The present invention relates to an image heating apparatus used in an image forming apparatus of an electrophotographic type such as a copying machine, a printer, or a facsimile machine.
The image forming apparatus in which a toner image is transferred onto a recording material and then the recording material is nip-conveyed and heat-pressed in a heating nip of the image heating apparatus to fix a full-color or monochromatic image on the recording material has been used widely. The image heating apparatus is used for not only fixing an unfixed toner image on the recording material but also adjusting a finishing state of an image surface by heat-pressing the recording material on which a partly or completely fixed toner image is carried.
Japanese Laid-Open Patent Application (JP-A) Hei 2-157878 discloses an image heating apparatus in which a heating nip for the recording material is formed by pressing a nip forming member, including a shaft member and an elastic layer provided outside the shaft member, against an endless belt supported by a heating member at an inner surface of the belt. In the image heating apparatus, the belt has small heat capacity and thus a temperature in the heating nip is increased early, so that there is no need to supply electric power during stand-by. Therefore, compared with a roller heating type, the image heating apparatus is capable of suppressing total electric power consumption at a low level.
JP-A Hei 4-44075 discloses a similar image heating apparatus in which the recording material heating nip is formed by the belt and the nip-forming member. In this image heating apparatus, the heating member provided with a heater at its surface rubs the inner surface of the belt, and a pressing member which penetrates the belt and is disposed in a beam configuration uniformly presses the rear surface of the heating member toward the nip-forming member with respect to a longitudinal direction.
JP-A Hei 4-204980 discloses a similar image heating apparatus in which the recording material heating nip is formed by the belt and the nip-forming member. In this image heating apparatus, a pressing force in the heating nip is adjusted by a pressing mechanism for changing an urging state at end portions of the nip-forming member and end portions of the pressing member.
As shown in
For this reason, as shown in
For this reason, as shown in
Incidentally, in recent years, the number of the type of recording materials subjected to image formation is increased, so that the pressing force in the heating nip of the image heating apparatus has been required to be switched at a plurality of levels. In the case of thick paper or gloss coated paper, the amount of heat adsorbed by the recording material is large, so that in order to ensure the heat amount necessary to fix the toner image, the pressing force may preferably be increased to increase a length of the heating nip with respect to a rotational direction. Further, in the case of thin paper, the pressing force may preferably be lowered in order to prevent crease of the recording material.
However, as shown in
A principal object of the present invention is to provide an image heating apparatus which is less liable to cause a partial pressure lowering in a nip with respect to a longitudinal direction when the pressure in the nip is changed.
According to an aspect of the present invention, there is provided an image bearing apparatus comprising:
an image heating belt configured and positioned to heat a toner image on a sheet in a nip;
an opposing roller, disposed opposed to the image heating belt, configured to form the nip between the image heating belt and itself;
a pad, disposed so as to sandwich the image heating belt between the opposing roller and itself, configured to press the image heating belt toward the opposing roller in the nip;
a pressure device configured and positioned to press at least one of the pad and the opposing roller so that the image heating belt is pressed between the pad and the opposing roller in the nip;
a pressure changing device configured and positioned to change a pressure in the nip by the pressing device;
wherein the pad has a thickness, at its longitudinal central portion, larger than that at its longitudinal end portions, and
wherein the pad has two curved surfaces, each of the two curved surfaces being curved toward the opposing roller so that the longitudinal central portion of the pad is closer to the opposing roller than the longitudinal end portions of the pad.
These and other objects, features and advantages of the present invention will become more apparent upon a consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings.
Hereinbelow, with reference to the drawings, embodiments of the present invention will be described. The present invention can also be carried out in other embodiments in which a part or all of constitutions in the embodiments are replaced with their alternative constitutions so long as a gap with respect to a pressing direction is created at a central portion of a heating member under no pressure.
Therefore, the present invention is applicable to not only an image heating apparatus in which a pressing roller press-contacts a belt but also an image heating apparatus in which a pressing belt press-contacts a belt. The image heating apparatus includes not only a fixing device (apparatus) for fixing a toner image on a recording material but also a surface treating (processing) device for heat-pressing a fixed image or a semi-fixed image.
