The present invention relates to image processing of generating a training image for generating a dictionary to be used in image recognition processing of detecting an object from an input image.
Various kinds of research and development have been carried out for image recognition of detecting the image of an object to be detected from an image obtained by capturing objects. The image recognition technique is applied to various fields and used for many actual problems of, for example, face recognition and part recognition in a factory.
This image recognition can be considered from the viewpoint of pattern recognition. In the pattern recognition as well, research has been conducted on classifiers, that is, how to perform classification of input information. There have been proposed various methods such as a neural network, support vector machine (SVM), and randomized trees (RT).
In these methods, a dictionary for image recognition needs to be generated. When generating the dictionary, a training image is necessary. As for image recognition by recent industrial robots, there is also a need to recognize an object with a high degree of freedom of the three-dimensional orientation, such as part picking of detecting a desired part from a plurality of kinds of piled parts. Detection of a three-dimensional orientation requires training images corresponding to various orientations of an object.
In image recognition aiming at part picking by a robot and the like, orientation information of an object is very important. An orientation corresponding to a training image is expressed by a parameter such as Euler angles or a quaternion. It is, however, difficult to prepare the photographed image of an object in such an orientation as a training image. In general, therefore, a computer graphics (CG) image in an arbitrary orientation is generated by computer-aided design (CAD) and used as a training image.
The method of generating a training image by CAD generally handles the joints of a polygon of CAD data as edges, and generates a binary edge image. In object detection processing, edge extraction processing is performed for the photographed image of parts, and edge-based matching is executed to identify the position and orientation of an object. In this method, the result of edge extraction processing on a photographed image greatly influences the object detection performance. Generally, edge extraction processing greatly varies depending on the material of an object, the influence of ambient light, and the like, and requires very cumbersome adjustment by an operator.
In contrast, a method of generating a training image close to a photographed image by rendering is also used. In this method, it is necessary to estimate the luminance value of each surface of an object. If the bidirectional reflectance distribution function (BRDF) of an object and the state of ambient light are known, a luminance value estimated using them can be given to an object surface to generate a CG image. However, measurement by special equipment is necessary to accurately know the BRDF of an object. In addition, work for accurately acquiring an ambient light condition in an actual environment as a numerical value is required.
There is also a method of generating a training image by performing environment mapping in which a sphere is arranged in an environment. For example, to generate the training image of a mirror object, texture mapping of the image (environment map) of an ambient environment is performed for the mirror sphere arranged in the environment, thereby generating an image. However, for an object made of plastic or the like, even if the material is the same, its reflection characteristic varies depending on the mold or the surface treatment. It is therefore difficult to prepare a sphere having the same reflection characteristic as that of the object.
In one aspect, an image processing apparatus for generating a training image of an object to be used to generate a dictionary to be referred to in image recognition processing of detecting the object from an input image, comprising: a first setting unit configured to set model information of an object to be detected; a first inputting unit configured to input a luminance image of the object, and a range image; an estimation unit configured to estimate a luminance distribution of the surface of the object based on the luminance image and the range image; and a generation unit configured to generate a training image of the object based on the model information and the luminance distribution, wherein at least one of the first setting unit, the first inputting unit, the estimation unit, or the generation unit is implemented by using a processor.
According to the aspect, a training image which approximates surface luminance of an object to be detected can be easily generated by reflecting environmental conditions based on information obtained by capturing the object.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Embodiments of the present invention will now be described with reference to the accompanying drawings. It should be noted that the following embodiments are not intended to limit the scope of the appended claims, and that not all the combinations of features described in the embodiments are necessarily essential to the solving means of the present invention.
Image processing of generating a training image to be used to generate a dictionary which is referred to in image recognition processing of detecting an object from an input image will be explained below. The training image is generated to approximate the surface luminance of an object to be detected (to be referred to as a “target object” hereinafter) by reflecting environmental conditions based on information obtained by capturing the target object in an actual environment.
[Generation of Training Image]
A model setting unit 1010 sets the model of a target object and stores it in a model storage unit 1020. An image acquisition unit 1110 acquires a pre-acquired image by capturing the target object, and stores the pre-acquired image in an image storage unit 1120. An observation data distribution obtaining unit 1130 obtains the observation data distribution of luminance values from the pre-acquired image stored in the image storage unit 1120.
