Image forming system

Information

  • Patent Application
  • 20070280503
  • Publication Number
    20070280503
  • Date Filed
    May 11, 2007
    17 years ago
  • Date Published
    December 06, 2007
    17 years ago
Abstract
When it is determined that the subject vehicle stopped at the intersection is in the right turn waiting state, the navigation ECU forms a right turn waiting mark representing the right turn waiting state on the road surface of the opposite lane at the intersection where the subject vehicle is stopped with visually identifiable laser beam with a predetermined color. When it is determined that the subject vehicle is brought into the right turn start state from the right turn waiting state where the subject vehicle is stopped at the intersection, the navigation ECU forms the right turn start mark representing the right turn start state instead of the right turn waiting mark on the road surface of the opposite lane at the intersection where the subject vehicle enters with the visually identifiable laser beam with the color (for example, red) different from that of the right turn waiting mark at substantially the same position thereof in accordance with the traveling state of the subject vehicle.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram showing a laser image forming system according to an embodiment;



FIG. 2 is a flowchart showing a laser image forming process executed by a navigation ECU;



FIG. 3 is a sub-flowchart showing a subroutine as the “vehicle state determination process” executed in step 18 shown in FIG. 2;



FIG. 4 is a sub-flowchart showing a subroutine as the “image forming process of right turn waiting mark” executed in step 20 shown in FIG. 2;



FIG. 5 is a sub-flowchart showing a subroutine as the “image forming process of right turn start mark” executed in step 23 shown in FIG. 2;



FIG. 6 is a plan view showing an example of the right turn waiting mark formed on the road surface of the lane opposite the subject vehicle at the intersection;



FIG. 7 is a plan view showing an example of the right turn start mark formed on the road surface of the lane opposite the subject vehicle at the intersection; and



FIG. 8 is a plan view showing an example of a state where the subject vehicle is passing the intersection.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The image forming system according to the present invention will be described with respect to a laser image forming system as an example referring to the drawings.


Embodiment

First, a structure of the laser image forming system according to the present embodiment will be described referring to FIG. 1. FIG. 1 is a block diagram showing a laser image forming system 1 according to the embodiment.


Referring to FIG. 1, the laser image forming system 1 basically includes a navigation unit 2 and a laser image forming unit 4 electrically coupled with the navigation unit 2 as well as peripheral units connected to various control units.


The navigation unit 2 which is installed in a center console or a panel surface of the vehicle interior displays the map and the search route to the destination on a liquid crystal display 17, and outputs the voice guidance with respect to the route guide through a speaker 18. In the case where a predetermined condition is satisfied, the navigation unit 2 transmits the control signal to the laser image forming unit 4 to perform the laser image forming process to form the mark with a predetermined shape of irradiation on the road surface ahead of the vehicle in the travelling direction. The laser image forming unit 4 is structured to irradiate the visually identifiable laser beam from the center of the front grille of the subject vehicle in the width direction onto the road surface or the road sign ahead of the subject vehicle by changing the irradiation direction, irradiation range, irradiation amount or color.


Various components which form the navigation unit 2 will be described hereinafter.


The navigation unit 2 includes a navigation ECU (Electronic Control Unit) 3 which executes various calculations based on the input information, a steering sensor 11, a GPS 13, a 3D acceleration sensor 16, the liquid crystal display 17 installed in the center console or the panel surface of the vehicle interior to display the map and the route guide to the destination, the speaker 18 which outputs the voice guidance with respect to the route guide, and a communication unit 19 that communicates with the information center, for example, VICS™ (Vehicle Information and Communication System). The navigation ECU 3 is connected to a vehicle speed sensor 12 which detects a travelling speed of the subject vehicle, a front distance detection sensor 14 which measures the distance to the object ahead by outputting the ultrasound from the center of the front grille of the subject vehicle in the width direction, a pedal operation state sensor 15 which detects the operation of the driver's foot around the vehicle operation pedal using an image recognition sensor and a behavior sensor through image processing performed by the CCD camera, and the laser image forming unit 4.


Besides execution of the regular processing of the route searching and route guiding, the navigation ECU 3 executes the laser image forming process to form the right turn waiting mark on the road surface of the opposite lane at the intersection with a visually identifiable laser beam when the subject vehicle is stopped at the intersection waiting for turning right, and to form the right turn start mark on the position where the right turn waiting mark has been formed when the vehicle starts turning right. The detailed explanation with respect to the structure of the navigation ECU 3 will be described later.


The navigation ECU 3 allows the steering sensor 11, the GPS 13, the 3D acceleration sensor 16 and the like to detect the current position (hereinafter referred to as the subject vehicle position), direction, and the travelling distance from a predetermined point.


Specifically, the steering sensor 11 detects a steering angle of the subject vehicle. An optical rotation sensor attached to a rotating portion of the steering wheel (not shown), a rotation resistance sensor, an angle sensor attached to the vehicle wheel and the like may be employed as the steering sensor 11. The GPS 13 detects the current position of the subject vehicle and the current time on earth in response to reception of radio waves emitted from the satellite to obtain the subject vehicle direction. The 3D acceleration sensor 16 detects the acceleration of the subject vehicle in the tri-axial direction. The acceleration detected by the 3D acceleration sensor 16 is integrated to obtain the speed and the travel distance of the subject vehicle in the tri-axial direction.