An image forming apparatus in which the image heating apparatus is to be mounted is not limited to the image forming apparatus using an intermediary transfer belt but may also be the image forming apparatus using a recording material conveyer belt and the image forming apparatus for transferring the toner image onto the recording material in a sheet-feeding manner. Further, the type of the image forming apparatus is not limited to a tandem type in which a plurality of photosensitive drums but also a one-drum type in which a single photosensitive drum is disposed along the belt.
In this embodiment, a principal portion relating to toner image formation/transfer will be described but can also be carried out in various fields of uses such as a printer, various printing machines, a copying machine, a facsimile machine, and a multi-function machine by adding necessary equipment, device and casing structure.
<Image Forming Apparatus>
As shown in
At the image forming portion Pa, a yellow toner image is formed on a photosensitive drum 11a and is primary-transferred onto the intermediary transfer belt 21. At the image forming portion Pb, a magenta toner image is formed on a photosensitive drum 11b and is primary-transferred onto the yellow toner image on the intermediary transfer belt 21. At the image forming portions Pc and Pd, a cyan toner image and a black toner image are formed on photosensitive drums Pc and Pd, respectively, and is similarly primary-transferred successively onto the toner images on the intermediary transfer belt 21.
The four color toner images carried on the intermediary transfer belt 21 are collectively secondary-transferred onto the recording material P at a secondary transfer portion T2. The recording material P onto which the toner images are secondary-transferred at the secondary transfer portion T2 is heat-pressed by a fixing device (apparatus) 30 and the toner images are fixed on a surface of the recording material P. Thereafter, the recording material P is discharged to the outside of the apparatus.
The recording material P which has been fed one by one from a cassette 25 waits at a position of registration rollers 28 and then is sent to the secondary transfer portion T2 while being timed to the toner images on the intermediary transfer belt 21.
The image forming portions Pa, Pb, Pc and Pd have the substantially same constitution except that the colors of toners used in associated ones of developing devices are different from each other, i.e., are yellow, magenta, cyan and black, respectively. In the following, the image forming portion Pa will be described and with respect to other image forming portions Pb, Pc and Pd, a suffix a of reference numerals (symbols) for representing constituent members (means) for the image forming portion Pa is to be read as b, c and d, respectively, for explanation of associated ones of the constituent members.
At the image forming portion Pa, around the photosensitive drum 11a, a charging roller 12a, an exposure device 13a, a developing device, and a primary transfer roller 15a are disposed.
The photosensitive drum 11a is constituted by a metal cylinder having a surface at which a photosensitive layer having a negative charge polarity, and is rotated in a direction of an indicated arrow at a predetermined process speed.
The charging roller 12a is supplied with an oscillating voltage in the form of a DC voltage biased with an AC voltage to electrically charge the surface of the photosensitive drum 11a to a uniform negative potential.
The exposure device 13a scans the charged surface of the photosensitive drum 11a through a polygonal mirror with a laser beam obtained by ON-OFF modulation of scanning line image data developed from image data, thus writing (forming) an electrostatic image for an image to be formed.
The developing device 14a includes a developing sleeve on which negative charged toner is carried and which rubs the photosensitive drum 11. To the developing sleeve, an oscillating voltage in the form of a negative DC voltage biased with an AC voltage is applied, so that the electrostatic image on the photosensitive drum 11a is reversely developed.
The primary transfer roller 15a press-contacts the intermediary transfer belt 21 against the photosensitive drum 11a to form a primary transfer portion Ta between the photosensitive drum 11a and the intermediary transfer belt 21. By applying a positive DC voltage to the primary transfer roller 15a, the toner image which is negatively charged and carried on the photosensitive drum 11a is primary-transferred onto the intermediary transfer belt 21.
A secondary transfer roller 24 press-contacts the intermediary transfer belt 21 against an opposite roller 20 to form the secondary transfer portion T2 between the intermediary transfer belt 21 and the secondary transfer roller 24. At the secondary transfer portion T2, the recording material P is nip-conveyed while being superposed on the intermediary transfer belt 21 on which the toner images are carried. By applying a positive DC voltage to the secondary transfer roller 24, the toner images are secondary-transferred from the intermediary transfer belt 21 onto the recording material P.
<Fixing Device>
As shown in
The fixing belt 1 is nipped between the heating member 4 and the pressing roller 2 in a heating member N as a nip in which the toner images formed on the recording material P are to be heated and pressed. Further, the heating member 4 is held by the pressing member 5 as a holder and is fixed at a position with respect to a press-contact direction.
