The present invention relates to an image forming system.
Hitherto, a reading apparatus configured to read an image of a sheet through use of an image sensor while conveying the sheet is known. In Japanese Patent Application Laid-Open No. 2010-268058, there is disclosed a reading apparatus configured to read an image of a conveyed sheet via a contact glass forming a conveyance path through which the sheet is conveyed. On an opposite side of the contact glass with respect to the conveyance path, a backing member (reference member) serving as a reading reference is arranged. The backing member forms a part of the conveyance path.
When the backing member forms a part of the conveyance path, the following problems may occur. Specifically, for example, in a case in which a gap between the backing member and the contact glass is set so that a sheet having a relatively large thickness, for example, thick paper, can be conveyed, when thin paper is conveyed, the thin paper may not be allowed to fall within a focal range of an image sensor. As a result, a reading accuracy is reduced. Meanwhile, for example, in a case in which the gap between the backing member and the contact glass is set based on the thickness of thin paper, when thick paper is conveyed, the thick paper may not be able to pass between the backing member and the contact glass, and thus jamming may occur.
According to an embodiment of the present invention, there is provided an image forming system comprising: an image forming portion configured to form an image on a first sheet; a conveyance unit configured to convey the first sheet on which the image has been formed by the image forming portion; a transparent member; a reading unit including a reading sensor configured to read, through the transparent member, the image on the first sheet conveyed by the conveyance unit, at a reading position in a conveyance direction in which the first sheet is conveyed; an opposed member, which is provided at the reading position in the conveyance direction, and is provided on a side opposite to the reading unit with respect to the transparent member, wherein the first sheet conveyed by the conveyance unit passes through a gap between the opposed member and the transparent member; a changing unit configured to change a size of the gap; and at least one processor configured to: control, based on the image read by the reading unit, a geometric characteristic of an image to be formed on a second sheet by the image forming portion, wherein the image forming portion is configured to form the image on the second sheet based on the geometric characteristic controlled by the at least one processor; acquire information related to a thickness of the first sheet; and control the changing unit so that the size of the gap becomes a first size when the thickness of the first sheet is a first thickness, and control the changing unit so that the size of the gap becomes a second size larger than the first size when the thickness of the first sheet is a second thickness larger than the first thickness.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
(Image Forming System)
(Image Forming Apparatus)
The image forming apparatus 101 is an electrophotographic laser beam printer. The image forming apparatus 101 uses an electrophotographic image forming process to form an image on a sheet. Examples of the image forming apparatus 101 include not only a laser beam printer but also an electrophotographic copying machine (for example, digital copying machine), a color LED printer, a multifunction peripheral (MFP), a facsimile apparatus, and a printing machine. The image forming apparatus 101 is not limited to a color image forming apparatus configured to form a color image, and may be a monochrome image forming apparatus configured to form a monochrome image. The image forming apparatus 101 is not limited to an electrophotographic image forming apparatus, and may be an ink-jet printer, a sublimation type printer, or a heat-drying type thermal printer.
The image forming apparatus 101 is described with reference to
The yellow image forming portion 120 is configured to form a yellow (Y) toner image. The magenta image forming portion 121 is configured to form a magenta (M) toner image. The cyan image forming portion 122 is configured to form a cyan (C) toner image. The black image forming portion 123 is configured to form a black (K) toner image. The yellow image forming portion 120, the magenta image forming portion 121, the cyan image forming portion 122, and the black image forming portion 123 have substantially the same structure except for their toner colors, and hence the following description is directed to the yellow image forming portion 120.
The yellow image forming portion 120 includes a photosensitive drum 105 configured to rotate. A charging device 111, a laser scanner 107, a developing device 112, and a primary transfer roller 118 are arranged around the photosensitive drum 105. The charging device 111 is configured to uniformly charge a surface of the photosensitive drum 105. The laser scanner 107 includes a laser driver (not shown) configured to turn on and off laser light emitted from a semiconductor laser 108 based on image data supplied from the printer controller 103. The laser light emitted from the semiconductor laser 108 is deflected in a main scanning direction by a rotary polygon mirror (not shown). The laser light deflected in the main scanning direction is guided to the surface of the photosensitive drum 105 by a reflecting mirror 109 to expose the uniformly charged surface of the photosensitive drum 105 in the main scanning direction. Thus, an electrostatic latent image is formed on the surface of the photosensitive drum 105 based on the image data.
