The present invention relates to an image forming system including an image forming apparatus for forming a toner image on a recording material, and a varnish applying apparatus capable of overprinting a fixing formed, with varnish, on the toner image formed on the recording material.
Recently, for the purpose of improving glossiness, water resistance, and friction (wear) resistance, of the toner image separately from the toner image, a varnish image using colorless and transparent varnish is overprinted superposedly on the toner image. As an apparatus capable of forming the varnish image, for example, a varnish applying apparatus of an ink jet type (called a varnish coater) is used. The varnish coater ejects varnish partially on the recording material (so-called spot coating) and thus is capable of forming a varnish image desired by a user (Japanese Laid-Open Patent Application No. 2016-224111).
However, in the apparatus disclosed in JP-A 2016-224111, in the case where the varnish image is formed so as to extend over the toner image and a white background portion, a difference in line width of the varnish image is caused to occur between the toner image and the white background portion, so that appearance of the varnish image changed between the toner image and the white background portion as a boundary in some instances.
In view of the above-described problem, a principal object of the present invention is to provide an image forming system capable of suppressing occurrence of a difference in line width of a varnish image between a toner image and a white background portion as a boundary in the case where the varnish image is formed so as to extend over the toner image and the white background portion.
According to an aspect of the present invention, there is provided an image forming system comprising: an image forming system comprising: an image forming unit configured to form a toner image on a recording material, a varnish applying unit configured to form a varnish image by ejecting varnish to the recording material; a control unit configured to execute an operation in an image forming mode in which a toner image is formed on the recording material by the image forming unit and a varnish image is formed on the recording material, on which the toner image is formed, by the varnish applying unit; and an input unit configured to permit input of a line width adjusting value of either one of a line width of a portion of the varnish image overlapping with an image portion and a line width of a portion of the varnish image overlapping with a non-image portion, where in the varnish image is formed so as to extend over the image portion where the toner image is formed on the recording material and the non-image portion where the toner image is not formed on the recording material.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Parts (a) to (d) of
Part (a) of
First, an image forming system 1X of this embodiment will be described using
Incidentally, although illustration is omitted, the image forming system 1X may include another post-step unit, such as a relay apparatus, a finisher apparatus, or the like. The relay apparatus is disposed between the image forming apparatus 100 and the varnish coater 200, and reverses and sends the recording material S, conveyed from the image forming apparatus 100, to the varnish coater 200 or sends the recording material S to the varnish coater 200 after temporarily stacking the recording material S. The finisher apparatus performs, for example, punching such that the recording material S is perforated or stapling such that a plurality of recording materials S are bundled and stapled, and then the perforated recording material S or the bundle of the stapled recording materials S is discharged. Further, in addition to these post-step units, for example, the image forming system 1X may include a recording material supplying apparatus (not shown) capable of accommodating recording materials S therein in a large amount, in which the recording material S may be supplied from the recording material supplying apparatus to the image forming apparatus 100.
The image forming apparatus 100 will be described. The image forming apparatus 100 is an electrophotographic full-color printer of a tandem type. The image forming apparatus 100 includes image forming portions Pa, Pb, Pc, and Pd for forming images of yellow, magenta, cyan, and black, respectively. The image forming apparatus 100 forms a toner image on the recording material S on the basis of data relating to the toner image included in image data sent from an original reading device (not shown) connected to, for example, the image forming apparatus 100 or from an external device 1000 such as a personal computer connected to the image forming apparatus 100. As the recording material S, it is possible to cite sheet materials, such as plain paper, thick paper, roughened paper, uneven paper and coated paper.
A feeding process of the recording material S in the image forming apparatus 100 will be described. The recording materials S are accommodated is a cassette 10 in a stacked form, and is sent from the cassette 10 in synchronism with an image forming timing by a supplying roller 13. The recording material S sent by the supplying roller 13 is conveyed toward a registration roller pair 12 provided in the course of a feeding (conveying) passage 114. Then, the recording material S is subjected to oblique movement correction or timing correction by the registration roller pair 12, and thereafter, is sent to a secondary transfer portion T2. The secondary transfer portion T2 is a transfer nip formed by an inner secondary transfer roller 14 and an outer secondary transfer roller 11, and the toner image is transferred onto the recording material S in response to application of a secondary transfer voltage to the outer secondary transfer roller 11.