Further, in a process in which the recording material P passes through the heating member N, heat is supplied from a heater 6 as a heat generating element to the recording material P through the fixing belt 1, so that unfixed toner image T is heat-melted and fixed on the surface of the recording material P.
The fixing belt 1 as an example of an endless belt is rotated in contact with an image surface of the recording material P. Specifically, the fixing belt 1 is rotated by the rotation of the pressing roller 2 at the substantially same peripheral speed as a conveying speed of the recording material P, carrying thereon the unfixed toner image T, being conveyed while closely contacting and sliding on a heating surface at which the heater 6 is disposed.
The fixing belt 1 is prepared in an endless shape having an inner diameter of 25 mm by forming an elastic layer of a rubber material having high thermal conductivity on a metal layer high thermal conductivity and high tensile strength and then by forming a surface parting layer of a fluorine-containing resin material.
The metal layer is formed of a stainless steel material in a thickness of 50 μm. The elastic layer is formed of a silicone rubber having the thermal conductivity of 1.0 W/m.K. The parting layer is a 30 μm-thick PFA tube.
The pressing roller 2 as a nip-forming member is prepared by forming an elastic layer 7 of a soft rubber material on an outer surface of a shaft member 3 of a cylindrical material such as iron or aluminum. The pressing roller 2 is formed by coating the surface of the elastic layer 7 with the parting layer of the PFA tube to have an outer diameter of 25 mm.
The shaft member 3 is prepared by using an aluminum pipe having an outer diameter of 10 mm and a thickness of 3 mm. The elastic layer 7 has a thickness of 3 mm and is formed of the silicone rubber material having an ASKER hardness of 64°. The PFA tube has a thickness of 50 μm.
The pressing member 5 is formed in a beam configuration by using a steel material having a U-shaped cross section with 10 mm in width, 10 mm in height, and 2.3 mm in thickness.
The heating member 4 is formed in the beam configuration by using a synthetic resin material such as a liquid crystal polymer which has high heat resistance, high elasticity coefficient, low friction coefficient, and low thermal conductivity, and rubs the inner surface of the fixing belt 1 in a state in which the heating member 4 is extended in a longitudinal direction of the fixing belt 1. The heating member 4 has a recessed portion, on the pressing roller 2 side, at which the heater 6 is embedded and is surface-sealed with a glass material. The heating member 4 is constituted by integrally forming the heater 6 and a supporting member for the heater 6.
The heater 6 includes a heat generating resistor as a heat generating source which generates a heat by electric power supply and is increased in temperature by the heat generation of the heat generating resistor. The heat generating resistor of the heater 6 is formed by printing and sintering Ag/Pd paste on an Al2O3 substrate in a large thickness.
A temperature detecting sensor (not shown) is disposed in contact with a rear surface of the heater 6, and a temperature-adjusting circuit (not shown) effects ON-OFF control of electric power supplied to the heater 6 so that an output of the temperature detecting sensor approaches a set value. As a result, the surface temperature of the fixing belt 1 is kept in a predetermined temperature range.
During printing on a plurality of sheets, the temperature control of the fixing belt 1 is continued until a series of printing operations is completed. When a final recording material P passes through the heating nip N and is separated and discharged from the fixing belt 1, the rotational drive of the pressing roller 2 is stopped and at the same time, energization to the heater 6 is also stopped.
Incidentally, the fixing belt 1 has a longitudinal length of 340 mm and the heater 6 has the longitudinal length of 370 mm. The heating member 4 has the longitudinal length of 374 mm and the pressing roller 2 has the longitudinal length of 330 mm.
As shown in
The pressing member 5 is supported as an H-beam structure (beam structure supported at end portions) by a frame 5a of the fixing device 30 and urges the heating member 4 toward the pressing roller 2 to form the heating nip N between the fixing belt 1 and the pressing roller 2.
The pressing roller 2 is rotatably supported in an H-beam manner by bearings 3a at end portions of the shaft member 3. The bearing 3a is fixed to a rotatable arm 9b (
The pressing mechanism 9 changes an urging state of the end portions of the nip-forming member and the pressing member so as to change a pressing force in the heating nip.