The navigation ECU 3 includes various inner memory units in addition to the CPU used as a working memory for performing various calculation operations as well as the entire control of the navigation unit 2 as the calculation/control unit, a RAM which stores the route data resulting from the route searching, the program for controlling, the route guide program for searching the route to the destination and guiding the driver with the searched guide route, and a ROM which stores the laser image forming program (see FIG. 2) for forming a right turn waiting mark with the visually identifiable laser beam on the road surface of the opposite lane at the intersection when the subject vehicle is stopped waiting for turning right at the intersection, and further forming the right turn start mark on the position where the right turn waiting mark has been formed. A semiconductor memory, a magnetic core and the like may be employed as the RAM and ROM. An MPU may be employed as the calculation/control unit instead of the CPU.


The navigation ECU 3 includes a road surface irradiation position determination unit 31, a subject vehicle position determination unit 32, a map information DB 33, a laser irradiation angle determination unit 34, a subject vehicle posture determination unit 35, and a right turn waiting state determination unit 36 to execute various control operations based on the information derived from the steering sensor 11, the vehicle speed sensor 12, the GPS 13, the front distance detection sensor 14, the pedal operation state sensor 15, the 3D acceleration sensor 16 and the like.


The road surface irradiation position determination unit 31 calculates to determine the coordinate data of the target image forming position at which the mark with a predetermined irradiation shape is formed on the road surface of the opposite lane at the intersection based on the map information with respect to the opposite lane at the intersection to be stored in the map information DB 33.


The subject vehicle position determination unit 32 detects a current absolute position of the subject vehicle (latitude and longitude) based on various information data derived from the steering sensor 11, the vehicle speed sensor 12, the GPS 13, the 3D acceleration sensor 16. The subject vehicle position determination unit 32 detects the existence of the leading vehicle ahead of the subject vehicle based on the information derived from the front distance detection sensor 14.


The map information DB 33 includes various information data required for the route guide and the map display, for example, a newly built road information for specifying the newly built road, the map display data for displaying the map, the intersection data with respect to the intersections, the node data with respect to node points, the link data with respect to the road (link) as one of the facilities, the search data for searching the route, the shop data with respect to POI (Point of Interest) of the shop as one of the facilities, and the retrieving data for retrieving the point. The contents of the map information DB 33 may be updated by downloading the update information delivered from the map information delivery center (not shown) via the communication unit 19.


The laser irradiation angle determination unit 34 calculates to determine the laser irradiation angle at which the mark with the predetermined irradiation shape is formed based on the target image forming position at which the mark with the predetermined irradiation shape is formed on the road surface of the opposite lane at the intersection, which has been determined by the road surface irradiation position determination unit 31, the coordinate position data of the subject vehicle at the intersection, which have been determined by the subject position determination unit 32, and the direction information which represents the direction of the subject vehicle at the intersection, which has been determined by the subject vehicle posture determination unit 35.


The subject vehicle posture determination unit 35 detects the current direction angle of the subject vehicle based o the various information data derived from the steering sensor 11, the vehicle speed sensor 12, the GPS 13, and the 3D acceleration sensor 16.


The right turn waiting state determination unit 36 detects whether or not the driver's foot has moved from the brake pedal to the accelerator pedal by monitoring the driver's foot movement based on the information derived from the pedal operation state sensor 15 so as to determine whether the subject vehicle is in the right turn waiting state or in the right turn start state.


The map display data are formed of units which are divided into four parts (½ of length), sixteen parts (¼), and 64 parts (⅛) based on the secondary mesh each with 10 km×10 km section. The respective units are set such that each data size becomes substantially the same level. The smallest unit obtained by the division into 64 parts has the size of about 1.25 km×1.25 km.


The node data contain such data as the fork of the actual road (including intersection and T-shaped intersection), the coordinate (position) of the node point set at predetermined intervals on the road in accordance with the curvature radius, attributes associated with node representing whether the node corresponds to the intersection, the connection link number list as the link ID list of the identification number of the link to be connected to the node, the adjacent node number list as the list of the number of the adjacent node via the link, and the height of the respective nodes (altitude).


Recorded as the link data are the data with respect to the links that form the road including the road width, gradient, cant, bank, road surface condition, the number of lanes, the point at which the number of lanes is reduced, the point at which the road width is narrowed, and the rail crossing, the data with respect to the corner including the curvature radius, the intersection, T-shaped intersection, the entrance/exit of the corner, the data with respect to the attributes associated with the road including the downhill road and the uphill road, the data with respect to the road category including the general road such as the national road, prefectural road, and narrow street, and the toll road such as the automobile expressway, the urbane expressway, ordinary toll road, and the toll bridge. The data with respect to the toll road including the service road (ramp way) of the entrance/exit of the toll road, and the toll booth (interchange) are further recorded.


The data used for searching and displaying the set route to the destination are recorded as the search data, which include the cost data formed of the cost for the passage of the node (hereinafter referred to as the node cost), and the cost for the link which forms the road (hereinafter referred to as the link cost) so as to calculate the search cost, and the route display data for displaying the guide route selected through the route searching on the map of the liquid crystal display 17.