A luminance estimation unit 1210 estimates the luminance distribution of the surface of the target object based on the observation data distribution of luminance values. An image generation unit 1220 generates CG images of the target object in various orientations based on the model stored in the model storage unit 1020 and the luminance distribution estimated by the luminance estimation unit 1210. The generated CG images are stored as training images in a training image storage unit 2010.
A dictionary for image recognition is generated by learning processing using the generated training images. More specifically, a learning unit 2100 performs learning processing using a plurality of training images read out from the training image storage unit 2010 by a training image setting unit 2020, thereby generating a dictionary for recognizing the target object. The generated dictionary is stored in a dictionary storage unit 2200.
Run-time processing is performed using the generated dictionary. In the run-time processing, target object recognition (detection) processing is performed for an actual input image by using the dictionary generated based on the training images created by the image generation unit 1220.
In the run-time processing, a dictionary setting unit 3010 reads out the dictionary stored in the dictionary storage unit 2200, and sets it in a recognition unit 3100. An image inputting unit 3020 acquires an image by capturing a target object, and inputs it to the recognition unit 3100. The recognition unit 3100 estimates the position and orientation of the target object in the input image in accordance with the set dictionary. A recognition result outputting unit 3200 presents, as the recognition result by a predetermined method, the position and orientation of the target object estimated by the recognition unit 3100.
[Application to Robot Work]
An example in which the image processing apparatus having the above-described arrangement in the first embodiment is applied to work by a robot will be described blow.
In the computer 100, arrangements equivalent to the recognition unit 3100 and recognition result outputting unit 3200 shown in
The computer 100 is electrically connected to a robot controller 210. The robot controller 210 is electrically connected to a robot arm 220. The robot arm 220 operates upon receiving an instruction signal from the robot controller 210. The robot arm 220 includes an end effector 230 for performing predetermined work such as gripping work on a work target object.
[Run-Time Processing]
Run-time processing in the arrangement shown in
In dictionary setting step S3010 of
Then, in image input step S3020, the image capturing apparatus 300 captures the target object 400 placed on the tray 500. The obtained image (luminance image) and distance information are input to the computer 100.
In recognition step S3100, the recognition unit 3100 performs image recognition processing for an input image by using the dictionary set by the dictionary setting unit 3010, and estimates the position and orientation of the target object 400. The estimated position and orientation are input as the recognition result to the recognition result outputting unit 3200.
The image recognition processing performed here is processing of classifying the position and orientation of the target object 400 by a classifier. The dictionary used at this time defines the classifier. The classifier defined by the dictionary determines a class to which the target object 400 captured at part of the image belongs, thereby recognizing the position and orientation. Note that a method used as the classifier is not particularly limited, and any existing method is applicable. For example, a classifier by SVM or RT may be used.
Image data to be input to the classifier may be image data obtained by performing predetermined image processing for an input image. The image processing performed for an input image is a general term of processing of converting an input image into a format easy to handle by the classifier, and the processing contents are not limited. The image processing includes, for example, noise removal using a Gaussian filter, median filter, or the like, and edge extraction using a Sobel filter, LoG filter, Laplacian filter, Canny edge detector, or the like. The image processing also includes pre-processes such as enlargement/reduction and gamma correction, and feature extraction processes such as histograms of oriented gradients (HOG) and scale-invariant feature transform (SIFT). The image processing is not limited to a selected one of these processes, and includes even a combination of processes of, for example, performing noise removal by a Gaussian filter and then performing edge extraction by a Sobel filter.
In recognition result output step S3200, the recognition result outputting unit 3200 encodes, from the estimated position and orientation of the target object 400 serving as the recognition result, an instruction to cause the robot to perform predetermined work. Then, the recognition result outputting unit 3200 outputs the instruction to the robot controller 210. The robot controller 210 decodes the input instruction, and operates the robot arm 220 and end effector 230 in accordance with the instruction to perform predetermined work for the recognized work target object (target object 400).
When recognition step S3100 is repetitively performed in run-time processing, the dictionary set in dictionary setting step S3010 is held in a memory (not shown) so that dictionary setting step S3010 need not be repeated. In other words, it is only necessary to repetitively execute image input step S3020 and subsequent steps in this case.
[Dictionary Generation Processing (Learning Processing)]
A dictionary for detecting the target object 400 is prepared in advance when performing the above-described run-time processing. Processing for generating a dictionary will be explained below. Since the dictionary is used again in repetitive run-time processing, it suffices to perform dictionary generation processing only once.