As regards the recording material S feeding process until the above-described secondary transfer portion T2, an image forming process of the image sent to the secondary transfer portion T2 at a similar timing will be described. First, although the image forming portions will be described, the respective color image forming portions Pa, Pb, Pc and Pd are constituted substantially similar to each other except that colors of toners used in developing devices 1a, 1b, 1c and 1d are yellow (Y), magenta (M), cyan (C), and black (K), respectively, which are different from each other. Thereafter, in the following, as a representative, the image forming portion Pd for black will be described, and other image forming portions Pa, Pb and Pc will be omitted from description.
The image forming portions Pd is principally constituted by the developing device 1d, a charging device 2d, a photosensitive drum 3d, a photosensitive drum cleaner 4d, an exposure device 5d, and the like. A surface of a rotating photosensitive drum 3d is electrically charged uniformly in advance by the charging device 2d, and thereafter, an electrostatic latent image is formed by the exposure device 5d driven on the basis of a signal of image information. Then, the electrostatic latent image formed on the photosensitive drum 3d is developed into a toner image with use of a developer by the developing device 1d. Then, the toner image formed on the photosensitive drum 3d is primary-transferred onto an intermediary transfer belt 80 in response to application of a primary transfer voltage to a primary transfer roller 6d disposed opposed to the image forming portion Pd while sandwiching the intermediary transfer belt 80 therebetween. Primary transfer residual toner slightly remaining on the photosensitive drum 3d is collected to the photosensitive drum cleaner 4d.
The intermediary transfer belt 80 is stretched by the inner secondary transfer roller 14, and stretching rollers 15 and 16, and is driven in an arrow R2 direction. In the case of this embodiment, the stretching roller 16 also functions as a driving roller for driving the intermediary transfer belt 80. The respective color image forming processes are carried out at timings when the associated toner image is superposedly transferred onto the upstream toner image primarily transferred onto the intermediary transfer belt 80. As a result, finally, a full-color toner image is formed on the intermediary transfer belt 80 and is conveyed to the secondary transfer portion T2. Incidentally, secondary transfer residual toner after passing through the secondary transfer portion T2 is removed from the intermediary transfer belt 80 by a transfer cleaner 22.
In the above, by the above-described feeding process and the above-described image forming process, in the secondary transfer portion T2, the timing of the recording material S and the timing of the full-color toner image coincide with each other, so that secondary transfer is carried out. Thereafter, the recording material S is conveyed to a fixing device 50, in which heat and pressure are applied to the recording material S, so that the toner image is fixed on the recording material S. The fixing device 50 nips and feeds the recording material S on which the toner image is formed, and applies heat and pressure to the fed recording material S, so that the fixing device 50 fixes the toner image on the recording material S. That is, the toner of the toner image formed on the recording material S is melted and mixed, and is fixed as the full-color image on the recording material S. Thus, a series of the image forming processes is ended. Then, in the case of this embodiment, the recording material S on which the toner image is fixed is conveyed from the image forming apparatus 100 to the varnish coater 200.
In this embodiment, a two-component developer containing the toner and a carrier is used. The toner contains a binder resin, a colorant, and a parting agent (wax). As the binder resin, a known binder resin can be used. For example, it is possible to use resin materials such as a vinyl copolymer represented by a styrene-(meth)acrylic copolymer, a polyester resin, a hybrid resin obtained by chemically bonding a vinyl copolymer unit and a polyester unit to each other, an epoxy resin, a styrene-butadiene copolymer, and the like. As the colorant, it is possible to use known colorants for yellow, magenta, cyan, and black, respectively.