The data with respect to the POI, for example, hotels, hospitals, gas stations, parking stations, and tourist facilities in the respective areas are recorded as the shop data together with the ID which specifies the POI. The map information DB 33 stores the voice output data for outputting the predetermined information through the speaker 18 of the navigation unit 2.


The liquid crystal display 17 displays the operation guide, the operation menu, the key guide, the guide route from the present position to the destination, the guide information along the guide route, the traffic information, news, weather forecast, time, mail, and the TV programs and the like. Instead of the liquid crystal display 17, the CRT display or the plasma display and the like may be employed. Alternatively, the hologram device and the like for emitting the hologram to the windshield of the vehicle may be employed.


The speaker 18 outputs the voice guidance which guides the driver with the guide route based on the instruction from the navigation ECU 3. For example, such message as “please turn right at the XX intersection 200 m ahead” will be output as the voice guidance. The sound output through the speaker 18 may be various sound effects and various types of guide information which have been preliminarily recorded in the tape or the memory in addition to the synthetic sound.


The communication unit 19 is a communication device which communicates with the map information delivery center so as to transmit/receive the latest version of update map information thereto/therefrom. In addition to the map information delivery center, for example, the traffic information including the traffic congestion information, the traffic regulation information, parking information, traffic accident information, and the information of the crowded condition in the service area transmitted from the road traffic information center (VICS) are received as the radio wave beacon, and the optical beacon through the radio wave beacon device, and the optical beacon device provided alongside the road. The communication unit 19 is a network unit which allows communication in the communication system for the communication line network, for example, LAN, WAN, intranet, cell phone line network, phone line network, public communication line network, private communication line network, and internet. The communication unit 19 includes an FM receiver which receives the FM multiplex information including the news and weather forecast in addition to the information delivered from the road traffic information center (VICS) via the FM broadcast station. The beacon receiver and the FM receiver are combined into the unit as a VICS receiver. However, they may be separately installed.


The laser image forming unit 4 includes a laser irradiation angle control unit 41 which controls the irradiation angle of the laser beam for forming the image of the predetermined irradiation shape based on the laser irradiation angle information transmitted from the navigation ECU 3, and a laser output control unit 42 that controls the output of the laser beam based on the color data of the mark transmitted from the navigation ECU 3 to be formed on the road surface.


The laser image forming process for forming the right turn waiting mark with the visually identifiable laser beam on the road surface of the opposite lane at the intersection, which is executed by the navigation ECU 3 of the thus structured laser image forming system 1 when the subject vehicle is stopped at the intersection waiting for turning right will be described referring to FIGS. 2 to 8.



FIG. 2 is a flowchart showing the laser image forming process executed by the navigation ECU 3 for forming the right turn waiting mark with the visually identifiable laser beam on the road surface of the opposite lane at the intersection when the subject vehicle is stopped at the intersection waiting for turning right. FIG. 3 is a sub-flowchart showing a subroutine as the “vehicle state determination process” executed in step 18 shown in FIG. 2. FIG. 4 is a sub-flowchart showing a subroutine as the “image forming process of right turn waiting mark” executed in step 20 shown in FIG. 2. FIG. 5 is a sub-flowchart showing a subroutine as the “image forming process of right turn start mark” executed in step 23 shown in FIG. 2. FIG. 6 is a plan view showing an example of the right turn waiting mark formed on the road surface of the lane opposite the subject vehicle at the intersection. FIG. 7 is a plan view showing an example of the right turn start mark formed on the road surface of the lane opposite the subject vehicle at the intersection. FIG. 8 is a plan view showing an example of a state where the subject vehicle is passing the intersection. The programs shown in the flowcharts in FIGS. 2 to 5 are stored in the RAM or the ROM of the navigation ECU 3, and executed by the CPU.


Referring to FIG. 2, first, in step (hereinafter referred to as S) 11, the navigation ECU 3 allows the subject vehicle position determination unit 32 and the subject vehicle posture determination unit 35 to detect the position and direction of the subject vehicle representing the direction of the subject vehicle so as to store the coordinate data representing the subject vehicle position (for example, data of latitude and longitude) and the subject vehicle direction in the RAM. The navigation ECU 3 loads the intersection data with respect to the intersection ahead of the subject vehicle in the traveling direction from the map information DB 33 so as to be stored in the RAM.


Subsequently, in S12, the navigation ECU 3 loads the coordinate data representing the subject vehicle position and the intersection data from the RAM again to execute the determination process that determine whether or not the subject vehicle has entered the intersection. If the subject vehicle has not entered the intersection yet (NO in S12), the navigation ECU 3 executes S11 and the subsequent processes.


If the subject vehicle has entered the intersection (YES in S12), the navigation ECU 3 proceeds to execute S13 where it is determined whether the subject vehicle is going to turn right or left based on detection results of the steering sensor 11 and the 3D acceleration sensor 16 and the direction indicator information. If it is determined that the subject vehicle is going to turn right, the “right turn flag” is loaded from the RAM to be set to ON, that is, the value “1” is substituted to the right turn flag, and stored in the RAM again. If it is determined that the subject vehicle is not going to turn right, the “right turn flag” is loaded from the RAM to be set to OFF, that is, the value “0” is substituted to the right turn flag, and stored in the RAM again. At the start-up of the engine, the right turn flag is set to OFF, that is, the value “0” is substituted to the right turn flag to be stored in the RAM.


