


according to data that was temporarily stored in image memory unit


70


.




Referring to

FIGS. 3

,


4


,


5


and


7


, meniscus


240


outwardly extends from orifice


230


to a maximum distance “L” before reversal of transducer


250


motion causes meniscus


240


to retract in the absence of a heat pulse.

FIGS. 4 and 5

specifically depict the case in which a beat pulse is applied via heater


270


while the meniscus


240


is outwardly expanding. Timing of the heat pulse is controlled by heater control circuit


100


. The application of heat by heater


270


causes a temperature rise of the ink in neck region


320


. In this regard, temperature of neck region


230


is preferably greater than 100C but less than a temperature which would cause the ink to form a vapor bubble. Reduction in surface tension causes increased necking instability of the expanding meniscus


240


as depicted in FIG.


5


. This increased necking instability, along with the reversal of motion of piston array


250


causes neck region


320


to break (i.e., sever). When this occurs, a new meniscus


240


forms after droplet separation and retracts into orifice


230


. The momentum of the droplet


200


that is achieved is sufficient, with droplet velocities of 7 mlsec, to carry it to recording medium


30


for printing. The remaining newly formed ink meniscus


240


is retracted back into nozzle


190


as piston


250


returns to its first position


255




a


. This newly formed meniscus


240


can then be extended during the next cycle of motive source


251


and downward vertical movement of piston array


250


. By way of example only and not by way of limitation, the total drop ejection cycle may be approximately 144 μs. In this manner, piston array motion and timing of heat pulses are electrically controlled by piston array driver circuit


90


and heater control circuit


100


, respectively. Thus, it may be appreciated from the description hereinabove, that system


10


obtains a thermo-mechanically activated printhead


150


because heaters


270


supply thermal energy to meniscus


240


and piston array


250


supplies mechanical energy to meniscus


240


in order to produce droplet


200


. The method of assembling the system and print head of present invention is described in detail hereinbelow with reference to

FIGS. 8



a


-


8




i.






Therefore, referring to

FIG. 8



a


, substrate


195


, which preferably is a silicon wafer, is shown having a sacrificial layer


325


, preferably silicon oxide, and a nozzle plate layer


330


, preferably nickel, deposited on a bottom side of substrate. A top mask


335


on a top surface of substrate


195


and a bottom mask


340


on the bottom surface of nozzle plate layer


330


, have also been provided using a conventional lithography process and backside alignment techniques well known in the art of integrated circuit fabrication. Top mask


335


is a composite mask, known in the art of semiconductor processing, comprising in accord with the present invention, a mask


336


of a first material, preferably silicon oxide, having openings


336




a


, a second layer mask


337


, formed of a second material, preferably silicon nitride, having openings


337




a


, and an optically patterned photoresist mask


338


having openings


338




a


overlying masks


337


and


336


. Masks


336


and


337


are made preferably by the steps of first depositing a layer of silicon nitride, patterning this layer by conventional photolithography using photoresist and etching the layer to have openings


337




a


, removing the photoresist, then depositing a layer of silicon oxide and patterning this layer by etching to have openings


338




a


, the process of patterning in each case being accomplished by conventional photolithography and selective plasma etching, preferably reactive ion etching, as is well known in the art of semiconductor processing. Bottom mask


340


, having openings


340




a


, is an optically patterned photoresist.




Referring now to in

FIG. 8



b


, spacer trenches


345


are etched anisotropically into substrate


195


, preferably silicon, by high density reactive ion etching. In the next step, mask


338


is removed, for example by exposure to an oxygen plasma (

FIG. 8



c


).




With reference to

FIG. 8



c


-


8




i


, anisotropic silicon etching is continued, preferably again using the etching process previously used to define spacer trenches


345


, until piston connection regions


350


have been formed. This process also forms piston clearance regions


350




a


which are simultaneously etched as extensions of spacer trenches


345


. Piston defining trenches


355


may extend to the surface of sacrificial layer


325


, although this is not required at this stage of processing. Pistons


250


with connecting shafts


360


and posts


365


are thereby formed, whereby piston defining trenches


355


extend to the surface of sacrificial layer


325


.




During the next step, mask


336


is removed, preferably by wet etching in the case when the material of mask


336


is silicon oxide. Anisotropic etching is continued, preferably using the process used to define spacer trenches


345


. The continuation of anisotropic etching defines regions


370


(

FIG. 8



e


) which, as will be described, contact ink piston connection regions


350


which are made deeper by this etch but not so deep as to contact sacrificial layer


325


, and piston top surfaces


375


. Posts


365


are thereby made shorter to become support posts


365




a


having top surfaces


365




b


. Plate


252


, comprising edge regions


252




a


and membrane regions


253


, as shown in

FIG. 8



f


, is then assembled to selected top surfaces


365




b


of the regions


370


by flexible elastic seal


254


, shown in

FIG. 8



f


as a bead of a flexible material, for example silicon latex rubber, which allows the plate


252


to move vertically without distorting its shape. As shown in

FIG. 8



g


, membrane


253


is attached to piston top surfaces


375


, preferably by coating the membrane on its lower surface with a bonding material such as epoxy just prior to assembly of plate


252


. At this stage, the bottom nozzle plate


330


is etched anisotropically to provide bore openings


380


in nozzle plate


330


, for example by reactive ion etching from the bottom side of the structure.