As the parting agent, for example, it is possible to cite aliphatic hydrocarbon waxes such as low-molecular weight polyethylene, low-molecular weight olefin copolymer wax, microcrystallin wax, Fischer-Tropsch wax, and paraffin wax; oxide of the aliphatic hydrocarbon wax such as oxidized polyethylene wax; their block copolymers; waxes principally containing fatty acid esters such as carnauba wax and montanic acid ester wax; ester wax which is synthetic reaction product between higher aliphatic acid, such as behenyl behenate or behenyl stearate, and higher alcohol; fatty acid esters a part or all of which is deoxidized, such as deoxidized carnauba wax; and the like.
In the case of this embodiment, in the image data, data relating to the varnish image formed by the varnish coater 200 is also contained. That is, the data (second image data) relating to the varnish image is set separately from data (first image data) relating to the toner images of the four colors YMCK. Herein, the data relating to the varnish image included in the image data is referred to as an “initial data”. In the initial data, similar to the data relating to the toner images of the four colors of YMCK, for each of pages, an individual varnish image is associated with a coordinate of an image forming region on the recording material S.
Next, the varnish coater 200 will be described using
The varnish coater 200 includes a sheet feeding portion 241, a position detecting portion 245, a varnish ejecting portion 246, and a varnish solidifying portion 247. The sheet feeding portion 241 feedings the recording material S while attracting the recording material S to a belt feeding surface by an air sucking device (not shown) through holes formed in a feeding belt 242. Along a sheet feeding passage of this sheet feeding portion 241, in an order from an upstream side toward a downstream side of a feeding direction (arrow X direction) of the recording material S, the position detecting portion 245, the varnish ejecting portion 246, and the varnish solidifying portion 247 are disposed. The position detecting portion 245 is a detecting portion using a CCD, or the like, for example, and with respect to the recording material S fed while being sucked on the belt feeding surface, the position detecting portion 245 detects each of a position of a leading end of the recording material S with respect to the feeding direction, a position of each of opposing end portions with respect to a widthwise direction, and a position of the toner image on the recording material S. The position of the toner image is detected by the position detecting portion 245, so that the varnish coater 200 is capable of overprinting the varnish image superposedly on the toner image.
The varnish ejecting portion 246 forms the varnish image on the recording material S by ejecting the varnish onto one surface (side) of the recording material S fed by the sheet feeding portion 241. The varnish ejecting portion 246 includes a plurality of print heads (not shown). The print heads are, for example, heads of a line type, in which a plurality of ejection ports (not shown) are arranged and disposed in the widthwise direction crossing the feeding direction of the recording material S. A varnish ejecting method of the print heads may employ a type using heat generating elements, a type using piezo electric elements, a type using electrostatic elements, a type using MEMS elements, and the like. Although illustration is omitted, the varnish is supplied from a tank to the associated one of the print heads through a tube.
A film thickness of the varnish image is influenced by an application amount per unit area of the varnish onto the recording material S. The varnish amount can be changed by adjusting a varnish ejecting amount from the print heads. For example, in the case of the type using the piezoelectric elements, as shown in
Further, a resolution of the varnish image capable of being formed by the varnish coater 200 is, for example, 600 dpi, and in that case, the line width of the varnish image is adjusted in a 600 dpi unit. Incidentally, the above-described range of the film thickness of the varnish image, the resolution of the varnish image, and an adjusting range of the line width of the varnish image may be appropriately changed depending on the varnish ejecting method of the print heads, a kind of the varnish, and the like.
Returning to
Incidentally, in this embodiment, the UV varnish is used as the varnish, but the present invention is not limited thereto, and oil varnish, aqueous varnish is used, in order to solidifying the varnish, it is desirable that an IR (infrared ray) lamp, not the UV lamp is used. Further, the varnish may be solidified by warm air or by the IR lamp and the warm air in combination.
Next, a control constitution of an image formation control system in the image forming system 1X will be described using
In the image forming system 1X of this embodiment, as shown in
The above-described main controller 101 and the above-described varnish processing controller 330 may have the same constitution. For example, each of the controllers includes a CPU (central processing unit), a ROM (read only memory), and a RAM (random access memory).