Dictionary generation processing in the first embodiment is performed by the arrangement shown in
The following description assumes that the image storage unit 1120, training image storage unit 2010, and dictionary storage unit 2200 are assigned to a hard disk incorporated in or connected to the computer 100. However, the present invention is not limited to this example, and the image storage unit 1120, training image storage unit 2010, and dictionary storage unit 2200 may be implemented in a hard disk incorporated in or connected to a computer other than the computer 100 used in run-time processing, or a memory incorporated in the image capturing apparatus 300.
The image acquisition unit 1110 is implemented in the image capturing apparatus 300 or computer 100 shown in
Dictionary generation processing will be explained according to the flowchart of
In model setting step S1000, the model setting unit 1010 sets the model of the target object 400, and stores the model in the model storage unit 1020. The model is information including information necessary to generate the CG image of the target object 400, which will be described later. The model is, for example, the CAD data or polygon model of the target object 400.
In image input step S1100, the image acquisition unit 1110 captures the target object 400 arranged on the tray 500 by using the image capturing apparatus 300, thereby acquiring a luminance image and distance information (range image) of each pixel position in the luminance image. The image acquisition unit 1110 stores a combination of the acquired luminance image and range image as a pre-acquired image in the image storage unit 1120.
The pre-acquired image is an image used when the image generation unit 1220 generates a training image. The pre-acquired image is desirably captured under the same environmental conditions as those in run-time processing, that is, the same environmental conditions as those in image input step S3020. For example, the illumination conditions in capturing a pre-acquired image are desirably almost the same illumination conditions as those in image input step S3020.
Also, the pre-acquired image is an image obtained by capturing a state in which many target objects 400 are piled at random. Although at least one pre-acquired image is sufficient, the following description assumes that five pre-acquired images or so are captured. When capturing a plurality of pre-acquired images, it is desirable that the position and orientation of the target object 400 are different in the respective capturing states to obtain many variations of the position and orientation.
Note that the same image capturing apparatus 300 as that in run-time processing is ideally used to capture a pre-acquired image. However, a pre-acquired image may be acquired by another image capturing apparatus as long as the positional relationship between the image capturing apparatus 300 and the tray 500 and the illumination conditions are similar. As the pre-acquired image, a single target object 400 may be captured in various orientations. In this case, a larger number of (for example, about 20) images are desirably captured as pre-acquired images, compared to a case in which the piled target objects 400 are captured.
Then, in observation data distribution obtaining step S1130, the observation data distribution obtaining unit 1130 obtains, based on the pre-acquired images, an observation data distribution representing the distribution of luminance values. In the pre-acquired image stored in the image storage unit 1120, a camera coordinate system position (Xj, Yj, Zj) is added as a range image to an arbitrary pixel j in the luminance image. The camera coordinate system is a capturing space defined by the X-, Y-, and Z-axes using the image capturing apparatus 300 as an origin.
The observation data distribution obtaining unit 1130 calculates a normal vector {right arrow over (N)} in the pixel j by performing plane approximation for the camera coordinate system positions of the pixel j and several neighboring points (for example, the pixel j and eight adjacent pixels, that is, a total of nine pixels). By calculating the normal vectors {right arrow over (N)} for all pixels in the existence region (for example, the internal region of the tray 500) of the target object 400 in the pre-acquired image, an observation data distribution representing the correspondence between the luminance value and the normal direction of the surface can be obtained.
Although the observation luminance value will be described as a pixel value, it can generally be a luminance value at a predetermined position in an image. Thus, the observation luminance value may not be the luminance value of a single pixel, and may be the average value of pixel values in a local region made up of several pixels, a luminance value after a noise removal filter, or the like.
Then, in luminance estimation step S1210, the luminance estimation unit 1210 estimates the surface luminance distribution of the target object 400 based on the observation data distribution obtained from the pre-acquired images. To generate a training image from CAD data of the target object 400 by CG, it is necessary to estimate a parameter (luminance distribution parameter) in a surface luminance distribution model obtained by modeling the surface luminance distribution of the target object 400.