In the final step,

FIG. 8



h


, an isotropic wet etch is used to remove sacrificial layer


325


in cavity regions


356


underlying the pistons


250


thereby forming a piston bottom surface


38




c


. As shown in

FIG. 8



h


, this etch does not remove sacrificial layer


325


substantially under posts


365


because posts


365


are spaced from bore openings


380


. Finally,

FIG. 8I

, heater rings


270


surrounding the bore regions on the nozzle plate surface are fabricated. The fabrication of heater rings is well known in the art of Micro Electro Mechanical Structures (MEMS). The heater rings


270


are preferably fabricated by the steps of deposition of a resistive layer, preferably polysilicon, and patterning of the layer into an annulus surrounding the openings


380


. Alternatively, heater rings may be provided before etching bore openings


380


.




In operating the piston array as a drop on demand inkjet printer, piston connection region


350


, piston clearance region


350




a


, cavity region


356


, bore openings


80


, and a portion of ink region


370


are filled with ink


80


, for example an aqueous based ink containing a dye. The filling is to an extent that the ink covers a portion of the piston shafts


360


but does not contact the bottom side of membrane


253


. Thereby an ink meniscus


256


is formed below membrane


253


(

FIG. 2

) The ink may be pressurized by pressuring the air above the meniscus


256


to cause protrusion of drops of ink out of the bore openings


380


even in the absence of motion of the pistons


250


, but this is not required for the operation of the device.




The use of a piston array is advantageously employed in accordance with the present invention to confine the effects of pressure pulses at cavity regions


356


produced by motion of membrane


253


to only those effect associated with corresponding pistons


250


. In other words, motion of membrane


253


produces a pressure pulse at a particular cavity region


356


substantially due only to the motion of the piston


250


associated with that cavity and not, for example, with the motion of other pistons


250


associated with other cavities or with the motion of membrane


253


directly. In this regard, the preferred method of operation of the device is one in which the motion of the membrane


253


produces only localized pressure pulses a plurality of cavity regions


356


, and does not, for example, produce pressure waves traveling with substantial energy throughout the ink or throughout portions of the substrate


195


. This preferred method assures that the pressure pulses near any cavity region coming from any source other than the motion of the piston in that cavity region do not significantly alter the ejection of drops. The pressure pulses in all cavities are substantially identical providing the motion of each piston is the same. This is possible in accordance with the present invention because the piston shafts travel in a vertical direction and thereby couple their motion only weakly to the ink. The preferred method of operation of the device is one in which the motion of the membrane


253


does not produces pressure pulses in the ink by directly contacting the ink, since such pulses would spread to all cavity regions, as is well know in the art of acoustic coupling.




Referring to

FIG. 9

, there is shown a second embodiment printhead


150


. This second embodiment printhead is substantially similar to the first embodiment printhead, except that motive source


251


is formed of a metallic material that is responsive to an electromagnetic field


400


. Electromagnetic field


400


is generated by each of a first electromagnet


410




a


and a second electromagnet


410




b


spaced-apart from first electromagnet


410




a


(as shown). Electromagnets


410




a/b


are operated out-of-phase for reasons disclosed presently. As second electromagnet


410




b


is operated, the first electromagnetic


410




a


is not operated. In this manner, electromagnetic field


400


emitted from second electromagnetic


410




b


will cause piston


250


to downwardly move in chamber


210


, so that meniscus


240


extends from orifice


230


. Similarly, as first electromagnet


410




a


is operated, the second electromagnet


410




b


is not operated. In this manner, electromagnetic field


400


emitted from first electromagnet


410




a


will cause piston


250


to upwardly move in chamber


210


to retract meniscus


240


into orifice


230


.




Referring now to

FIG. 10

, a third embodiment printhead


150


is substantially similar to the first embodiment printhead, except that motive source


251


is formed of a piezoelectric material responsive to an electrical field, such that motive source


251


deflects when subjected to the electric field. In this regard, when motive source


251


is subjected to the electric field, piston


250


will deflect downwardly in chamber


210


. Conversely, when the electric field ceases, piston


250


is caused to move upwardly in chamber


210


assisted by seal


254


, as previously mentioned.