The pressing mechanism 9 rotates a cam shaft 9a by actuating a driving motor 9d to rotate a pair of pressing cams 9c as an example of a pressure changing device (means), thus moving the rotatable end upward and downward. As a result, the pressing roller 2 supported by the bearings 3a is moved upward and downward to change the pressing force with respect to the fixing belt 1. Incidentally, the pressing mechanism 9 is actually constituted so as to move the rotatable arm 9b upward and downward through pressing springs (not shown) by the pressing cams 9c as the example of the pressure changing means.
As shown in
In the case where thick paper having large amount of heat absorption is subjected to a fixing process (NO of S12), the control portion 10 starts image formation (S13) while keeping the urging force to be applied to the end portions of the pressing roller 2 at a total pressure of 300N(S15 in a previous print job). As a result, the pressing force in the heating nip N is increased and a length (width) of the heating nip N with respect to the rotational direction is increased, so that temperature and supply heat amount enough to heat-melt the toner image can be ensured.
In the case where thin paper or envelope which is liable to cause crease of the recording material (YES of S12), the control portion 10 lowers the urging force to be applied to the pressing roller 2 to the total pressure of 150N(S14). As a result, the pressing force in the heating member N is lowered and the length of the heating nip N with respect to the rotational direction is decreased, so that the crease of the recording material is less liable to occur.
As shown in
When the pressing roller 2 is urged upward with a total load (total pressure) of 300N (30 kgf) by being supplied with a pressing force of 150N (15 kgf) at each of the end portions thereof, the pressing roller 2 press-contacts the fixing belt 1 supported at the inner surface by the pressing member 5 and the heating member 4.
At this time, the end portions of the pressing member 5 are curved toward the pressing roller 2 in an arcuate shape and the end portions of the pressing roller 2 are curved toward the pressing member 5, so that the pressure concentrates at end portions Nb of a pressing nip to cause the partial pressure lowering at a central portion Na.
As shown in
As shown in
Here, geometrical moment of inertia of the heating member 4 is 200 mm4 and the geometrical moment of inertia of the pressing member 5 is 3000 mm4. Thus, a flexing resistance of the heating member 4 is lower than that of the pressing member, so that the heating member 4 is deformed along the pressing member 5. However, in
A distance between the pressing roller 2 and the fixing belt 1 supported by the heating member 4 is 700 μm larger at the central portion than that at the end portions, so that an amount of compression of the elastic layer 7 of the silicone rubber is 700 μm larger at the central portion than that at the end portions. For this reason, a nip pressure is lowered at the central portion with respect to the longitudinal direction to decrease the length of the heating nip with respect to the rotational direction, so that the fixing pressure becomes insufficient or is completely released and thus sufficient heating is not effected with respect to the toner image on the recording material.
Therefore, in order to alleviate the partial pressure lowering at the central portion in the heating nip with respect to the longitudinal direction, as shown in
As shown in
As shown in
Therefore, the amount of compression of the elastic layer 1 of the pressing roller 2 is substantially equal at both of the central portion Na and the end portions Nb in the heating nip with respect to the longitudinal direction, so that the nip pressure comparable to that at the end portions Nb can also be ensured at the central portion Na to provide a uniform length of the heating nip with respect to the rotational direction. That is, the partial pressure lowering at the central portion Na under pressure with the total pressure of 300N is obviated, so that the rotational direction length of the heating nip at the central portion Na is equal to that at the end portions and the fixing pressure at the central portion Na is also equal to that at the end portions.
However, in the fixing device 30B in Comparative Embodiment 2, when the pressing force is switched from the total pressure of 300N (30 kgf) to the total pressure of 150N (15 kgf), the increased thickness (700 μm) at the longitudinal central portion of the heating member 4 becomes excessive, so that the partial pressure lowering is caused to occur at the end portions.
As shown in
As a result, the pressure is insufficient at the longitudinal central portion of the heating member 4 and the rotational direction length of the heating nip is decreased, so that the fixing pressure is insufficient or completely released and thus sufficient heating cannot be effected with respect to the toner image on the recording material.
As shown in
As shown in
However, in Comparative Embodiment 2, as shown in
Accordingly, in the constitution in which the curve amounts of the respective members under the pressure application are large as in Comparative Embodiment 2, the curve amounts are changed depending on the pressing force, so that it is very difficult to keep a distribution of the nip pressure in the heating nip with respect to the longitudinal direction at a constant level in a plurality of pressing stages.