As the luminance distribution parameter, the following parameters are conceivable. For example, assume that the light source is single parallel light, and the surface of the target object 400 causes Lambert reflection (diffuse reflection). In this case, the surface luminance distribution of the target object 400 can be approximated by a relatively simple luminance distribution model. This approximation example will be explained with reference to
{right arrow over (H)}=({right arrow over (L)}={right arrow over (V)})/∥{right arrow over (L)}+{right arrow over (V)}∥ (1)
Let θ be the angle made by the normal vector {right arrow over (N)}=({right arrow over (Nx)}, {right arrow over (Ny)}, {right arrow over (Nz)}) at an arbitrary surface position of the target object 400 and the direction vector {right arrow over (H)} of the reflection center axis 30. Then, the angle θ is given by:
θ=cos −1{{right arrow over (H)}·{right arrow over (N)}/(∥{right arrow over (H)}∥ ∥{right arrow over (N)}∥) } (2)
At this time, a luminance value J at an arbitrary surface position of the target object 400 can be approximated as a function of θ using a Gaussian function:
J(θ)=C·exp(−θ2/m) (3)
In equation (3), C and m are luminance distribution parameters representing the intensity of the entire luminance distribution and the spread of the luminance distribution, respectively. By estimating C and m, the approximation of the luminance distribution model is performed.
Since a single light source is assumed, the normal vector {right arrow over (Nj)} of a pixel having a maximum luminance value out of the obtained observation values is estimated as the light source direction vector {right arrow over (L)}=({right arrow over (Lx)}, {right arrow over (Ly)}, {right arrow over (Lz)}). At this time, for example, luminance values may be averaged using neighboring pixels in consideration of an observation error or the saturation of the luminance. As a matter of course, when the light source direction vector {right arrow over (L)} is known, the light source direction need not be estimated.
When the luminance distribution is approximated using a Gaussian function as represented by equation (3), the direction vector {right arrow over (H)} of the reflection center axis 30 is calculated according to equation (1) with respect to the light source direction vector {right arrow over (L)}. Hence, an angle θj of each pixel j from the reflection center axis 30 is obtained based on equation (2). A pair of the angle θj and luminance value Jj in the pixel j will be referred to as an observation point pj=(θj, Jj). By calculating the observation points pj for all pixels j, an observation distribution as shown in
By performing maximum likelihood fitting of the model based on equation (3) for the observation distribution shown in
E=Σj{J(θj)−Jj}2 (4)
The maximum likelihood fitting is regarded as the minimization problem of the error function E. Then, since the error function E is a downward-convex quadratic function of the parameter C, the update equation of the parameter C can be obtained by solving:
ðE/ðC=0 (5)
C=ΣjJj exp(−θj2/m)/Σj exp(−2θj2/m) (6)
As for the parameter m, γ=1/m to simplify calculation, and the parameter m is obtained as the optimization problem of γ. The error function E is not a convex function of γ. Thus, the error function E is decomposed and solved for each data, as represented by:
Ej={J(θj)−Jj} (7)
When equation (7) is solved by a steepest descent method, the sequential update formula is given by equation (8), which is called the Robbins-Monro procedure:
In equation (8), the coefficient η is a constant defined by a positive value and is generally given as a reciprocal of the number of observation data.
An example has been described, in which when the surface of the target object 400 causes diffuse reflection, it can be approximated by a luminance distribution model based on a Gaussian function by estimating the luminance distribution parameters C and m. When a mirror reflection component on the surface of the target object 400 is taken into consideration, a Torrance-Sparrow luminance distribution model as represented by equation (9) is applied:
J(θ, α, β)=Kd cos α+Ks(1/cos β)exp(−θ2/m) (9)
where Kd, Ks, and m are luminance distribution parameters in this model.
When this model is applied to
α=cos−1{{right arrow over (L)}·{right arrow over (N)}/(∥{right arrow over (L)}∥ ∥{right arrow over (N)}∥)} (10)
β=cos−1{{right arrow over (V)}·{right arrow over (N)}/(∥{right arrow over (V)}∥ ∥{right arrow over (N)}∥)} (11)
The angles αj and βj in equation (9) corresponding to each observation pixel j can be obtained from equations (10) and (11), and the observation distribution of the luminance value Jj corresponding to θj, αj, and βj can be obtained. By performing maximum likelihood fitting of the model in equation (9) for the observation distribution, the estimated model of the surface luminance distribution of the target object 400 can be obtained.