It may be appreciated from the teachings herein that an important aspect of the present invention is that a novel and unobvious technique is provided for significantly reducing the energy required to select which ink droplets to eject. This is achieved by separating the means for selecting ink drops from the means for ensuring that selected drops separate from the body of ink. Only the drop separation mechanism must be driven by individual signals supplied to each nozzle. In addition, the drop selection mechanism can be applied simultaneously to all nozzles.




It is understood from the teachings herein that an advantage of the resent invention is that there is no significant static back pressure acting on chamber


210


and ink body


220


. Such static back pressure might otherwise cause inadvertent leakage of ink from orifice


230


. Therefore, image forming system


10


has increased reliability by avoiding inadvertent leakage of ink.




Another advantage of the present invention is that the invention requires less heat energy than prior art thermal bubblejet printheads. This is so because the heater


270


is used to lower the surface tension of a small region (i.e., neck region


320


) of the meniscus


240


rather than requiring latent heat of evaporation to form a vapor bubble. This is important for high density packing of nozzles so that heating of the substrate does not occur. Therefore, image forming system


10


uses less energy per nozzle than prior art devices.




Yet another advantage of the present invention is that heaters


270


are longer-lived because the low power levels that are used prevent cavitation damage due to collapse of vapor bubbles and kogation damage due to burned ink depositing on heater surfaces.




A further advantage of the present invention is that image resolution is increased compared to prior art devices. This is possible because transducer


250


does not in itself eject droplet


200


; rather, piston


250


merely oscillates meniscus


240


so that meniscus


240


is pressurized and moves to position


245




a


in preparation for ejection. It is the lowering of surface tension by means of heater


270


that finally allows droplet


200


to be ejected. Use of piston


250


to merely oscillate meniscus


240


rather than to eject droplet


200


eliminates so-called “cross-talk” between chambers


210


during droplet ejection because the heat applied to the meniscus at one nozzle selected for actuation does not affect the meniscus at an adjacent nozzle. In other words, there is no significant heat transfer between adjacent nozzles. Elimination of cross-talk between chambers


210


allows more chambers


210


per unit volume of printhead


150


. More chambers


210


per unit volume of printhead


150


results in a denser packing of chambers


210


in printhead


150


, which in turn allows for higher image resolution.




An additional advantage of the present invention is that the velocity of the drop


200


of approximately 7 m/sec is large enough that no additional means of moving drops to recording medium


30


are necessary in contrast to prior art low energy use printing systems.




The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it should be understood that variations and modifications can be effected within the spirit and scope of the invention. For example, ink body


220


need not be in a liquid state at room temperature. That is, solid “hot melt” inks can be used, if desired, by heating printhead


150


and reservoir


130


above the melting point of such a solid “hot melt” ink. As another example, system


10


may comprise a transducer and heater in combination with a surface tension reducing chemical agent injector mechanism in the same device, if desired. This chemical agent will assist in decreasing surface tension to enhance drop separation.




Therefore, what is provided is an image forming system and method for forming an image on a recording medium, the system including a printhead having a plurality of micromachined ink channel pistons, and method of assembling the system and print head.