Then in S14, the navigation ECU 3 loads the right turn flag from the RAM to execute the determination process whether or not the right turn flag has been set to ON, that is, whether or not the subject vehicle is going to turn right. If the right turn flag is set to OFF, that is, the right turn flag is set to “0” (NO in S14), the navigation ECU 3 determines that the subject vehicle is not going to turn right, and executes S11 and the subsequent steps.


Meanwhile, if the right turn flag has been set to ON, that is, the right turn flag is set to “1” (YES in S14), the navigation ECU 3 determines that the subject vehicle is going to turn right, and proceeds to execute S15. In S15, the navigation ECU 3 determines whether or not the vehicle that is going to turn right exists ahead of the subject vehicle based on the information derived from the front distance detection sensor 14. If it is determined that the vehicle that is going to turn right exists ahead of the subject vehicle, the “leading vehicle flag” is loaded from the RAM so as to be set to ON. That is, the value “1” is substituted to the leading vehicle flag, and stored in the RAM again. If it is determined that the vehicle that is going to turn right does not exist ahead of the subject vehicle, the “leading vehicle flag” is loaded from the RAM so as to be set to OFF, that is, the value “0” is substituted to the leading vehicle flag, and stored in the RAM again. At the start-up of the engine, the leading vehicle flag has been set to OFF, that is, the value “0” is substituted to the leading vehicle flag to be stored in the RAM.


Then in S16, the navigation ECU 3 loads the leading vehicle flag from the RAM again to determine whether or not the leading vehicle flag has been set to ON, that is, the leading vehicle exists. If the leading vehicle flag has been set to ON, that is, the leading vehicle flag has been set to the value “1” (YES in S16), the navigation ECU 3 proceeds to execute S17. In S17, the navigation ECU 3 allows the subject vehicle position determination unit 32 and the subject vehicle posture determination unit 35 to detect the subject vehicle position and the subject vehicle direction that indicates the direction so as to store the coordinate data (for example, data of latitude and longitude) representing the subject vehicle position and the subject vehicle direction in the RAM. The navigation ECU 3 loads the coordinate data representing the subject vehicle position and the intersection data from the RAM again, and executes the determination process whether or not the subject vehicle has passed the intersection.


If it is determined that the subject vehicle has passed the intersection (YES in S17), the navigation ECU 3 executes S11 and the subsequent steps again. Meanwhile, if it is determined that the subject vehicle has not passed the intersection (NO in S17), the navigation ECU 3 executes S15 and the subsequent steps.


Meanwhile, if it is determined that the leading vehicle flag has been set to OFF in S16, that is, the leading vehicle flag has been set to “0” (NO in S16), the navigation ECU 3 proceeds to execute S18. In S18, the navigation ECU 3 executes the “vehicle state determination process” as the subroutine (see FIG. 3) to be described below.


Then in S19, the navigation ECU 3 executes the determination process whether or not it has been determined that the subject vehicle is waiting for turning right in S18. Specifically, the navigation ECU 3 loads the “vehicle state flag” from the RAM to execute the determination process whether or not the vehicle state flag has been set to the value “1”.


In S18, if the vehicle state represents “unknown”, the value “0” is substituted to the “vehicle state flag” so as to be stored in the RAM. If the vehicle state represents the “right turn waiting”, the value “1” is substituted to the “vehicle state flag” so as to be stored in the RAM. If the vehicle state represents the “right turn start”, the value “2” is substituted to the “vehicle state flag” so as to be stored in the RAM. At the start-up of the engine, the value “0” has been substituted to the “vehicle state flag” to be stored in the RAM.


If it is determined that the subject vehicle has been waiting for turning right, that is, the vehicle state flag loaded from the RAM is the value “1” (YES in S19), the navigation ECU 3 proceeds to execute S20. In S20, the navigation ECU 3 executes the “right turn waiting mark forming process” to be described later as the subroutine (see FIG. 4) to form the right turn waiting mark having a predetermined irradiation shape (for example, triangle, ring, square) on the road surface of the opposite lane at the intersection with the visually identifiable laser with the predetermined color (for example, green), and further executes S18 and the subsequent steps again.


Meanwhile, if it is determined that the subject vehicle has not been waiting for turning right, that is, the vehicle state flag loaded from the RAM is not the value “1” (NO in S19), the navigation ECU 3 proceeds to execute S21. In S21, the navigation ECU 3 executes the determination process to determine whether or not it has been determined in S18 that the subject vehicle is in the right turn start state. More specifically, the navigation ECU 3 loads the vehicle state flag from the RAM again, and executes the determination process whether or not the vehicle state flag has been set to the value “2”.


If it is determined that the subject vehicle is not in the right turn start state, that is, the vehicle state flag loaded from the RAM has been set to the value “0” (NO in S21), the navigation ECU 3 determines that the vehicle state is “unknown”, and proceeds to execute S22. In S22, the navigation ECU 3 allows the subject vehicle position determination unit 32 and the subject vehicle posture determination unit 35 to detect the subject vehicle position and the subject vehicle direction representing the direction so as to store the coordinate data representing the subject vehicle position (for example, data of latitude and altitude) and the subject vehicle direction in the RAM. Then the navigation ECU 3 loads the coordinate data representing the subject vehicle position and the intersection data from the RAM to execute the determination process whether or not the subject vehicle has passed the intersection.