The main controller 101 includes the CPU 102, the ROM 103, and the RAM 104. In the ROM 103, in addition to, for example, image forming processing (not shown), various programs and the like for “varnish image adjusting processing” (
The image forming apparatus 10 includes an operating portion 110 including, for example, a liquid crystal display portion 111 (see.
The user is capable of inputting a start of various programs for an operation in an “image forming mode”, and operation in “test chart output mode”, and the like from the operating portion 110. In the case where the start of the operation in the “image forming mode” is inputted, the CPU 102 is capable of executing the image forming processing (program) stored in the ROM 103. In the case where the start of the operation in the “test chart output mode” is inputted, the CPU 102 is capable of executing the test chart output processing (program) stored in the ROM 103. With this execution, together with the image forming apparatus 100, the varnish coater is capable of being operated. The image forming apparatus 100 forms the toner image on the recording material S on the basis of data relating to the toner image, and the varnish coater 200 forms the varnish image on the recording material S on the basis of data relating to the varnish image.
On the operating portion 110, a line width adjusting screen (
The varnish processing controller 330 includes a CPU 331, a ROM 332, and a RAM 333. The CPU 331 causes the sheet feeding portion 241, the position detecting portion 245, the varnish ejecting portion 246, and the varnish solidifying portion 247 of the varnish coater 200 to operate on the basis of a control program stored in the ROM 332. To the varnish processing controller 330, data relating the varnish image contained in the image data and the “varnish image setting information” are sent from the main controller 101, and the varnish processing controller 330 causes the RAM 333 to store these data. The varnish coater 200 executes the varnish applying processing for forming the varnish image on the recording material S, on the basis of the data relating to the varnish image but during execution of the operation in the image forming mode, the varnish image is formed on the basis of the initial data and the “varnish image setting information”.
In
For each of kinds of the above-described recording materials S, the “varnish image setting information” (indicated as “VARNISH COAT SET VALUE” in
As regards the presence or absence of the varnish image, “-(absence)” is set in the case where the varnish image is not formed including the case where the data relating to the varnish image is not included in the image data, and “ON (presence)” is set in the case where the varnish image is formed. The varnish kind shows a kind of the varnish used for forming the varnish image. In this embodiment, the varnish is the UV varnish as described above.
As the line width adjusting value of the varnish image, a line width initial value (initial line width value) (Ws), a line width adjusting value (ΔXb) of a portion overlapping with the toner image, and a line width adjusting value (ΔXw) of a portion overlapping with the white background portion are stored. The line width initial value (Ws) is updated by a line width value of the varnish image defined in the initial data, and is set at “0” before update. In the case where the initial data does not include the initial data, the line width initial value (Ws) is kept at “0”. Incidentally, in this embodiment, the white background portion refers to a non-image portion where the toner image is not formed on the recording material S, relative to an image portion where the toner image is formed on the recording material S.
The above-described line width adjusting values (ΔXb, ΔXw) are updated by an operation of a “line width adjusting screen” (see
(Line width of portion overlapping with toner image)=(line width initial value(Ws))+(line width adjusting value(ΔXb)) formula 1
(Line width of portion overlapping with varnish image)=(line width initial value(Ws))+(line width adjusting value(ΔXw)) formula 2
Next, setting of the above-described line width adjusting value (ΔXb) of the portion overlapping with the toner image and the above-described line width adjusting value (ΔXw) of the portion overlapping with the varnish image will be described using part (a) of
When “ADJUST VARNISH COATING” is selected on the “adjusting item setting screen” by the user, the display (screen) is switched to an “IMAGE DATA SELECTING SCREEN” shown in part (c) of
In the “TONER IMAGE SELECTING SCREEN”, the toner image formed on the recording material S in one page unit depending on the image data is displayed. The user is capable of changing a page, to be displayed, of the image data by subjecting the operating portion 110 to scroll operation.