PARTS LIST




L . . . maximum meniscus extension distance in absence of heating pulse






10


. . . image forming system






20


. . . image






30


. . . recording medium






40


. . . image source






50


. . . image processor






60


. . . halftoning unit






70


. . . image memory unit






80


. . . master control circuit






90


. . . piston array driver circuit






100


. . . heater control circuit






110


. . . controller






120


. . . ink pressure regulator






130


. . . ink reservoir






140


. . . conduit






150


. . . printhead






160


. . . transport control unit






170


. . . transport mechanism






180


. . . rollers






190


. . . nozzle






195


. . . substrate






200


. . . ink droplet






210


. . . chamber






220


. . . ink body






230


. . . nozzle orifice






240


. . . ink meniscus






245




a


. . . first position of meniscus






245




b


. . . second position of meniscus






250


. . . piston






251


. . . motive source






252


. . . plate






252




a


. . . edge region of plate






253


. . . membrane






254


. . . elastic seal






255




a


. . . first position of piston






255




b


. . . second position of piston






256


. . . meniscus






260


. . . intermediate layer






270


. . . heater






280


. . . electrode layer






285


. . . orifice rim






290


. . . protective layer






300


. . . surface area of ink meniscus






305


. . . expanded surface area of ink meniscus






310


. . . extended ink meniscus body






315


. . . posterior portion of extended ink meniscus body






320


. . . necked portion






325


. . . sacrificial layer






330


. . . nozzle plate layer






335


. . . top mask






336


. . . first part of top mask






336


. . . first part of top mask






338




a


. . .opening in top mask






337


. . . second part of top mask






337




a


. . . opening in second part of top mask






338


. . . photoresist mask portion of top mask






340


. . . bottom mask






340




a


. . . opening in bottom mask






345


. . . spacer trench






350


. . . piston connection region






350




a


. . . piston clearance region






355


. . . piston defining trench






356


. . . cavity region






360


. . . piston connecting shaft






365


. . . post






365




a


. . .support post






365




b


. . . top surface






370


. . . ink region






375


. . . piston top surface






380


. . . bore opening






385


. . . piston bottom surface






390


. . . channel






400


. . . electromagnetic field






410




a


. . . first electromagnetic






410




b


. . . second electromagnetic



Claims
  • 1. An image forming system, comprising:(a) a piston adapted to momentarily pressurize an ink body so that an ink meniscus extends from the ink body, the meniscus having a predetermined surface tension; and (b) an ink droplet separator associated with said piston for lowering the surface tension of the meniscus while the meniscus extends from the ink body; (c) a motive source coupled to said piston for moving said piston wherein said motive source comprises: (1) a member formed of a material responsive to an electromagnetic field; and (2) an electromagnet disposed near said member for applying the electromagnetic field to said member; and whereby said droplet separator separates the meniscus from the ink body to form an ink droplet while the surface tension lowers.
  • 2. The system of claim 1, further comprising a motive source coupled to said piston for moving said piston.
  • 3. The system of claim 2, wherein said motive source comprises:(a) a member formed of a material responsive to an electromagnetic field; and (b) an electromagnet disposed near said member for applying the electromagnetic field to said member.
  • 4. The system of claim 2, wherein said motive source comprises:(a) a piezoelectric member responsive to an applied electric field; and (b) an electric field source disposed near said piezoelectric member for applying the electric field to said piezoelectric member.
  • 5. The system of claim 1, wherein said droplet separator comprises a heater for heating a neck region of the meniscus.
  • 6. The system of claim 5, further comprising a first control circuit connected to said heater for controlling said heater, so that said heater controllably heats the neck portion at a predetermined time.
  • 7. The system of claim 1, further comprising a second control circuit connected to said piston for controlling said piston, so that said piston controllably pressurizes the ink body.
  • 8. An inkjet image forming system, comprising;(a) a nozzle defining a chamber therein for holding an ink body, said nozzle having a nozzle orifice in communication with the chamber, the orifice accommodating an ink meniscus of predetermined surface tension connected to the ink body; (b) an oscillatable piston in fluid communication with the ink body for alternately pressurizing and depressurizing the ink body, so that the ink body oscillates as the ink body is alternately pressurized and depressurized and so that the meniscus extends and retracts as the ink body is respectively pressurized and depressurized; (c) a droplet separator associated with said piston, said separator adapted to lower the surface tension of the meniscus while the meniscus extends from the orifice; (d) an actuator coupled to said piston for actuating said piston, so that said piston oscillates, wherein said actuator comprises: (1) a plate member formed of a material responsive to an electromagnetic field; and (2) an electromagnet disposed near said member for applying the electromagnetic field to said member; and whereby said separator lowers the surface tension of the meniscus as the meniscus extends from the orifice and whereby the meniscus separates from the orifice when the surface tension is lowered to a predetermined value.
  • 9. The system of claim 8, wherein said droplet separator comprises a heater for heating a neck region of the meniscus.
  • 10. The system of claim 9, further comprising a heater control circuit connected to said heater for controlling said heater, so that said heater controllably heats the neck region to effectuate separation of the meniscus form the ink body.