If it is determined that the subject vehicle has passed the intersection (YES in S22), the navigation ECU 3 executes S11 and the subsequent steps again. Meanwhile, if it is determined that the subject vehicle has not passed the intersection (NO in S22), the navigation ECU 3 executes S18 and the subsequent steps again.


If it is determined that the subject vehicle is in the right turn start state in S21, that is, the vehicle state flag loaded from the RAM is the value “1” (YES in S21), the navigation ECU 3 proceeds to execute S23. In S23, the navigation ECU 3 executes the “right turn start mark forming process” as the subroutine (see FIG. 5) to be described later to form the right turn start mark with the predetermined irradiation shape (for example, triangle, ring, and square) on the road surface of the opposite lane at the intersection with the visually identifiable laser beam with the color (red, for example) different from that of the right turn waiting mark.


Then in S24, the navigation ECU 3 allows the subject position determination unit 32 and the subject vehicle posture determination unit 35 to detect the subject vehicle position and the subject vehicle direction representing the direction so as to store the coordinate data representing the subject vehicle position (for example, data of latitude and longitude) and the subject vehicle direction in the RAM. The navigation ECU 3 loads the coordinate data representing the subject vehicle position, and the coordinate data of the target image forming position of the right turn start mark stored in the RAM in S23 such that it is determined whether or not the subject vehicle has passed the target image forming position of the right turn start mark. Specifically, if the coordinate data representing the subject vehicle position reaches the point adjacent to the target image forming position of the right turn start mark (for example, the tip of the bumper of the subject vehicle has reached the position distant from 10 cm to 20 cm from the target image forming position), it may be determined that the subject vehicle has passed the target image forming position of the right turn start mark. Then the “passage flag” is loaded from the RAM to be set to ON, that is, the value “1” is substituted to the passage flag to be stored in the RAM again. If it is determined that the subject vehicle has not passed the target image forming position of the right turn start mark, the “passage flag” is loaded from the RAM to be set to OFF. That is, the value “0” is substituted to the passage flag so as to be stored in the RAM.


In S25, the navigation ECU 3 determines whether or not the subject vehicle has passed the target image forming position of the right turn start mark, that is, loads the passage flag from the RAM again to execute the determination process to determine whether or not the passage flag has been set to ON. If it is determined that the subject vehicle has not passed the target image forming position of the right turn start mark, that is, the passage flag has been set to OFF (NO in S25), the navigation ECU 3 executes S118 and the subsequent steps again.


Meanwhile, if it is determined that the subject vehicle has passed the target image forming position of the right turn start mark, that is, the passage flag loaded from the RAM has been set to ON (YES in S25), the navigation ECU 3 proceeds to execute S26. In S26, the navigation ECU 3 outputs the control signal that stops the laser output to the laser image forming unit 4, and executes S11 and the subsequent steps after termination of formation of the right turn start mark by outputting the control signal to stop the laser output to the laser image forming unit 4.


In the case where the subject vehicle 45 has passed the target image forming position of the right turn start mark 52 as shown in FIG. 8, the navigation ECU 3 outputs the control signal to stop the laser output to the laser image forming unit 4 to terminate the image formation of the right turn start mark 52.


The “vehicle state determination process” as the subroutine to be executed by the navigation ECU 3 in S18 will be described referring to FIG. 3.


Referring to FIG. 3, in S101, the navigation ECU 3 executes the determination process to determine whether or not the subject vehicle has been stopped based on various information data derived from the vehicle speed sensor 12 and the 3D acceleration sensor. If it is determined that the subject vehicle has been stopped (YES in S101), the navigation ECU 3 proceeds to execute S102. In S102, the navigation ECU 3 starts monitoring the movement of the driver's foot based on the information derived from the pedal operation state sensor 15 via the right turn waiting state determination unit 36.


In S103, the navigation ECU 3 executes the determination process to determine whether or not the driver's foot has moved from the brake pedal to the accelerator pedal via the right turn waiting state determination unit 36 based on the information derived from the pedal operation state sensor 15. If it is determined that the driver's foot has been kept on the brake pedal via the right turn waiting state determination unit 36 based on the information derived from the pedal operation state sensor 15 (NO in S103), the navigation ECU 3 proceeds to execute S104.


In S104, the navigation ECU 3 determines that the subject vehicle is in the right turn waiting state to load the vehicle state flag from the RAM. The value “1” is substituted to the vehicle state flag to be stored in the RAM again. The subroutine then is terminated to return to the main flowchart.


Meanwhile, if it is determined that the driver's foot has moved from the brake pedal to the accelerator pedal by the right turn waiting state determination unit 36 based on the information derived from the pedal operation state sensor 15 (YES in S103), the navigation ECU 3 proceeds to execute S105. In S105, the navigation ECU 3 determines that the subject vehicle is in the right turn start state, and loads the vehicle state flag from the RAM. The value “2” is substituted to the vehicle state flag to be stored in the RAM again. The subroutine is then terminated to return to the main flowchart.