As shown in
On the “line width adjusting screen” shown in
By the operation of the adjusting button “+”, the adjusting level is increased, and when the adjusting level is increased, the line width of the varnish image becomes thick. On the other hand, by the operation of the adjusting button “−”, the adjusting level is lowered, and when the adjusting level is lowered, the line width of the varnish image becomes narrow (thin). After such an adjusting level is changed, the “DTMN” button is operated, whereby the line width adjusting value (Δxb) and the line width adjusting value (ΔXw) are determined. In the case of this embodiment, the varnish image line width defined in the initial data is increased or decreased with a width (about 0.04 mm) corresponding to 600 dpi, for example, in response to increase or decrease of one level of the line width adjusting value (ΔXb) and the line width adjusting value (ΔXw).
Next, the line width adjustment of the varnish image using the line width adjusting value (ΔXb) and the line width adjusting value (ΔXw) which are described above will be described using part (a) of
Part (c) of
As can be understood from comparison between parts (a) and (b) of
In this embodiment, in the case where the level of the line width adjusting value (ΔXb) of the portion overlapping with the toner image is increased to the “+” side in the above-described “line width adjusting screen”, as indicated by arrows in part (c) of
For example, the varnish image line width set at a width of “0.5 mm” by the initial data is adjusted in accordance with the line width adjusting values (ΔXb, ΔXw), whereby the line width of the varnish image actually formed on the recording material S is made close to the same width of “0.5 mm” on the toner image and the white background portion. As can be understood by comparing parts (a) and (b) of
Next, “varnish image adjusting processing” for realizing setting of the line width adjusting values (ΔXb, ΔXw) using the above-described “line width adjusting screen” is shown in
As shown in
When “varnish image coating adjusting mode” is selected on the “adjusting item selecting screen” by the user, the main controller 101 causes the operating portion 110 to display the “image data selecting screen” (see part (c) of
The main controller 101 discriminates whether or not the line width adjusting value (ΔXb) of the portion overlapping with the toner image and the line width adjusting value (ΔXw) of the portion overlapping with the white background portion are changed and then the “determination” button is operated by the user (S106). In the case where the line width adjusting value (ΔXb) and the line width adjusting value (ΔXw) are changed and then the “determination” button is operated (Yes of S106), the main controller 101 updates the varnish image line width of the “varnish image setting information” (
Next, the “varnish image preparing processing” for realizing the varnish image line width adjustment using the line width adjusting value (ΔXb) and the line width adjusting value (ΔXw) which are described above is shown in
The main controller 101 not only reads, from the RAM 104, the image data instructed with the input of the start of the operation in the “image forming mode”, but also reads the corresponding “varnish image setting information” (see
In the case where the varnish image is not formed (No of S202), the main controller 101 selects the operation in a normal print mode for forming the toner image on the recording material S on the basis of data relating to the toner image of the image data (S203). In addition thereto, the main controller sends, to the varnish coater 200 (specifically the varnish processing controller 330), that the varnish image is not formed (S204). Thereafter, the main controller 101 causes the image forming apparatus 100 to operate, so that the toner image is formed on the recording material S (S206). In this case, the varnish coater 200 does not form the varnish image on the recording material S on which the toner image is formed by the image forming apparatus 100.
In the case where the varnish image is formed (Yes of S202), the main controller 101 sends, to the varnish coater 200, the “varnish image setting information” of the corresponding image data read from the RAM 104 together with the data (initial data) relating to the varnish image of the image data (S205). Thereafter, the main controller 101 causes the image forming apparatus 100 to operate, so that the toner image is formed on the recording material S (S206). In this case, the varnish coater 200 forms the varnish image on the recording material S on which the toner image is formed by the image forming apparatus 100. The varnish coater 200 (specifically the varnish processing controller 330) forms the varnish image on the recording material S on the basis of the initial data sent by the main controller 101. However, in the case where the varnish image extending over the toner image and the white background portion is formed, the varnish processing controller 330 changes the varnish image line width on the basis of the line width initial value (Ws), the line width adjusting value (ΔXb) of the portion overlapping with the toner image, and the line width adjusting value (ΔXw) of the portion overlapping with the white background portion of the “varnish image setting information”.