If a plurality of light sources exist, or disturbance light due to ambient light or the like exists, the luminance distribution may be approximated by a nonparametric regression model J({right arrow over (N)}) which receives the normal vector {right arrow over (N)} and outputs the luminance value J. A predetermined nonparametric model is learned using the luminance value Jj as a teacher value for the normal vector {right arrow over (N)}j concerning each pixel j at an observation value, thereby obtaining a luminance distribution estimation function. As the nonparametric regression model, various methods such as SVM, support vector regression (SVR), and neural network are usable. When these nonparametric models are used, the light source direction need not be estimated in advance before fitting.
A luminance distribution estimation function considering the difference in illuminance condition depending on the position can also be obtained by giving a camera coordinate system position (X, Y, Z) as an argument of the regression model and approximating J({right arrow over (N)}, X, Y, Z). When luminance values are obtained by multiple channels, luminance distributions are estimated separately for the respective channels. There are multiple channels when, for example, an RGB color image or an invisible optical image by infrared light or ultraviolet light is included as additional information.
If the surface luminance of the target object 400 is estimated in luminance estimation step S1210, the image generation unit 1220 generates a plurality of training images necessary to generate a dictionary in image generation step S1220. The training image is generated as a CG image based on the model (for example, CAD data) of the target object 400 set in model setting step S1000. For example, if the optical characteristic of the surface of the target object 400 that is represented by BRDF, and light source information in the work environment are known, appearances of the target object 400 in various orientations can be reproduced by CG images from the model using a known rendering technique.
The image generation unit 1220 performs projective transformation corresponding to each orientation for the model of the target object 400 that is stored in the model storage unit 1020. The normal direction (normal direction of the surface) of a point on the model that corresponds to each pixel after projective transformation is calculated. Then, a luminance value corresponding to the normal direction is given according to the result obtained in luminance estimation step S1210, thereby generating a training image corresponding to each orientation.
In learning step S2000, the learning unit 2100 generates a dictionary complying with the format of the classifier used in the recognition unit 3100 by using the training images of a plurality of orientations generated in image generation step S1220. The generated dictionary is stored in the dictionary storage unit 2200.
In this manner, a luminance image which approximates the surface luminance of the target object 400 by reflecting environmental conditions such as the illumination can be easily generated based on luminance information and distance information obtained by capturing the piled target objects 400 in an actual environment or capturing a single target object 400 in a plurality of orientations. The approximated luminance image is used as a training image to generate a dictionary.
The first embodiment has described an example in which a luminance image and range image including the target object 400 are acquired from capturing by the image capturing apparatus 300. However, the present invention is applicable to even a case in which the image capturing apparatus 300 does not have the distance measurement function. A modification when the image capturing apparatus 300 cannot acquire a range image will be explained.
The arrangement shown in
The second embodiment according to the present invention will be described. The first embodiment has been described on the premise that the target object is an object of a single color. However, the target object sometimes has a plurality of colors. For example, part of a target object is made of black plastic and another part is made of white plastic. In this case, the luminance characteristic changes depending on the portion of the target object. The second embodiment will explain an example in which a training image is generated for a target object having a plurality of luminance characteristics.
The basic arrangement for performing image recognition processing in the second embodiment is the same as that of
The luminance estimation unit 1210 in the second embodiment includes an initialization unit 1211, data assignment unit 1212, approximation unit 1213, and convergence determination unit 1214. The initialization unit 1211 initializes a plurality of functions of approximating a luminance distribution for an observation data distribution input from an observation data distribution obtaining unit 1130. The data assignment unit 1212 assigns the observation data distribution to one of a plurality of functions. The approximation unit 1213 makes a luminance distribution function fit the assigned observation data distribution. The convergence determination unit 1214 determines whether luminance distribution estimation calculation has converged.
[Luminance Estimation Processing]
In the second embodiment as well as the first embodiment, a dictionary for detecting a target object is generated from generated training images. Dictionary generation processing in the second embodiment is the same as the sequence of
First, an observation data distribution concerning the correspondence between the luminance value and the normal direction of the surface is obtained from an image stored in an image storage unit 1120. An example of the approximation of a luminance distribution model will be explained with reference to
In
Jt(θ)=Ct·exp(−θ2/mt) (12)
where Ct and mt are parameters representing the intensity of the entire luminance distribution and the spread of the luminance distribution, respectively.
The luminance distribution characteristic of the target object 400 is approximated by T luminance distribution functions Jt(θ) (t=1, . . . , T).