  • 11. The system of claim 9, wherein said heater surrounds said nozzle.
  • 12. The system of claim 8, further comprising a driver control circuit connected to said piston for controlling said piston, so that said piston controllably oscillates to alternately pressurize and depressurize the ink body.
  • 13. A drop-on-demand inkjet image forming system for forming an image on a recording medium, comprising;(a) a printhead; (b) a plurality of nozzles integrally connected to said printhead, each nozzle defining a chamber therein for holding an ink body, each of said nozzles having a nozzle orifice in communication with respective ones of the chambers, each orifice accommodating an ink meniscus of predetermined surface tension connected to the ink body; (c) a plurality of oscillatable pistons in fluid communication with respective ones of the ink bodies for alternately pressurizing and depressurizing the ink bodies, so that the ink bodies oscillate as the ink bodies are alternately pressurized and depressurized and so that the meniscus oscillate as the ink bodies oscillate; (d) a plurality of heaters associated with respective ones of said pistons and in heat transfer communication with respective ones of the ink meniscus for lowering surface tension of the selected ones of the meniscus as the ink bodies are pressurized; (e) an actuator coupled to said piston for actuating said piston, wherein said actuator comprises: (1) a plate member formed of a material responsive to an electromagnetic field; and (2) an electromagnet disposed near said plate member for applying the electromagnetic field to said member; and (f) a heater control circuit connected to each of said heaters for actuating selected ones of said heaters, so that said selected ones of said heaters controllably heats the selected ones of the menisci, whereby each of the ink bodies oscillates as said piston oscillates, whereby each of the ink bodies is alternately pressurized and depressurized as each of the ink bodies oscillates, whereby each of the menisci oscillates as each of the ink bodies oscillates, whereby the surface tension of the selected ones of the menisci is lowered as the selected ones of the menisci are heated, whereby the selected ones of the menisci defines a neck portion thereof as the surface tension lowers to a predetermined value, whereby each of the neck portions sever as the surface tension lowers, and whereby the selected ones of the menisci separate from the orifices corresponding thereto as the neck portions thereof sever in order to from a plurality of ink droplets.
  • 14. A drop on demand print head comprising:(a) a plurality of drop-emitter nozzles each accommodating a body of ink associated with each of said nozzles; (b) a plurality of pistons, each piston being associated with a respective nozzle and each piston adapted to subject ink in said body of ink to a pulsating pressure above ambient, to intermittently form an extended meniscus in each of all of said nozzles; and (c) a drop separator associated with each of all of said nozzles and selectively operable upon the meniscus of selected ones of said nozzles, when the meniscus is extended, to cause ink from each of the selected nozzles to separate as a drop from the body of ink, while allowing ink to be retained in non-selected nozzles without creation of a drop from each of the non-selected nozzles.
  • 15. A method of operating an inkjet printhead comprising the steps of:(a) providing a piston adapted to momentarily pressurize an ink body so that an ink meniscus extends from the ink body, the meniscus having a predetermined surface tension; (b) providing an ink droplet separator in association with the piston for lowering the surface tension of the meniscus while the meniscus extends from the ink body, whereby the droplet separator separates the meniscus from the ink body to form an ink droplet while the surface tension lowers; (c) operating a motive source connected to the piston for moving the piston, wherein the step of operating a motive source comprises the steps of: (1) providing a member formed of a material responsive to an electromagnetic field; and (2) disposing an electromagnet near the member for applying the electromagnetic field to the member.
  • 16. The method of claim 15, wherein the step of providing a droplet separator comprises the step of providing a heater for heating a neck region of the meniscus.
  • 17. The method of claim 16, further comprising the step of connecting a first control circuit to the heater for controlling the heater, so that the heater controllably heats the neck portion at a predetermined time.
  • 18. A method of assembling an inkjet image forming system, comprising the steps of;(a) providing a nozzle defining a chamber therein for holding an ink body, the nozzle having a nozzle orifice in communication with the chamber, the orifice accommodating an ink meniscus of predetermined surface tension connected to the ink body; (b) providing an oscillatable piston in fluid communication with the ink body for alternately pressurizing and depressurizing the ink body, so that the ink body oscillates as the ink body is alternately pressurized and depressurized and so that the meniscus extends and retracts as the ink body is respectively pressurized and depressurized; (c) providing a droplet separator in association with the piston, the separator adapted to lower the surface tension of the meniscus while the meniscus extends from the orifice; (d) coupling an actuator to the piston for actuating the piston, so that the piston oscillates, wherein the step of coupling an actuator comprises the steps of: (1) providing a plate member formed of a material responsive to an electromagnetic field; and (2) disposing an electromagnet near the member for applying the electromagnetic field to the member, whereby the separator lowers the surface tension of the meniscus as the meniscus extends from the orifice and whereby the meniscus separates from the selected orifice when the surface tension is lowered to a predetermined value.
  • 19. The method of claim 18, wherein the step of providing a droplet separator comprises the step of providing a heater for heating a neck region of the meniscus.