The developing device 112 is configured to develop the electrostatic latent image on the surface of the photosensitive drum 105 with the yellow (Y) toner to form the yellow (Y) toner image. A voltage having a polarity reverse to that of the toner image is applied to the primary transfer roller 118 to transfer the yellow (Y) toner image on the surface of the photosensitive drum 105 onto the intermediate transfer member 106. In the same manner, the magenta (M) toner image, the cyan (C) toner image, and the black (K) toner image that are formed by the magenta image forming portion 121, the cyan image forming portion 122, and the black image forming portion 123, respectively, are sequentially transferred onto the intermediate transfer member 106. The yellow (Y) toner image, the magenta (M) toner image, the cyan (C) toner image, and the black (K) toner image are transferred onto the intermediate transfer member 106 so as to be superimposed on each other, to thereby form a full-color toner image.
Meanwhile, the sheets P stored in the feed cassette 113 are conveyed to the secondary transfer roller 114 one by one. The secondary transfer roller 114 brings the sheet P into press contact against the intermediate transfer member 106, and at the same time, a bias having a polarity reverse to that of the toner is applied to the secondary transfer roller 114. The secondary transfer roller 114 transfers the toner image on the intermediate transfer member 106 to the sheet P. The photosensitive drum 105 and the developing device 112 are attachable and removable. A feed timing sensor 116 for adjusting a timing to feed the sheet P is arranged on a conveyance path for the sheet before the secondary transfer roller 114. An image formation start position detection sensor 115 for determining a print start position when the image formation is to be performed and a density sensor 117 for measuring the density of a patch image during density control are arranged around the intermediate transfer member 106. When the density control is to be performed, the density of each patch image is measured by the density sensor 117.
The image forming apparatus 101 includes the first fixing device 150 and the second fixing device 160 each configured to heat and pressurize the toner image transferred to the sheet P to fix the toner image to the sheet P. The first fixing device 150 includes a fixing roller 151 including an internal heater, a pressure belt 152 configured to bring the sheet P into press contact against the fixing roller 151, and the first post-fixing sensor 153 configured to detect the completion of the fixing. The fixing roller 151 and the pressure belt 152 fix the toner image to the sheet P by heating and pressurizing the sheet P while nipping the sheet P, and simultaneously convey the sheet P. The second fixing device 160 is arranged on downstream of the first fixing device 150 in a conveyance direction of the sheet P. The second fixing device 160 is provided to increase the gloss of the image fixed to the sheet P by the first fixing device 150 and to ensure the fixability. The second fixing device 160 includes a fixing roller 161, a pressure roller 162, and the second post-fixing sensor 163.
The second fixing device 160 is not required to be used depending on the type of the sheet P. In this case, for the purpose of reducing an energy consumption amount, the sheet P is conveyed to a conveyance path 130 without passing through the second fixing device 160. The flapper 131 switches a conveyance destination of the sheet P between the second fixing device 160 and the conveyance path 130. The flapper 132 switches the conveyance destination of the sheet P between a conveyance path 135 and a discharge path 139. For example, in a face-up discharge mode, the flapper 132 switches the conveyance destination of the sheet P to the discharge path 139 in order to convey the sheet P having an image formed on its first surface to the discharge path 139. For example, in a face-down discharge mode, the flapper 132 switches the conveyance destination of the sheet P to the conveyance path 135 in order to convey the sheet P having the image formed on the first surface to the conveyance path 135. When a trailing end of the sheet P passes through the flapper 134, the conveyance direction of the sheet P is reversed, and the conveyance destination of the sheet P is switched to the discharge path 139 by the flapper 134.