As shown in
On the other hand, in the case where correction of the thickness distribution of the heating member 4 is made on the basis of the total curve amount of 300 μm with respect to the pressing member 5 and the shaft member 3 at the pressing force of 150N, the partial pressure lowering is caused to occur at the central portion with respect to the longitudinal direction when the pressing force is switched to 300N.
For these reasons, in Comparative Embodiment 2, when the pressing force is switched, the conveying speed of the recording material at the longitudinal central portion in the heating nip is different from that at the longitudinal end portions in the heating nip, so that a conveying property of the recording material is deteriorated. Further, a degree of heat transfer at the central portion is different from that at the end portions, so that local fixing failure is liable to occur.
In the following Embodiment 1, the shape of the heating member and its supporting structure are made different from those in Comparative Embodiment 2, so that the deterioration of the nip pressure distribution in the heating nip with respect to the longitudinal direction when the pressing force is switched.
As shown in
Incidentally, herein, the “end portions” refer to portions located at both ends with respect to a widthwise direction (longitudinal direction) within a width of the recording material having a maximum size usable in the apparatus. Similarly, the “central portion” refers to a portion located at a center with respect to the widthwise direction (longitudinal direction) within the width of the recording material having the maximum size usable in the apparatus.
As shown in
In the fixing device 30 in this embodiment in which the heating member 1 having the correction shapes at its upper and lower surfaces was incorporated, the nip pressure distribution in the heating nip with respect to the longitudinal direction was measured by applying the pressure with the total pressure of 300N and with the total pressure of 150N similarly as in Comparative Embodiment 2.
As shown in
As shown in
Further, in the case where the total pressure is decreased from 300N to 150N, the heating member 4 is strongly urged toward the pressing roller 2 at the end portions by the pressing member 5 compared with the central portion, so that compared with Comparative Embodiment 2, the nip pressure at the end portions is less liable to lower. On the basis of the constitution in Comparative Embodiment 2, the negative arcuate correction shape was formed at the upper surface of the heating member 4 facing the pressing member 5, so that it was experimentally confirmed that a good nip pressure distribution in the heating nip with respect to the longitudinal direction was obtained both at the total pressure of 300N and at the total pressure of 150N.
Under pressure with the total pressure of 150N, when the negative arcuate correction shape was not formed at the upper surface of the heating member 4, as shown in
In this embodiment, in order to increase the nip pressure at the longitudinal end portions under pressure with the total pressure of 150N, the heating member 4 was constituted so that the pressing force from the pressing member 5 was exerted on the heating member 4 in a larger amount at the end portions than at the central portion. In this embodiment, the arcuate correction shape was provided on both of the heating nip side and the pressing member 5 side of the heating member 4, so that the heating member 4 was formed in an outer appearance shape such that it was curved with respect to the pressing direction along the pressing member 5. Further, by employing the constitution of this embodiment, it was experimentally confirmed that compared with Comparative Embodiment 2, the nip pressure distribution in the heating nip with respect to the longitudinal direction was able to be uniformized at the plurality of pressing force levels.
That is, the heating member 4 has a lower rigidity than that of the pressing member 5, so that the heating member 4 is deformed so as to follow spatial deformation of the pressing member 5 with the change in pressing force. Depending on the change in pressing force, a total curved shape caused by the curve of the pressing member 5 and the curve of the shaft member 3 is continuously changed and correspondingly an entering amount of the heating member 4 (the fixing belt 1) with respect to the elastic layer 7 is changed, so that the nip pressure distribution in the heating nip is continuously changed. Then, by adjusting the correction shapes at the upper and lower surfaces of the heating member 4, even when the pressing force is changed, the nip pressure distribution in the heating nip with respect to the longitudinal direction can be optimized so as to be uniform.
In this embodiment, similarly as in Comparative Embodiment 2, the thickness of the heating member 4 at the central portion is made larger than that at the end portions so that the longitudinal nip pressure distribution in the heating nip can be uniform on a maximum pressing force side of the pressing mechanism.
However, in this embodiment, different from Comparative Embodiment 2, the gap is created between the pressing member 5 and the heating member 4 at the longitudinal central portion in a state of no pressure, so that the gap is substantially removed at least in a state in which the heating member 4 is pressed with the maximum pressing force.