Meanwhile, in S101, if it is determined that the subject vehicle has not been stopped (NO in S101), the navigation ECU 3 proceeds to execute S106. In S106, the navigation ECU 3 executes the determination process to determine whether or not the subject vehicle has been in the right turn start state, that is, whether or not the driver's foot has not moved from the accelerator pedal to the brake pedal, that is, the driver's foot has been kept on the accelerator pedal via the right turn waiting state determination unit 36. If it is determined that the subject vehicle has been in the right turn start state, that is, it is determined that the driver's foot has been kept on the accelerator pedal (YES in S1106), the navigation ECU 3 executes S105, and terminates the subroutine to return to the main flowchart.


If it is determined that the subject vehicle is not in the right turn start state, that is, the driver's foot has not been kept on the accelerator pedal (NO in S106), the navigation ECU 3 proceeds to execute S107. In S107, the navigation ECU 3 executes the determination process to determine whether or not the subject vehicle is at the speed sufficient to stop before entering the opposite lane at the intersection. If it is determined that the subject vehicle is at the speed which does not allow the subject vehicle to stop before entering the opposite lane at the intersection (NO in S107), the navigation ECU 3 executes S105 again to terminate the subroutine to return to the main flowchart.


Meanwhile, if it is determined that the subject vehicle is at the speed to stop before entering the opposite lane at the intersection (YES in S107), the navigation ECU 3 proceeds to execute S108. In S108, the navigation ECU 3 determines that the subject vehicle has not been in the right turn waiting state nor the right turn start state, that is, unknown state. Then the vehicle state flag is loaded from the RAM, and the value “0” is substituted to the vehicle state flag so as to be stored in the RAM again. Then, the subroutine is terminated to start the main flowchart.


The “right turn waiting mark forming process” as the subroutine executed by the navigation ECU 3 in S20 will be described referring to FIGS. 4 to 6.


Referring to FIG. 4, first in S201, the navigation ECU 3 allows the subject vehicle position determination unit 32 and the subject vehicle posture determination unit 35 to detect the subject vehicle position and the subject vehicle direction representing the direction so as to store the coordinate data (for example, data of latitude and longitude) representing the subject vehicle position and the subject vehicle direction in the RAM.


In S202, the navigation ECU 3 loads the coordinate data of the opposite lane at the intersection from the map information DB 33 so as to be stored in the RAM as the target image forming position information for forming the right turn waiting mark. The navigation ECU 3 loads the coordinate data of the opposite lane at the intersection from the map information DB 33 to calculate the relative positional relationship between the subject vehicle and the road surface of the opposite lane at the intersection so as to be stored in the RAM as the target image forming position information for forming the right turn waiting mark.


In S203, the navigation ECU 3 loads the target image forming position information for forming the right turn waiting mark from the RAM to allow the road surface irradiation position determination unit 31 to calculate the coordinate data of the target image forming position for forming the right turn waiting mark with the predetermined irradiation shape on the road surface of the opposite lane at the intersection so as to be stored in the RAM. The navigation ECU 3 loads the coordinate data representing the subject vehicle position, the subject vehicle direction, and the coordinate data of the target image forming position from the RAM to allow the laser irradiation angle determination unit 34 to irradiate the laser beam to calculate the irradiation angle for forming the right turn waiting mark with the predetermined irradiation shape on the road surface of the opposite lane at the intersection so as to be stored in the RAM as the laser irradiation angle information.


Then in S204, the navigation ECU 3 loads the laser irradiation angle information from the RAM again, and the color data (for example, green) of the right turn waiting mark from the ROM to be transmitted to the laser image forming unit 4. The sub-flowchart then is terminated to return to the main flowchart. The laser image forming unit 4 allows the laser irradiation control unit 41 to control the irradiation angle of the laser beam based on the laser irradiation angle information, and forms the right turn waiting mark with the predetermined irradiation shape by irradiating the visually identifiable laser beam with the predetermined color through the laser output control unit 42 on the road surface of the opposite lane at the intersection based on the color data of the right turn waiting mark and the like.


For example, referring to FIG. 6, the subject vehicle 45 forms the triangle right turn waiting mark 51 having each side ranging from approximately 50 cm to 100 cm with the green laser beam on the road surface of the opposite lane 48 at the intersection 47. The driver of the other vehicle 46 that travels on the opposite lane 48 identifies the green right turn waiting mark 51 to easily recognize that the subject vehicle 45 is in the right turn waiting state.


Referring to FIGS. 5, 7 and 8, the “right turn start mark forming process” executed by the navigation ECU 3 in S23 will be described.


As shown in FIG. 5, in S301, the navigation ECU 3 allows the subject vehicle position determination unit 32 and the subject vehicle posture determination unit 35 to detect the subject vehicle position and the subject vehicle direction representing the direction so as to store the coordinate data (for example, data of latitude and longitude) representing the subject vehicle position and the subject vehicle direction in the RAM.


In S302, the navigation ECU 3 obtains the operation information of the subject vehicle including the steering information, the vehicle speed, the tri-axial acceleration information from the steering sensor 11, the vehicle speed sensor 12, and the 3D acceleration sensor 16 so as to be stored in the RAM.