For example, in a double-sided printing mode, in order to print a chart for adjustment on a second surface of the sheet P after a chart for adjustment has been printed on the first surface of the sheet P, the flapper 132 switches the conveyance destination of the sheet P to the conveyance path 135. The sheet P conveyed to the conveyance path 135 is conveyed to a reversing portion 136. The sheet P conveyed to the reversing portion 136 has the trailing end of the sheet P detected by the surface reverse sensor 137, and then has the conveyance direction of the sheet P reversed. The flapper 133 switches the conveyance destination of the sheet P to a conveyance path 138. Thus, the front side and the back side of the sheet P are reversed. The sheet P is conveyed from the conveyance path 138 to a secondary transfer nip formed between the intermediate transfer member 106 and the secondary transfer roller 114. The chart for adjustment is transferred to the second surface of the sheet at the secondary transfer nip. The sheet P having the charts for adjustment printed on both sides is conveyed from the discharge path 139 to the adjustment unit 200.
(Adjustment Unit)
The adjustment unit 200 is arranged on downstream of the image forming apparatus 101 in the conveyance direction of the sheet P.
When the front/back registration is not to be performed by the front/back registration portion 700, the flapper 221 waits in a downward state for switching the conveyance destination of the sheet P to the through pass 230. The adjustment unit 200 receives the sheet P from the image forming apparatus 101, and conveys the sheet P to the through pass 230 by first conveyance rollers 201. The sheet P is conveyed from the through pass 230 to the discharge path 232 by second conveyance rollers 202 and third conveyance rollers 203. The sheet P is discharged to the post-processing apparatus 600 by fourth conveyance rollers 204.
Meanwhile, when the front/back registration is to be performed by the front/back registration portion 700, the flapper 221 waits in an upward state for switching the conveyance destination of the sheet P to the measurement path 231. The adjustment unit 200 receives the sheet P from the image forming apparatus 101, and conveys the sheet P to the measurement path 231 by the first conveyance rollers 201. The sheet P is conveyed to the front/back registration portion 700 by conveyance roller pairs 205, 206, 207, 208, 209, and 210. The front/back registration portion 700 reads the charts for adjustment formed on both sides of the sheet P while conveying the sheet P by conveyance roller pairs 211, 212, and 213 serving as a conveyance unit. The sheet P is conveyed to the discharge path 232 by a conveyance roller pair 214, and is discharged to the post-processing apparatus 600 by the fourth conveyance rollers 204.
As illustrated in
(Front/Back Registration Portion)
A structure of the front/back registration portion 700 is described with reference to
The image sensor (hereinafter referred to as “front-side CIS”) 701 serving as the reading unit is configured to read the front side of the sheet. The image sensor (hereinafter referred to as “back-side CIS”) 702 serving as the reading unit is configured to read the back side of the sheet. The front-side CIS 701 is arranged on one side of the measurement path 231. The back-side CIS 702 is arranged on another side of the measurement path 231. The front-side CIS 701 is arranged so as to be opposed to the measurement path 231 via a reading glass (light transmitting member) 703 serving as a transparent member. A backing roller 705 serving as a reference member is arranged on the another side of the measurement path 231 so as to be opposed to the reading glass (glass plate) 703. The back-side CIS 702 is arranged so as to be opposed to the measurement path 231 via a reading glass (light transmitting member) 704 serving as the transparent member. A backing roller 706 is arranged on the one side of the measurement path 231 so as to be opposed to the reading glass 704.
The sheet is conveyed in a conveyance direction CD. The conveyance roller pairs (conveyance units) 211, 212, and 213 are configured to convey the sheet at a stable conveyance speed. The conveyance roller pairs 211, 212, and 213 are driven by the conveyance motor (drive unit) 252. The reading glasses 703 and 704 function as a guide member configured to guide movement of the sheet in order to stabilize the position of the sheet in a depth-of-focus direction (thickness direction of the sheet) of the front-side CIS 701 and the back-side CIS 702. The backing rollers 705 and 706 each have a black surface in order to clarify a contrast with an end portion of the sheet.