Luminance estimation step S1210 in the second embodiment includes steps shown in
In initialization step S1211 shown in
Then, in data assignment step S1212, the luminance estimation unit 1210 assigns each observation point pj=(θj, Jj) to each luminance distribution function Jt(θ). For example, the observation point is assigned to a luminance distribution function in which an estimated luminance value obtained upon inputting the surface normal direction θj of the observation point pj to the luminance distribution function Jt(θ) becomes closest to the luminance value Jj of the observation point. That is, a data set St for estimating the luminance distribution function Jt(θ) is defined as:
Pj ∈St if argcmin|Jc(θj)−Jj|=t, for ∀Pj (13)
Expression (13) is equivalent to labeling each observation point with the index of the luminance distribution function.
Then, in approximation step S1213, the luminance estimation unit 1210 updates the respective luminance distribution functions Jt(θ) by maximum likelihood fitting using observation point groups St assigned to the respective luminance distribution functions.
After updating all (two in this example) luminance distribution functions Jt(θ), the luminance estimation unit 1210 specifies again a closest luminance distribution function for each observation point pj, and determines whether luminance estimation step S1210 has converged (S1214). More specifically, the luminance estimation unit 1210 determines whether a luminance distribution function specified for each observation point pj is the same as a luminance distribution function already assigned to the observation point pj. If the two functions are the same for all observation points, the luminance estimation unit 1210 determines that luminance estimation step S1210 has converged, and the process advances to next image generation step S1220. If there is an observation point pj whose specified luminance distribution function is different from the assigned luminance distribution function, the luminance estimation unit 1210 determines that luminance estimation step S1210 has not converged yet, and the process returns to data assignment step S1212 to repeat the above-described processes.
When a mirror reflection model is adopted to the luminance distribution of the target object 400, a Torrance-Sparrow luminance distribution model is applied, as in the first embodiment. In this case, the t-th luminance distribution function Jt(θ, α, β) is approximated by:
Jt(θ, α, β)=Kdt·cos α+Kst(1/cos β)exp(−θ2/mt) (14)
In equation (14), Kdt, Kst, and mt are the parameters in this model. α and β are given by equations (10) and (11), respectively. These parameters are also estimated by function fitting, as in the first embodiment. Even when luminance values are obtained by multiple channels, it is only necessary to estimate luminance distributions separately for the respective channels, as in the first embodiment.
A case in which the number T of luminance distribution functions constituting the luminance distribution characteristic of the target object 400 is known has been described. An estimation example when T is unknown will be explained below.
When T is unknown, a plurality of Ts are set to perform estimation, and T at which distributions are separated most is selected from them. Processing in luminance estimation step S1210 in this case will be explained with reference to
In separation degree evaluation step S1215, the luminance estimation unit 1210 defines a separation evaluation value λT for each T:
λT=(1/T)Σt=1T∥ζt∥ (15)
ζt=(1/∥St∥)Σj∈st{Jj−Jt(θj)}3/εt3 (16)
εt2=(1/∥St∥)Σj∈st{Jj−Jt(θj)}2 (17)
In equation (17), εt is the square error of an estimated value, and in equation (16), ζt is the degree of distortion centered on the estimated value. As the data set St assigned to each luminance distribution function Jt exhibits a shape closer to a normal distribution with respect to Jt, the value of the degree ζt of distortion comes closer to 0. In this case, a T value at which the separation evaluation value λT becomes smallest is set as the estimated value of the number T of luminance distribution functions.
As described above, regardless of whether the number T of luminance distribution functions of the target object 400 is known or unknown, a luminance distribution function is estimated in luminance estimation step S1210, and a training image is generated based on the estimated luminance distribution function in image generation step S1220.
[Training Image Generation Processing]
Training image generation processing in the second embodiment will be explained. When generating a training image, a luminance distribution function needs to be associated with each portion of a target object. This association is performed as follows.
For example, the association can be performed automatically by comparing the magnitudes of the diffuse reflection components of a luminance distribution. According to the approximation equation given by equation (12), luminance distribution functions corresponding to a portion of a bright material and a portion of a dark material can be determined from the magnitude of a luminance value at a portion having a large θ value (for example, θ=1 rad), and the luminance distribution functions can be associated with the respective portions. In the approximation equation given by equation (14), the parameter Kdt indicates the intensity of the diffuse reflection component, so luminance distribution functions may be associated in accordance with the magnitude of the parameter Kat.