In S303, the navigation ECU 3 loads the operation information of the subject vehicle, for example, the coordinate data representing the subject vehicle position, the subject vehicle direction, the steering information, the subject vehicle speed, and the tri-axial acceleration information from the RAM, and calculates the coordinate data of the estimated position of the subject vehicle and the estimated direction of the subject vehicle after traveling for several seconds (for example, 0.1 seconds to 0.5 seconds) or a predetermined distance (for example, 5 cm to 15 cm), which will be stored in the RAM for changing the irradiation angle of the laser beam.


In S304, the navigation ECU 3 loads the coordinate data of the opposite lane at the intersection from the map information DB 33 to be stored in the RAM as the target image forming position information for forming the right turn start mark. The navigation ECU 3 may load the coordinate data of the opposite lane at the intersection from the map information DB 33 to calculate the relative positional relationship between the subject vehicle and the road surface of the opposite lane at the intersection so as to be stored in the RAM as the target image forming position information for forming the right turn start mark. The target image forming position of the right turn start mark is substantially the same as the right turn waiting mark forming position (see S202 shown in FIG. 4).


In S305, the navigation ECU 3 loads the target image forming position information for forming the right turn start mark from the RAM to allow the road surface irradiation position determination unit 31 to calculate the coordinate data of the target image forming position for forming the right turn start mark with the predetermined irradiation shape on the road surface of the opposite lane at the intersection so as to be stored in the RAM. The navigation ECU 3 loads the coordinate data of the estimated position of the subject vehicle, the estimated direction of the subject vehicle, and the coordinate data of the target image forming position to calculate the irradiation angle for forming the right turn start mark with the predetermined irradiation shape on the road surface of the opposite lane at the intersection through irradiation of the laser beam from the laser beam irradiation angle determination unit 34 so as to be stored in the RAM as the laser irradiation angle information.


Then, in S306, the navigation ECU 3 loads the laser irradiation angle information from the RAM again, and further loads the color data and the like for forming the right turn start mark with color (for example, red) different from that of the right turn waiting mark. The loaded data are transmitted to the laser image forming unit 4 to terminate the sub-flowchart to return to the main flowchart. The laser image forming unit 4 allows the laser irradiation angle control unit 41 to control the irradiation angle of the laser beam based on the laser irradiation angle information, and allows the laser output control unit 42 to irradiate the visually identifiable laser beam with a predetermined color on the road surface of the opposite lane at the intersection so as to form the right turn start mark having the predetermined irradiation shape with the color different from that of the right turn waiting mark.


Referring to FIGS. 7 and 8, the subject vehicle 45 starts forming the triangular right turn start mark 52 each side of which is approximately 50 cm to 100 cm on the road surface of the opposite lane 48 at the intersection 47 with the red laser beam upon detection of the movement of the driver's foot from the brake pedal to the accelerator pedal. As the subject vehicle 45 travels toward the opposite lane at the intersection 47, the laser irradiation angle is changed at each passage for several seconds (for example, 0.1 seconds to 0.5 seconds) or at a predetermined distance (for example, 5 cm to 15 cm) such that the right turn start mark 52 is formed at substantially the same position on the road surface of the opposite lane 48 at the intersection 47 with the red laser beam. The driver of the other vehicle 46 traveling on the opposite lane 48 visually identifies the change from the green right turn waiting mark 51 to the red right turn start mark 52 to easily recognize that the state of the subject vehicle 45 has changed from the right turn waiting state to the right turn start state easily. The other vehicle 46 decelerates just before entering the intersection 47 to safely stop at the stop position of the intersection 47.


When the subject vehicle 45 has passed the target image forming position of the right turn start mark 52, or the point around the target image forming position of the right turn start mark 52, the laser image forming unit 4 is stopped to terminate formation of the right turn start mark 52.


The laser image forming unit 4 serves as an image forming device. The right turn waiting state determination unit 36 and the pedal operation state sensor 15 serve as the right turn start detection unit and the right turn waiting state detection unit, respectively. The navigation ECU 3 serves as the first and the second image forming control units. The navigation ECU 3 and the front distance detection sensor 14 form the leading vehicle detection unit. The navigation ECU 3, the steering sensor 11, the vehicle speed sensor 12, the 3D acceleration sensor 16, the subject vehicle position determination unit 32, the map information DB 33, and the subject vehicle posture determination unit 35 form the passage detection unit.


As has been described above, in the laser image forming system 1 according to the embodiment, in the case where the right turn waiting state of the subject vehicle stopped at the intersection is detected by the right turn waiting state determination unit 36, the navigation ECU 3 drives the laser image forming unit 4 to form the right turn waiting mark with the predetermined irradiation shape representing the right turn waiting state on the road surface of the opposite lane of the intersection at which the subject vehicle is stopped using the visually identifiable laser beam with a predetermined color (for example, green) (S18 to S20).


This makes it possible to allow the driver of the other vehicle traveling on the opposite lane visually identifies the right turn waiting mark formed on the road surface of the opposite lane at the intersection with the laser beam to easily recognize that the subject vehicle is in the right turn waiting state. It is possible to estimate the right turn of the subject vehicle such that the other vehicle is capable of decelerating just before entering the intersection. This makes it possible to effectively avoid the collision or minor accident with the subject vehicle.