(Backing Roller)
With reference to
On the upstream of the backing roller 706 in the conveyance direction CD, a conveyance guide 708 is arranged. The conveyance guide 708 is configured to guide the sheet to the reading position BR without causing the sheet to be uncontrolled. The sheet enters a clearance (gap) C between the reading glass 704 and the conveyance guide 708. With the conveyance guide 708 guiding the sheet, the reading accuracy by the back-side CIS 702 at the reading position BR can be improved, and jamming of the sheet at the clearance C can be avoided. The clearance C can also be changed in accordance with the thickness of the sheet, similarly to the gap G(n). The clearance C is preferred to be larger than the gap G(n) to be set within a focal range of the back-side CIS 702. In order to change the gap G(n) and the clearance C, at both end portions in an axial direction of the backing roller 706, abutment members (cam members) 707 are arranged. The abutment members (cam members) 707 serve as a changing unit configured to change the size of the gap G(n). The abutment members 707 are brought into abutment against the reading glass 704 by biasing members, for example, springs 814 (
Each of the abutment members 707 is rotatably supported on a shaft (rotary shaft) 808. The backing roller 706 is rotatably supported on the shaft 808. An outer peripheral portion of the abutment member 707 has an eccentric shape. An eccentric shaft of the abutment member 707 is rotatably supported coaxially with the rotary shaft of the backing roller 706. When the abutment member 707 is rotated in a state in which an outer peripheral surface (abutment surface) 707a of the abutment member 707 abuts against a surface (reference surface) of the reading glass 704, the distance between the shaft 808 and the reading glass 704 is changed. In this manner, the distance between the backing roller 706 and the reading glass 704 in the depth-of-focus direction of the back-side CIS 702 is changed. In this embodiment, the outer peripheral surface 707a of the abutment member 707 abuts against the surface of the reading glass 704. However, this embodiment is not limited thereto. The outer peripheral surface 707a of the abutment member 707 may abut against other members of the front/back registration portion 700, for example, a surface (reference surface) of a support member configured to support the reading glass 704. The shaft (rotary shaft) 808 rotatably supporting the backing roller 706 is held by a holding member 815. The holding member 815 is configured to integrally hold the conveyance guide 708, and hence the position of the conveyance guide 708 is also adjusted in association with the adjustment of the gap G(n). In this manner, the reading accuracy can be improved with respect to various sheet thicknesses, and jamming of the sheet can be avoided.
When the abutment member 707 is rotated to be held at each rotation position RP, the gap G(n) can be switched at five stages of G(1), G(2), G(3), G(4), and G(5). Rotation positions RP(1), RP(2), RP(3), RP(4), RP(5), RP(6), RP(7), and RP(8) correspond to the gaps G(1), G(2), G(3), G(4), G(5), G(4), G(3), and G(2), respectively. The gap G(n) has the following relationship.
G(1)<G(2)<G(3)<G(4)<G(5)
Further, the conveyance guide 708 is configured to rotatably hold the shaft 808 of the backing roller 706. At the same time as when the abutment member 707 is rotated to switch the gap G(n), the clearance C(n) can also be switched at five stages of C(1), C(2), C(3), C(4), and C(5). The rotation positions RP(1), RP(2), RP(3), RP(4), RP(5), RP(6), RP(7), and RP(8) correspond to the clearances C(1), C(2), C(3), C(4), C(5), C(4), C(3), and C(2), respectively. The clearance C(n) has the following relationship.
C(1)<C(2)<C(3)<C(4)<C(5)
The abutment member 707 is configured to rotate by receiving drive from the gap switching motor 802 serving as a driving source via drive connection gears 812, 807, 806, and 805. The abutment member 707 is stopped to rotate and is held at the rotation position RP(n) corresponding to the set gap G(n). The drive of the gap switching motor 802 is transmitted to the abutment members 707 on both axial sides by a drive transmitting shaft 809, and hence the abutment members 707 on both the axial sides are held to form the same gap G(n). The rotation position RP of the abutment member 707 is detected based on a detection result obtained by the gap switching sensor 803 configured to detect a sensor flag 810 arranged on the drive transmitting shaft 809. The switching of the gap G(n) is controlled based on the detection result obtained by the gap switching sensor 803. In this embodiment, the gap G(n) is switched at five stages. The control portion (second control unit) 251 is configured to control the rotation of the abutment member 707 so that the size of the gap G(n) becomes a first size when the thickness of the sheet conveyed by the conveyance roller pair 211 is a first thickness. The control portion 251 is further configured to control the rotation of the abutment member 707 so that the size of the gap G(n) becomes a second size larger than the first size, when the thickness of the sheet conveyed by the conveyance roller pair 211 is a second thickness larger than the first thickness.