As described above, in this embodiment, in the case where the varnish image extending over the toner image and the white background portion is formed, the varnish image line width (line width initial value (Ws)) is changed by the line width adjusting value (ΔXb) of the portion overlapping with the toner image and the line width adjusting value (ΔXw) of the portion overlapping with the white background portion background portion. Further, setting of the line width adjusting value (ΔXb) of the portion overlapping with the toner image and the line width adjusting value (ΔXw) of the portion overlapping with the white background portion is enabled. By setting the line width adjusting value (ΔXb) of the portion overlapping with the toner image and the line width adjusting value (ΔXw) of the portion overlapping with the white background portion, the user is capable of making the line width of the varnish image actually formed on the recording material S close to the line width of the varnish image set as the initial data. Thus, in the case where the varnish image is formed so as to extend over the toner image and the white background portion, it is possible to suppress that a difference in line width occurs between the toner image and the white background portion as a boundary.
In the above-described first embodiment, as shown in part (c) of
Also, in this case, by performing the adjustment of the varnish image line width on the basis of the adjusting value set on the “line width adjusting screen” shown in
In the first embodiment and the second embodiment, the constitution in which the line width of the portion overlapping with the toner image and the line width of the portion overlapping with the white background portion was described, but by adjusting the line width, in some cases, there arose a difference in thickness between the varnish image on the toner image and the varnish image on the white background portion. In this case, a stepped portion was formed between the varnish image on the toner image and the varnish image on the white background portion, so that there was a liability that a difference in appearance was caused to occur between the varnish images.
Therefore, in a third embodiment, the adjustment of the varnish image line width is enabled by using a film thickness adjusting value of the varnish image in addition to the above-described line width adjusting values (ΔXb, ΔXw). In the following, the third embodiment will be described, but a difference from the above-described first embodiment will be principally described, and the constitution which is the same as the constitution of the first embodiment will be briefly described or omitted from the description.
In the case of the third embodiment, as shown in
The above-described film thickness adjusting values XX (ΔXd, ΔXv) are updated by an operation of a “film thickness adjusting screen” (
(Film thickness of portion overlapping with toner image)=(film thickness initial value(Ds))+(line width adjusting value(ΔXd)) formula 3
(Film thickness of portion overlapping with varnish image)=(film thickness initial value(Ds))+(line width adjusting value(ΔXw)) formula 4
Setting of the above-described film thickness adjusting value (ΔXd) of the portion overlapping with the toner image and the above-described film thickness adjusting value (ΔXv) of the portion overlapping with the varnish image will be described using
By the operation of the adjusting button “+”, the film thickness becomes thick and by the operation of the adjusting button “−”, the film thickness becomes thin. Incidentally, as shown in
In the case where the level of the film thickness adjusting value (ΔXd) of the portion overlapping with the toner image is lowered to the “−” side in the above-described “film thickness adjusting screen”, a varnish application amount is decreased and therefore, as indicated by arrows in
As described above, in this embodiment, setting of the film thickness adjusting value (ΔXd) of the portion overlapping with the toner image and the film thickness adjusting value (ΔXv) of the portion overlapping with the white background portion was enabled. By setting the film thickness adjusting value (ΔXd) of the portion overlapping with the toner image and the film thickness adjusting value (ΔXv) of the portion overlapping with the white background portion, the user is capable of making the line width of the varnish image actually formed on the recording material S close to the line width of the varnish image set as the initial data. Thus, in the case where the varnish image is formed so as to extend over the toner image and the white background portion, it is possible to suppress that a difference in line width occurs between the toner image and the white background portion as a boundary.
In the above-described first to third embodiments, the toner image desired by the user and the varnish image are actually outputted on the recording material S, and whether or not the difference in line width of the varnish image occurs between the toner image and the white background portion at the boundary can be checked by the user by (eye) observation. Therefore, until the user confirms a desired result, the user caused to the image forming apparatus to output a number of sheets of recording materials S while appropriately changing the setting of the line width adjusting values (ΔXb, ΔXw) and the film thickness adjusting values (ΔXd, ΔXv) which are described above. However, in such a case, it takes much time for determining the line width adjusting values (ΔXb, ΔXw) and the film thickness adjusting values (ΔXd, ΔXv), and there is a liability that the recording material S is consumed uselessly.