For this reason, in a process in which the pressing force is increased from the state in which the gap is present, the heating member 4 having a small flexing resistance is moved in the gap between it and the pressing member 5 to suppress pressure rise at the central portion and on the other hand, only the end portions of the heating member 4 are urged toward the pressing roller 2. For this reason, compared with the constitution of Comparative Embodiment 2 in which there is no gap at the longitudinal central portion between the pressing member 5 and the heating member 4, the pressing force distribution at the central portion is decreased and on the other hand, the pressing force distribution at the end portions is increased.
Therefore, in this embodiment, the longitudinal nip pressure distribution in the heating nip under pressure with the total pressure of 300N is uniform and the nip pressure at the end portions is no lowered under pressure with the total pressure of 150N.
In this embodiment, the elastic flexing resistance of the heating member 4 is smaller than that of the shaft member 3, and the elastic flexing resistance in a state in which the pressing member 5 and the heating member 4 are superposed is larger than that of the shaft member 3.
For this reason, the heating nip is moved toward the pressing member 5 side until the gap on the rear (upper) surface of the heating member 4 is removed by the increase in pressing force but after the rear surface of the heating member 4 hermetically contacts the pressing member 5, the heating nip is pushed back to the pressing roller 2 side.
Accordingly, compared with Comparative Embodiment 2 in which the heating nip is one-sidedly moved continuously toward the pressing member side with the increase in pressing force, in this embodiment, the change in curved shape under pressure with the total pressure of 300N and under pressure with the total pressure of 150N is small, so that a degree of non-uniformity of the conveying property is small.
From the above-described experimental result, even when the different pressing forces are set with respect to the fixing device having the large curve amount under pressure application, the longitudinal nip pressure distribution in the heating nip can be kept uniform. In combination of two conditions such that the heating member 4 is thick at the central portion and that the heating member 4 is curved with respect to the longitudinal direction, even when the pressure in the heating nip is switched, the pressure in the heating nip with respect to the rotational axis direction is close to a uniform level.
The above-described numerical values are optimized through the experiment and thus optimum values vary depending on the constitution of the fixing device employed and are not determined uniquely.
As described above, according to the constitution of this embodiment, when the pressing force is lowered, the pressing force acts on the end portions of the pressing member 5 in a larger amount than that in the case of Comparative Embodiment 2, so that the nip pressure is not lowered to the degree of that in Comparative Embodiment 2.
For this reason, even when the different pressing forces are set with respect to the fixing device 30 in which the shaft member 3 and the pressing member 5 are considerably curved under pressure application, the nip pressure distribution in the heating nip with respect to the longitudinal direction can be kept uniform. As a result, it is possible to prevent deteriorations of the fixability and the conveying property due to non-uniformity of the nip pressure distribution in the heating nip with respect to the longitudinal direction.
In other words, in the process in which the pressing force is decreased by the pressure changing means, the entire pressing force in the heating nip is decreased in a state in which the end portions of the heating member 4 are strongly pressed toward the nip-forming member by the pressing member compared with the case of the central portion. For this reason, excessive pressure lowering at the longitudinal end portions in the heating nip when the pressing force is lowered is suppressed.
Further, in the process in which the pressing force is increased by the pressure changing means, the central portion of the heating member is moved toward the curved gap side to suppress the pressure rise at the central portion and on the other hand, the end portions of the heating member are pressed toward the nip-forming member side. For this reason, compared with the central portion, the pressing force distributed to the end portions is increased.
Therefore, when the pressing force in the heating nip is changed, partial pressure lowering in the heating nip with respect to the longitudinal direction is less liable to occur.
While the invention has been described with reference to the structures disclosed herein, it is not confined to the details set forth and this application is intended to cover such modifications or changes as may come within the purpose of the improvements or the scope of the following claims.
This application claims priority from Japanese Patent Application No. 027784/2009 filed Feb. 9, 2009, which is hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2009-027784 | Feb 2009 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5210579 | Setoriyama et al. | May 1993 | A |
5525775 | Setoriyama et al. | Jun 1996 | A |
20050185996 | Oishi et al. | Aug 2005 | A1 |
20060198671 | Kawahata | Sep 2006 | A1 |
20070278203 | Creteau et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
2-157878 | Jun 1990 | JP |
4-044075 | Feb 1992 | JP |
4-204980 | Jul 1992 | JP |
Number | Date | Country | |
---|---|---|---|
20100202810 A1 | Aug 2010 | US |