  • 20. A method of assembling drop-on-demand inkjet image forming method for forming an image on a recording medium, comprising the steps of;(a) providing a printhead; (b) integrally connecting a plurality of nozzles to the printhead, each nozzle defining a chamber therein for holding an ink body, each of the nozzles having a nozzle orifice in communication with respective ones of the chambers, each orifice accommodating an ink meniscus of predetermined surface tension connected to the ink body; (c) providing a plurality of oscillatable pistons in fluid communication with respective ones of the ink bodies for alternately pressurizing and depressurizing the ink bodies, so that the ink bodies oscillate as the ink bodies are alternately pressurized and depressurized and so that the menisic oscillate as the ink bodies oscillate; (d) coupling an actuator to the piston for actuating the piston wherein the step of coupling an actuator comprises the step of: (1) providing a plate member formed of a material responsive to an electromagnetic field; and (2) disposing an electromagnet near the member for applying the electromagnetic field to the member (e) providing a plurality of heaters in association with respective ones of the pistons and in heat transfer communication with respective ones of the ink menisic for lowering surface tension of the selected ones of the menisic as the ink bodies are pressurized; and (f) connecting a heater control circuit to each of the heaters for actuating selected ones of the heaters, so that the selected ones of the heaters controllably heats the selected ones of the menisic, whereby each of the ink bodies oscillates as the piston oscillates, whereby each of the ink bodies is alternately pressurized and depressurized as each of the ink bodies oscillates, whereby each of the menisic oscillates as each of the ink bodies oscillates, whereby the surface tension of the selected ones of the menisic is lowered as the selected ones of the menisic are heated, whereby the selected ones of the menisic defines a neck portion thereof as the surface tension lowers to a predetermined value, whereby each of the neck portions sever as the surface tension lowers, and whereby the selected ones of the menisic separate from the orifices corresponding thereto as the neck portions thereof sever in order to form a plurality of ink droplets.
  • 21. The method of claim 20, wherein the step of providing a plurality of heaters comprises the step of providing a plurality of heaters surrounding respective ones of the nozzles for applying heat to the selected ones of the menisic and to the neck portions thereof.
  • 22. A method of operating a drop on demand print head comprising the steps of:(a) providing a plurality of drop-emitter nozzles for accommodating a body of ink associated with each of the nozzles; (b) providing a plurality of pistons, each piston being associated with a respective one of the nozzles, all of the pistons being subject to oscillation to subject ink in the body of ink of each nozzle to a pulsating pressure above ambient, to intermittently form an extended meniscus in all of the nozzles; and (c) selectively heating the meniscus of predetermined selected ones of the nozzles but less than all of the nozzles when the meniscus is extended to cause ink from each of the selected nozzles to separate as drops from the body of ink, while allowing ink to be retained in non-selected nozzles without creation of drops from the non-selected nozzles.
  • 23. The method according to claim 22 and wherein the pistons are connected to a member which is oscillated and the member oscillates in air with an air-ink interface being between the member which is oscillated and the bodies of the ink.
  • 24. An image forming system, comprising:(a) a piston adapted to momentarily pressurize an ink body so that an ink meniscus extends from the ink body, the meniscus having a predetermined surface tension; and (b) an ink droplet separator associated with said piston for lowering the surface tension of the meniscus while the meniscus extends from the ink body; wherein said motive source comprises: (1) a piezoelectric member responsive to an applied electric field; and (2) an electric field source disposed near said piezoelectric member for applying the electric field to said piezoelectric member; and whereby said droplet separator separates the meniscus from the ink body to form an ink droplet while the surface tension lowers.
  • 25. An inkjet image forming system, comprising;(a) a nozzle defining a chamber therein for holding an ink body, said nozzle having a nozzle orifice in communication with the chamber, the orifice accommodating an ink meniscus of predetermined surface tension connected to the ink body; (b) an oscillatable piston in fluid communication with the ink body for alternately pressurizing and depressurizing the ink body, so that the ink body oscillates as the ink body is alternately pressurized and depressurized and so that the meniscus extends and retracts as the ink body is respectively pressurized and depressurized; and (c) a droplet separator associated with said piston, said separator adapted to lower the surface tension of the meniscus while the meniscus extends from the orifice, (d) an actuator coupled to said piston for actuating said piston, so that said piston oscillates wherein said actuator comprises: (1) a piezoelectric member responsive to an applied electric field; and (2) an electric field source disposed near said piezoelectric member for applying the electric field to said piezoelectric member.