Meanwhile, the backing roller 706 is configured to rotate in association with the movement of the sheet. The backing roller 706 is configured to receive drive from the backing motor 801 serving as a driving source different from the driving source of the abutment member 707, to thereby rotate at the same peripheral speed as the sheet conveyance speed. The drive of the backing motor 801 is transmitted to the backing roller 706 via a motor pulley, a timing belt 804, and a backing drive pulley 811. The peripheral speed of the backing roller 706 is the same as the sheet reading speed. Thus, the image of the sheet is not rubbed by the backing roller 706, and the dirt on the reading glass 704 and its surrounding is reduced.
With reference to
In this case, the gap G(1) is expressed as follows through use of the thickness of the sheet P(1) and a margin gap A.
Gap G(1)=(Thickness of sheet P(1))+(Margin gap A)
The gap G(1) guides the sheet P(1) between the reading glass 704 and the backing roller 706, and has the margin gap A provided so that an uncontrolled motion (unexpected motion) of the sheet P(1) in a focal direction of the back-side CIS 702 can be reduced. Further, the clearance C(1) is also set to an amount corresponding to the thickness of the sheet P(1), and hence the sheet P(1) can be conveyed to the back-side CIS 702 while the uncontrolled motion of the sheet P(1) is reduced.
With reference to
In this case, the gap G(n) is expressed as follows through use of the thickness of the sheet P(n) and the margin gap A.
Gap G(n)=(Thickness of sheet P(n))+(Margin gap A)
The gap G(n) guides the sheet P(n) between the reading glass 704 and the backing roller 706, and has the margin gap A provided so that an uncontrolled motion (unexpected motion) of the sheet P(n) in the focal direction of the back-side CIS 702 can be reduced. Further, the clearance C(n) is also set to an amount corresponding to the thickness of the sheet P(n), and hence the sheet P(n) can be conveyed to the back-side CIS 702 while the uncontrolled motion of the sheet P(n) is reduced.
(Modification Examples of Abutment Member)
In this embodiment, the gap G(n) is switched at five stages, but the present invention is not limited thereto. The gap G(n) may be switched at four stages or less, or may be switched at six stages or more. In this embodiment, the abutment member 707 is formed to have a bisymmetrical shape, but the present invention is not limited thereto. For example,
When the abutment member 1707 is rotated to be held at each rotation position RP, the gap G(n) can be switched at eight stages of G(1), G(2), G(3), G(4), G(5), G(6), G(7), and G(8). The rotation positions RP(1), RP(2), RP(3), RP(4), RP(5), RP(6), RP(7), and RP(8) correspond to the gaps G(1), G(2), G(4), G(6), G(8), G(7), G(5), and G(3), respectively. The gap G(n) has the following relationship.
G(1)<G(2)<G(3)<G(4)<G(5)<G(6)<G(7)<G(8)
On an outer peripheral surface (abutment surface) 1707a of the abutment member 1707, as illustrated in
In this modification example, the plurality of rotation positions RP(1), RP(2), RP(3), RP(4), RP(5), RP(6), RP(7), and RP(8) are arranged at equiangular intervals. However, the plurality of rotation positions RP may be arranged at freely-set angular intervals instead of equiangular intervals. In this modification example, as illustrated in
As described above, the gap G is expressed as follows.
Gap G=(Thickness of the sheet P)+(Margin gap A)
When the margin gap A is small, in particular, when the margin gap A has a negative value, the sheet P is forcibly caused to enter the gap G that is smaller than the thickness of the sheet P. Accordingly, shock vibrations to be caused when the leading edge of the sheet P enters the gap G, and a load during conveyance are increased. As a result, a conveyance unevenness is increased, and thus the jamming may occur or the reading conveyance performance may be reduced. Further, the sheet P is strongly pressed to the reading glass 704, and hence the reading glass 704 may be flawed, or the image may come off to cause dirt. Accordingly, the margin gap A is required to be set to an appropriate value. The gap G is set to be equal to or larger than the thickness of the sheet P.