When the luminance distribution functions of multiple channels are estimated for, for example, the color image of the target object 400, the diffuse reflection components of characteristic channels may be compared. For example, when a red portion and green portion are associated, the intensities of diffuse reflection components in the R and G channels can be compared to facilitate association.
Association may also be performed by prompting the user to designate a plurality of points in a pre-acquired image, and detecting a luminance distribution function to which pixels corresponding to these points contribute. For example, as shown in
After each portion of the target object 400 is associated with a luminance distribution function, a training image can be generated, as in the first embodiment. Processing of generating a dictionary by using training images in subsequent learning step S2000 is the same as that in the first embodiment, and a description thereof will not be repeated.
As described above, even when the surface of the target object 400 has a plurality of colors, a training image which approximates the surface luminance can be generated.
The third embodiment according to the present invention will be explained. The first and second embodiments have described that the optical characteristic of the surface of a target object is stable in the normal direction of the surface. However, the optical characteristic of the surface is not always stable. For example, if the surface of a target object undergoes matt finishing, the luminance value changes depending on a portion even on the surface of a target object 400 oriented in the same direction. In some cases, the luminance value similarly changes depending on the surface roughness of a mold in molding or the like without intentional surface treatment. It is considered to add noise to a target object having an unstable optical characteristic of the surface when generating a training image, in order to reproduce the instability of the luminance value. In the third embodiment, the luminance distribution of a target object is estimated in consideration of noise applied when generating a training image.
[Estimation of Luminance Distribution]
In the third embodiment as well as the first embodiment, a dictionary for detecting a target object is generated from generated training images. Dictionary generation processing in the third embodiment is the same as the sequence of
The representation of a luminance distribution by a linear Gaussian kernel model y(θ, w):
y(θ, {right arrow over (w)})={right arrow over (w)}T{right arrow over (ϕ)}(θ) (18)
{right arrow over (w)}=(w1, . . . , wh, . . . , wM)T (19)
{right arrow over (Υ)}(θ)={ϕ1(θ), . . . , ϕh(θ), . . . , ϕM(θ)}T (20)
In equations (18) to (20), θ is the angle made by angle made by the normal vector {right arrow over (N)} and the direction vector {right arrow over (H)} of a reflection center axis 30, as described with reference to
ϕh(θ)=exp{−(θ−μh)/2S2} (21)
In equation (21), μh is the center position of the Gaussian kernel ϕh. It suffices to arrange the kernel center μh within the domain of the angle θ. For example, when M=9 is defined, μh may be set at every 9°. A predicted luminance distribution defined as represented by equation (22) when the luminance distribution is approximated by such a linear Gaussian kernel model will be examined:
p(J|{right arrow over (R)}, θ)=∫p(J|{right arrow over (w)}, θ)p({right arrow over (w)}|{right arrow over (R)}, θ){right arrow over (dw)} (22)
In equation (22), R is the set vector of observed luminance values. When the total number of observation pixels is N, the set vector R is given by a column vector as represented by:
{right arrow over (R)}=(J1, . . . , Jj, . . . , JN)T (23)
In equation (23), Jj is the observation value of a luminance value in the pixel j of observation data. The first term of the right-hand side of equation (22) is the conditional distribution of luminance values and is given by a normal distribution:
p(J|{right arrow over (w)}, θ)=N{J|y(θ, {right arrow over (w)}), ε2} (24)
In equation (24), s is the accuracy parameter. As the accuracy parameter s, the mean of the square error between the estimated luminance function J(θj) and the observed luminance value Jj in the first and second embodiments is used:
ε2=(1/N)Σ{Jj−J(θj)}2 (25)
Assume that equation (24) is the likelihood function of the weight w, and the conjugate prior distribution is a Gaussian distribution having an expected value m0 and covariance S0:
p({right arrow over (w)})=N({right arrow over (w)}|{right arrow over (m)}0, {right arrow over (S)}0) (26)
At this time, the second term of the right-hand side of equation (22) serving as a posterior distribution can be represented by a normal distribution:
p({right arrow over (w)}|{right arrow over (R)}, θ)=N({right arrow over (w)}|{right arrow over (m)}N, {right arrow over (S)}N) (27)
{right arrow over (m)}N={right arrow over (S)}N{{right arrow over (S)}0−1{right arrow over (m)}0+(1/ε2){right arrow over (Φ)}TR} (28)
{right arrow over (S)}N31 1={right arrow over (S)}0−1+(1/ε2){right arrow over (Φ)}T{right arrow over (Φ)} (29)
Φ is called a design matrix and is decided from kernels and observation data:
It is known that, when the linear Gaussian kernel model of equation (18) is approximated according to the least squares method, the predicted luminance distribution of equation (22) is finally given by:
p(J|{right arrow over (R)}, θ)=N{J|{right arrow over (m)}NT{right arrow over (ϕ)}(θ), σN3(θ)} (31)
σN2(θ)=ε2+{right arrow over (ϕ)}(θ)T{right arrow over (S)}N{right arrow over (ϕ)}(θ) (32)
Note that equation (32) is the variance of the predicted luminance distribution, and the square root σN (θ) is the standard deviation of the predicted luminance distribution.