  • 26. A drop-on-demand inkjet image forming system for forming an image on a recording medium, comprising;(a) a printhead; (b) a plurality of nozzles integrally connected to said printhead, each nozzle defining a chamber therein for holding an ink body, each of said nozzles having a nozzle orifice in communication with respective ones of the chambers, each orifice accommodating an ink meniscus of predetermined surface tension connected to the ink body; (c) a plurality of oscillatable pistons in fluid communication with respective ones of the ink bodies for alternately pressurizing and depressurizing the ink bodies, so that the ink bodies oscillate as the ink bodies are alternately pressurized and depressurized and so that the meniscus oscillate as the ink bodies oscillate; (d) a plurality of heaters associated with respective ones of said pistons and in heat transfer communication with respective ones of the ink menisic for lowering surface tension of the selected ones of the menisic as the ink bodies are pressurized; (e) an actuator coupled to said piston for actuating said piston, said actuator comprising: (1) a piezoelectric member responsive to an applied electric field; and (2) an electric field source disposed near said piezoelectric member for applying the electric field to said piezoelectric member; and (f) a heater control circuit connected to each of said heaters for actuating selected ones of said heaters, so that said selected ones of said heaters controllably heats the selected ones of the menisic, whereby each of the ink bodies oscillates as said piston oscillates, whereby each of the ink bodies is alternately pressurized and depressurized as each of the ink bodies oscillates, whereby each of the menisic oscillates as each of the ink bodies oscillates, whereby the surface tension of the selected ones of the menisic is lowered as the selected ones of the menisic are heated, whereby the selected ones of the menisic defines a neck portion thereof as the surface tension lowers to a predetermined value, whereby each of the neck portions sever as the surface tension lowers, and whereby the selected ones of the menisic separate from the orifices corresponding thereto as the neck portions thereof sever in order to form a plurality of ink droplets.
  • 27. The system of claim 26, wherein said heaters surround respective ones of said nozzles for applying heat to the selected ones of the menisic and to the neck portions thereof.
  • 28. The system of claim 26, wherein said heater control circuit controls each of said heaters, so that heat is applied to the neck portions at a predetermined time after pressurization of said ink bodies.
  • 29. The system of claim 26, wherein said heater control circuit controls each of said heaters, so that heat is applied to the neck portions at a time immediately preceding maximum outwardly extension of the selected ones of the menisic from the orifices.
  • 30. The system of claim 26, further comprising a driver control circuit connected to said piston for controlling said piston, so that said piston controllably oscillates to alternately pressurize and depressurize the ink bodies.
  • 31. A method of operating an inkjet printhead comprising the steps of:(a) providing a piston adapted to momentarily pressurize an ink body so that an ink meniscus extends from the ink body, the meniscus having a predetermined surface tension; (b) providing an ink droplet separator in association with the piston for lowering the surface tension of the meniscus while the meniscus extends from the ink body, whereby the droplet separator separates the meniscus from the ink body to form an ink droplet while the surface tension lowers; (c) operating a motive source connected to the piston for moving the piston, wherein the step of operating a motive source comprises the steps of: (1) providing a piezoelectric member responsive to an applied electric field; and (2) disposing an electric field source near the piezoelectric member for applying the electric field to the piezoelectric member.
  • 32. A method of assembling an inkjet image forming system, comprising the steps of;(a) providing a nozzle defining a chamber therein for holding an ink body, the nozzle having a nozzle orifice in communication with the chamber, the orifice accommodating an ink meniscus of predetermined surface tension connected to the ink body; (b) providing an oscillatable piston in fluid communication with the ink body for alternately pressurizing and depressurizing the ink body, so that the ink body oscillates as the ink body is alternately pressurized and depressurized and so that the meniscus extends and retracts as the ink body is respectively pressurized and depressurized; (c) providing a droplet separator in association with the piston, the separator adapted to lower the surface tension of the meniscus while the meniscus extends from the orifice; (d) coupling an actuator to the piston for actuating the piston, so that the piston oscillates wherein the step of coupling an actuator comprises the steps of: (1) providing a piezoelectric member responsive to an applied electric field; and (2) disposing an electric field source near the piezoelectric member for applying the electric field to the piezoelectric member; whereby the separator lowers the surface tension of the meniscus as the meniscus extends from the orifice and whereby the meniscus separates from the selected orifice when the surface tension is lowered to a predetermined value.
  • 33. A method of assembling drop-on-demand inkjet image forming method for forming an image on a recording medium, comprising the steps of;(a) providing a printhead; (b) integrally connecting a plurality of nozzles to the printhead, each nozzle defining a chamber therein for holding an ink body, each of the nozzles having a nozzle orifice in communication with respective ones of the chambers, each orifice accommodating an ink meniscus of predetermined surface tension connected to the ink body; (c) providing a plurality of oscillatable pistons in fluid communication with respective ones of the ink bodies for alternately pressurizing and depressurizing the ink bodies, so that the ink bodies oscillate as the ink bodies are alternately pressurized and depressurized and so that the meniscus oscillate as the ink bodies oscillate; (d) coupling an actuator to the piston for actuating the piston wherein the step of coupling an actuator comprises the steps of: (1) providing a piezoelectric member responsive to an applied electric field; and (2) disposing an electric field source near the piezoelectric member for applying the electric field to the piezoelectric member; (e) providing a plurality of heaters in association with respective ones of the pistons and in heat transfer communication with respective ones of the ink menisic for lowering surface tension of the selected ones of the menisic as the ink bodies are pressurized; and (f) connecting a heater control circuit to each of the heaters for actuating selected ones of the heaters, so that the selected ones of the heaters controllably heats the selected ones of the menisic, whereby each of the ink bodies oscillates as the piston oscillates, whereby each of the ink bodies is alternately pressurized and depressurized as each of the ink bodies oscillates, whereby each of the menisic oscillates as each of the ink bodies oscillates, whereby the surface tension of the selected ones of the menisic is lowered as the selected ones of the menisic are heated, whereby the selected ones of the menisic defines a neck portion thereof as the surface tension lowers to a predetermined value, whereby each of the neck portions sever as the surface tension lowers, and whereby the selected ones of the menisic separate from the orifices corresponding thereto as the neck portions thereof sever in order to form a plurality of ink droplets.