Meanwhile, when the margin gap A is large, the curled sheet is liable to be in an uncontrolled motion (unexpected motion) at a reading portion between the reading glass 704 and the backing roller 706. When the back side of the sheet P separates away from a reading ensuring range in the focal direction of the back-side CIS 702, the resolution may be reduced or a flare may be caused. The back-side CIS 702 in this embodiment may cause a reading failure when the back side of the sheet P is separated away from the surface of the reading glass 704 in the focal direction by 0.5 mm or more. In view of the above, as shown in
In this embodiment, a read gap amount 920 for which the gap G is set is provided in the sheet library 900 based on the gap switching table shown in
(Feedback Configuration of Front/Back Registration)
Measurement to be performed by the front/back registration portion 700 and a feedback destination of a result of the measurement are described. When the image forming apparatus 101 receives a request from a “PRINT POSITION ADJUSTMENT” button 1002 on the sheet library editing screen 1001 illustrated in
The image processing portion 260 calculates detection coordinates (X01, Y01)), (X11, Y11), (X21, Y21), and (X31, Y31) of the sheet P from the front-side measurement pattern image 822. The image processing portion 260 calculates detection coordinates (X41, Y41), (X51, Y51), (X61, Y61), and (X71, Y71) of the patch images 820 from the front-side measurement pattern image 822. The image processing portion 260 measures a distortion amount of the image on the front side and a position misregistration amount between the sheet P and the image based on the detection coordinates (X01, Y01) to (X71, Y71). The image processing portion 260 calculates a first geometric adjustment value 901 (
The image processing portion 260 calculates detection coordinates (X02, Y02), (X12, Y12), (X22, Y22), and (X32, Y32) of the sheet P from the back-side measurement pattern image 823. The image processing portion 260 calculates detection coordinates (X42, Y42), (X52, Y52), (X62, Y62), and (X72, Y72) of the patch images 820 from the back-side measurement pattern image 823. The image processing portion 260 measures a distortion amount of the image on the back side and a position misregistration amount between the sheet P and the image based on the detection coordinates (X02, Y02) to (X72, Y72). The image processing portion 260 calculates a second geometric adjustment value 902 (
The first geometric adjustment value 901 and the second geometric adjustment value 902 calculated by the image processing portion 260 are transmitted to the sheet library 900 in the image forming apparatus 101 through the communication portion 250. The first geometric adjustment value 901 and the second geometric adjustment value 902 are stored in the sheet library 900 as a parameter for the front side and a parameter for the back side. In this manner, setting values are stored in the sheet library 900 for each sheet type 910. A print image with the front and back print positions corrected with high accuracy can be output by reading the setting values based on the sheet type 910 of a sheet on which a print job is to be executed and correcting the image position and image distortion. In this case, the front-side measurement pattern image 822 and the back-side measurement pattern image 823 which have been exemplified in this description may be measured before the execution of the print job, or may be automatically measured at a predetermined timing as calibration during the execution of the print job.
(Control Operation)
Now, a control operation for conveying the sheet P in the image forming apparatus 101 and the adjustment unit 200 is described with reference to
The image forming apparatus 101 forms an image on the sheet P (Step S1103). The adjustment unit 200 receives the sheet P having the image formed thereon by the image forming apparatus 101 (Step S1104). The control portion 251 controls the conveyance motor 252 to cause the sheet P to be passed through the through pass 230 and discharged to the post-processing apparatus 600 by the first conveyance rollers 201, the second conveyance rollers 202, the third conveyance rollers 203, and the fourth conveyance rollers 204 (Step S1105). The control portion 251 determines whether or not the sheet P is the last sheet (Step S1106). When the sheet P is not the last sheet (NO in Step S1106), the control portion 251 returns the processing to Step S1101. When the sheet P is the last sheet (YES in Step S1106), the control portion 251 ends the control operation.