In the case where the right turn waiting state determination unit 36 detects the change from the right turn waiting state where the subject vehicle is stopped at the intersection to the right turn start state, the navigation ECU 3 drives the laser image forming unit 4 to form the right turn start mark with the predetermined irradiation shape representing that the right turn start state of the subject vehicle instead of the right turn waiting mark with the color (for example, red) different from that of the right turn waiting mark (for example, green) at substantially the same position in accordance with the traveling state of the subject vehicle using the visually identifiable laser beam (S21 to S22).


This makes it possible to allow the driver of the other vehicle on the opposite lane to easily recognize that the right turn start mark with the predetermined irradiation shape with the color different from that of the right turn waiting mark with the visually identifiable laser beam has been formed instead of the right turn waiting mark. The change from the right turn waiting state where the subject vehicle has been stopped to the right turn start state may be easily recognized to allow the driver of the other vehicle to decelerate just before entering the intersection to safely stop to avoid collision or minor accident with the subject vehicle.


If existence of the leading vehicle which is going to turn right ahead of the subject vehicle is detected, the navigation ECU 3 does not form the right turn waiting mark (S15 to S17). The driver of the other vehicle on the opposite lane easily recognizes that the subject vehicle is going to turn right following the leading vehicle without waiting. This makes it possible to avoid collision or minor accident with the subject vehicle.


If the existence of the leading vehicle which is going to turn right ahead of the subject vehicle is detected, the navigation ECU 3 does not form the right turn start mark (S15 to S17). The driver of the other vehicle on the opposite lane easily recognizes that the subject vehicle starts turning right following the leading vehicle. This makes it possible to avoid collision or minor accident with the subject vehicle.


If the subject vehicle has passed the target image forming position for forming the right turn start mark, or the point adjacent to the target image forming position, the navigation ECU 3 terminates formation of the right turn start mark. The driver of the other vehicle on the opposite lane easily identifies the subject vehicle passing the intersection.


The present invention is not limited to the embodiment as described above, and may be improved and modified into various forms without departing from the scope of the present invention.


For example, in the aforementioned embodiment, the color of the right turn waiting mark is different from that of the right turn start mark (green and red). However, those marks may be formed with the visually identifiable laser beam with the same color by flashing the right turn start mark. The driver of the other vehicle easily distinguishes the right turn waiting mark from the right turn start mark.


In the aforementioned embodiment, the right turn waiting mark and the right turn start mark are formed into the same irradiation shapes (for example, green and red triangles, respectively). However, they may be formed into different shapes, for example, the right turn waiting mark may be formed into the green ring shape or square shape, and the right turn start mark may be formed into the red triangle. Alternatively, the right turn waiting mark and the right turn start mark may be formed into the different shapes using the visually identifiable laser beam with the same color.


Besides the triangle, ring shape, and square shapes, each of the right turn waiting mark and the right turn start mark may be formed into the points resulting from irradiation of the laser beam to a single image forming point, which may be regarded as the mark with the predetermined shape according to the present invention.

Claims
  • 1. An image forming system comprising: an image forming unit that forms a mark with a predetermined shape on a road surface ahead of a subject vehicle in a traveling direction;a right turn start detection unit that detects whether or not a state of the subject vehicle has been changed from a right turn waiting state where the subject vehicle is stopped at an intersection to a right turn start state; anda first image forming control unit that drives the image forming unit to form a right turn start mark with the predetermined shape representing that the subject vehicle is in the right turn start state on the road surface of a lane opposite the subject vehicle at the intersection to which the subject vehicle enters in the case where the right turn start detection unit detects the right turn start state.
  • 2. The image forming system according to claim 1, further comprising: a right turn waiting detection unit that detects whether or not the subject vehicle stopped at the intersection is in the right turn waiting state; anda second image forming control unit that drives the image forming unit to form a right turn waiting mark with a predetermined shape representing that the subject vehicle stopped at the intersection is in the right turn waiting state on the road surface of the lane opposite the subject vehicle at the intersection in the case where the right turn waiting detection unit detects the right turn waiting state.
  • 3. The image forming system according to claim 2, wherein the first image forming control unit drives the image forming unit to form the right turn start mark on a position where the right turn waiting mark has been formed by the second image forming control unit, and to form the right turn start mark with one of color or shape different from those of the right turn waiting mark.
  • 4. The image forming system according to claims 1, further comprising a leading vehicle detection unit that detects whether or not a leading vehicle which is going to turn right exists ahead of the subject vehicle, wherein the first image forming control unit drives the image forming unit so as not to form the right turn start mark when the leading vehicle detection unit detects the existence of the leading vehicle which is going to turn right ahead of the subject vehicle.
  • 5. The image forming system according to claim 4, wherein the second image forming control unit drives the image forming unit not to form the right turn waiting mark when the leading vehicle detection unit detects the existence of the leading vehicle which is going to turn right ahead of the subject vehicle.
  • 6. The image forming system according to claims 1, further comprising a passage detection unit that detects whether or not the subject vehicle has passed a point adjacent to an image forming position at which the right turn start mark has been formed, wherein the first image forming control unit drives the image forming unit to terminate formation of the right turn start mark in response to detection of passage of the subject vehicle around the image forming position by the passage detection unit.
Priority Claims (1)
Number Date Country Kind
2006-152510 May 2006 JP national