  • 34. A drop-on-demand inkjet image forming system for forming an image on a recording medium, comprising;(a) a printhead; (b) a plurality of nozzles integrally connected to said printhead, each nozzle defining a chamber therein for holding an ink body, each of said nozzles having a nozzle orifice in communication with respective ones of the chambers, each orifice accommodating an ink meniscus of predetermined surface tension connected to the ink body; (c) a plurality of oscillatable pistons in fluid communication with respective ones of the ink bodies for alternately pressurizing and depressurizing the ink bodies, so that the ink bodies oscillate as the ink bodies are alternately pressurized and depressurized and so that the meniscus oscillate as the ink bodies oscillate; (d) a heater associated respectively with each nozzle and in heat transfer communication with a respective ink meniscus formed at a respective nozzle orifice for changing surface tension of a selected meniscus as the ink bodies are pressurized and depressurized to extend and retract menisic; and (e) a heater control circuit connected to each of said heaters for actuating heaters of selected ones of said nozzles and not actuating heaters of non-selected others of said nozzles, so that said heaters of selected ones of said nozzles controllably heat the selected ones of the menisic, whereby as said piston oscillates each of the ink bodies is alternately pressurized and depressurized to cause the menisic to oscillate and whereby the surface tension of the selected ones of the menisic are changed as the selected ones of the menisic are heated, and whereby menisic of the selected ones of the nozzles separate from the respective orifices and are ejected from the orifices to form a plurality of ink droplets and non-selected nozzles have menisic which do not separate and are not ejected.
  • 35. The inklet image forming system of claim 34 and wherein a plurality of the pistons are attached to an oscillating member that oscillates in air and there is an air-ink interface between the oscillating member and the ink bodies.
  • 36. A drop-on-demand inkjet image forming method for forming an image on a recording medium, comprising;(a) providing a printhead having a plurality of nozzles integrally connected to said printhead, each nozzle defining a chamber therein for holding an ink body, each of said nozzles having a nozzle orifice in communication with respective ones of the chambers, each orifice accommodating an ink meniscus of predetermined surface tension connected to the ink body; (b) oscillating pistons in fluid communication with respective ones of the ink bodies to alternately pressurize and depressurize the ink bodies, so that the ink bodies oscillate as the ink bodies are alternately pressurized and depressurized and so that the meniscus oscillate as the ink bodies oscillate; (c) providing a heater associated respectively with each nozzle and in heat transfer communication with a respective ink meniscus formed at a respective nozzle orifice for changing surface tension of a selected meniscus as the ink bodies are pressurized and depressurized to extend and retract menisic; and (d) actuating heaters of selected ones of said nozzles to heat the respective meniscus of selected nozzles which are fewer than all of said nozzles, whereby as said piston oscillates each of the ink bodies of all of said nozzles is alternately pressurized and depressurized to cause the menisic to oscillate and whereby the surface tension of the menisic of selected ones of nozzles are changed as the result of their being heated, and whereby menisic of the selected ones of the nozzles separate from the respective orifices and are ejected from the orifices to form a plurality of ink droplets and non-selected nozzles have menisic which do not separate and are not ejected.
  • 37. The method of claim 36 and wherein a plurality of the pistons are attached to an oscillating member that oscillates in air and there is an air-ink interface between the oscillating member and the ink bodies.
  • 38. The method of claim 37 and wherein the pistons are a micromachined array of pistons.
  • 39. The method of claim 37 and wherein the heater includes arcuate-shaped segments to provide directional control of a droplet from an orifice.
  • 40. The method of claim 37 wherein the heater heats a meniscus of a nozzle selected for ejecting a droplet to a temperature less than that which would cause ink to form a vapor bubble.
  • 41. The method of claim 37 wherein momentum of an ejected droplet is sufficient to carry it to a recording medium for printing.
  • 42. The method of claim 37 wherein air above the ink body is pressurized.
  • 43. The method of claim 36 and wherein the pistons are a micromachined array of pistons.
  • 44. The method of claim 36 and wherein the heater includes arcuate-shaped segments to provide directional control of a droplet from an orifice.
  • 45. The method of claim 36 wherein the heater heats a meniscus of a nozzle selected for ejecting a droplet to a temperature less than that which would cause ink to form a vapor bubble.
  • 46. The method of claim 36 wherein momentum of an ejected droplet is sufficient to carry it to a recording medium for printing.
  • 47. The method of claim 36 wherein air above the ink body is pressurized.
US Referenced Citations (9)
Number Name Date Kind
4600928 Braun et al. Jul 1986
4970535 Oswald et al. Nov 1990
5574485 Anderson et al. Nov 1996
5598200 Gore Jan 1997
5726693 Sharma et al. Mar 1998
5880759 Silverbrook Mar 1999
6022099 Chwalek et al. Aug 2000
6027205 Herbert Feb 2000
6126270 Lebens et al. Oct 2000