Meanwhile, when the user selects the “PRINT POSITION ADJUSTMENT” button 1002 by selecting the sheet type 910 from the sheet library 900 through the operation portion 180, a front/back registration job is input. When the job is a front/back registration job (NO in Step S1101), the control portion 251 makes each member of the image forming apparatus 101 and the adjustment unit 200 wait at the home position (HP) (Step S1107). At this time, in order to guide the sheet P to the measurement path 231 in the adjustment unit, the control portion 251 makes the flapper 221 wait in an upward state (at a measurement path position) (Step S1107).
The image forming apparatus 101 forms the patch images 820 serving as the chart for adjustment on both sides of the sheet P (Step S1108). The control portion 251 receives the basis weight and the thickness value of the sheet type 910 selected from the sheet library 900 (S1109). The control portion 251 controls the gap switching motor 802 to rotate the abutment member 707 to form the gap G according to the thickness value of the sheet (S1110). The adjustment unit 200 receives the sheet P having the patch images 820 formed thereon from the image forming apparatus 101 (Step S1111). The sheet P conveyed to the adjustment unit 200 is conveyed to the measurement path 231 by the flapper 221 (Step S1112). The sheet P is conveyed to the front/back registration portion 700 by the conveyance roller pairs 205, 206, 207, 208, 209, and 210.
The control portion 251 reads the sheet P and the patch images 820 formed on both sides of the sheet P by the front-side CIS 701 and the back-side CIS 702, respectively (Step S1113), to obtain the front-side measurement pattern image 822 and the back-side measurement pattern image 823. The front/back registration portion 700 performs line image composition with high definition, and measures print misregistration of the patch images 820 on the sheet P and the shape of the sheet P. The image processing portion 260 calculates the first geometric adjustment value 901 and the second geometric adjustment value 902 from the front-side measurement pattern image 822 and the back-side measurement pattern image 823. The image processing portion 260 stores the first geometric adjustment value 901 and the second geometric adjustment value 902 in the sheet library 900 of the image forming apparatus 101 through the communication portion 250 (Step S1114). Thus, the print position adjustment for front/back registration adjustment is brought to an end.
The sheet P that has passed through the front/back registration portion 700 is conveyed to the through pass 230 by the conveyance roller pair 214 (Step S1115). After that, the sheet P is conveyed to the discharge path 232 by the third conveyance rollers 203, and is discharged to the post-processing apparatus 600 by the fourth conveyance rollers 204 (Step S1105). The control portion 251 determines whether or not the sheet P is the last sheet (Step S1106), and when the sheet P is the last sheet (YES in Step S1106), the control portion 251 ends the control operation.
According to this embodiment, the dirt on the reading glass 703 can be reduced, and the image of the sheet P can be stably read.
The image processing portion 260, the control portion (control unit) 251, the printer controller 103, and the engine control portion 312 in this embodiment may be formed of at least one processor configured to execute the functions thereof. Further, the image processing portion 260 and the control portion (control unit) 251 may be formed of at least one processor, and the printer controller 103 and the engine control portion 312 may be formed of at least one processor.
According to this embodiment, the occurrence of jamming can be suppressed while reduction in image reading accuracy is suppressed.
Embodiment(s) of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2020-091497, filed May 26, 2020, and Japanese Patent Application No. 2020-218807, filed Dec. 28, 2020, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-091497 | May 2020 | JP | national |
JP2020-218807 | Dec 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8693060 | Ito | Apr 2014 | B2 |
20100290093 | Ito | Nov 2010 | A1 |
20120013955 | Ikeda | Jan 2012 | A1 |
20140079460 | Kanaya | Mar 2014 | A1 |
20170149989 | Watanabe | May 2017 | A1 |
20180173478 | Hayakawa | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2007143083 | Jun 2007 | JP |
2010-268058 | Nov 2010 | JP |
Entry |
---|
U.S. Appl. No. 17/320,108, filed May 13, 2021. |
Number | Date | Country | |
---|---|---|---|
20210373475 A1 | Dec 2021 | US |