Therefore, in a fourth embodiment, a test chart is outputted in order that the user checks whether or not the difference in line width of the varnish image occurs between the toner image and the white background portion as the boundary and that setting of the line width adjusting values (ΔXb, ΔXw) and the film thickness adjusting values (ΔXd, ΔXv) can be efficiently performed. In the following, the fourth embodiment in which the test chart is outputted will be described.
A “sheet setting” button is a button for selecting the cassette 10 (see
The test chart will be described using the
In an upper stage (portion) of the test chart, “Y, M, C, K” indicating the colors of the toner images are printed in association with the test toner images formed side by side. Further, single color test toner images for each of YMCK are vertically formed and arranged so as to sandwich the white background portion as indicated by a broken line (the first test toner image, a third test toner image). Rectilinear test varnish images (first test varnish image, second test varnish image) are formed so as to extend over the test toner image and the white background portion. In this embodiment, five test varnish images are formed on a single test toner image (and the white background portion).
In the upper stage (portion) of the test chart, in addition to the “Y, M, C, K” indicating the above-described colors, line width adjusting levels of “−2, −1, 0, +1, +2” of the above-described varnish images are printed in association with the five test varnish images. Further, on a left-hand side of the test chart, “+10, +5, center set value, −5, −10” indicating the film thicknesses of the test varnish images are printed in association with the test toner images vertically arranged.
In the case of the test chart shown in
On the other hand, on each of the test toner images, for each of color units, the test varnish images are formed in different five film thicknesses (+10, +5, center set value (μm), −5, −10). Further, for each (single) test toner image, the test varnish images are formed with different five line widths (adjusting levels: −2, −1, 0, +1, +2). The adjusting level of “0” shows that a set value set by the “line width center set value” (see
Thus, on each of the test toner images, the plurality of test varnish images are formed in accordance with combinations of different line widths and different film thicknesses. In accordance with these combinations of the five line widths (adjusting level: −2, −1, 0, +1, +2) and the five film thicknesses (+10, +5, center set value, −5, −10), on each of the test toner images for (Y, M, C, K), 25 pieces (combinations of 5×5) of the test varnish images are formed. The user looks at the test chart shown in
On the other hand, in the case of the test chart shown in
On the other hand, in the white background portion corresponding to each of the test toner images, for each of color units, the test varnish images are formed in different five film thicknesses (+10, +5, center set value (μm), −5, −10). Further, for each (single) white background portion, the test varnish images are formed with different five line widths (adjusting levels: −2, −1, 0, +1, +2).
Thus, on each white background portion, the test varnish images are formed in accordance with the plurality of combinations of different line widths and different film thicknesses. In accordance with these combinations of the five line widths (adjusting level: −2, −1, 0, +1, +2) and the five film thicknesses (+10, +5, center set value, −5, −10), on each of the white background portions corresponding to the test toner images for (Y, M, C, K), 25 pieces (combinations of 5×5) of the test varnish images are formed. The user looks at the test chart shown in
The user looks at the above-described two kinds of test charts, and is capable of easily setting the line width adjusting values (ΔXb. ΔXw) and the film thickness adjusting values (ΔXd, ΔXv) which are capable of suppressing the occurrence of the difference in line width of the varnish image as shown in part (c) of
Incidentally, the line width and the film thickness of the test varnish image formed on the test chart are not limited to the above-described numerical values, but may appropriately be changed depending on constitutions of the image forming apparatus 100 and the varnish coater 200, and conditions of the toner image desired by the user and the varnish image.
According to the present invention, in the constitution in which the varnish image is capable of being overprinted on the toner image on the recording material, in the case where the varnish image is formed so as to extend over the toner image and the white background portion, it becomes possible to easily suppress the occurrence of the difference in line width of the varnish image between the toner image and the white background portion as the boundary.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Applications Nos. 2021-143044 filed on Sep. 2, 2021 and 2022-111491 filed on Jul. 12, 2022, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2021-143044 | Sep 2021 | JP | national |
2022-111491 | Jul 2022 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 17901319 | Sep 2022 | US |
Child | 18225938 | US |