In this manner, after the luminance distribution of the target object 400 is estimated in luminance estimation step S1210, a training image is generated based on the estimated luminance distribution in image generation step S1220.
[Training Image Generation Processing]
Generation of a training image in the third embodiment is similar to that in the first embodiment. More specifically, a training image is generated by calculating a luminance value at a position on a model in the normal direction that corresponds to each pixel when projective transformation is performed for a CAD model in each orientation, and giving the luminance value to the pixel.
The predicted distribution p(J|R, θk) can be obtained from equations (31) and (32) for the angle θk made by the normal direction of a plane projected to the pixel k in a training image to be generated and the reflection center axis.
In this fashion, the luminance value of each pixel on the surface of the target object 400 is decided from the variance of a luminance distribution estimated for the target object 400. A training image can therefore be generated in consideration of variations of the surface luminance of the target object 400.
The fourth embodiment according to the present invention will be explained. The first embodiment has described an example in which the luminance of the surface of a target object is approximated by a luminance distribution model based on equation (3) or (9). The fourth embodiment further prepares a plurality of parameter candidates as parameters (luminance distribution parameters) for the luminance distribution model. Dictionaries for recognizing a target object are created based on the respective parameter candidates, and an optimum parameter candidate is selected using, as evaluation values, recognition results obtained by applying these dictionaries to an input image (photographed image). Note that the luminance distribution parameters are C and m in equation (3) or Kd, Ks, and m in equation (9).
[Dictionary Generation Processing (Learning Processing)]
Dictionary generation processing in the fourth embodiment complies with the flowchart of
In parameter candidate setting step S1216, the parameter setting unit 1230 prepares K patterns of candidates of an image generation parameter for generating a training image. The image generation parameter is a luminance distribution parameter estimated in the first embodiment.
In image generation step S1220, an image eneration unit 1220 generates a training image corresponding to each of the prepared image generation parameter candidates of the K patterns by the same method as that in the first embodiment. A set of training images of various orientations generated using the k-th image generation parameter candidate out of all the K patterns is defined as a training image set Sk. In learning step S2000, a learning unit 2100 generates K dictionaries by using K respective training image sets Sk (k=1, . . . , K).
In the selection step, the selection unit 2110 evaluates all pre-acquired images acquired in image input step S1100 by using the K generated dictionaries, and selects an optimum dictionary and image generation parameter based on the evaluation result. Processing in selection step S2110 is shown in the flowchart of
In recognition step S2111, the selection unit 2110 performs recognition processing using the dictionary for a pre-acquired image, and estimates the position and orientation of the target object 400 in the pre-acquired image, similar to recognition processing (S3100) in run-time processing described in the first embodiment.
Then, in evaluation step S2112, the selection unit 2110 evaluates the recognition result obtained in recognition step S2111 in the following way. First, the CG image of the target object 400 is generated from a model set in model setting step S1000 based on the estimated position and orientation obtained as the recognition result. At this time, the CG image may be directly generated based on the estimated position and orientation. Alternatively, the CG image may be generated based on the result of more specifically performing matching using a tracking technique. More specifically, the estimated position and orientation of the target object 400 that have been obtained as the recognition result are set as initial values, and the CG image is generated using an estimated position and orientation after more specifically performing matching for the pre-acquired image by using the tracking technique.
The selection unit 2110 compares the edges of the binary images of the generated CG image and pre-acquired image by edge extraction processing to calculate a distance. The selection unit 2110 calculates, as an evaluation value, the sum of distances or an error arising from the sum of squares. More specifically, in evaluation step S2112, the evaluation value of the recognition result is calculated based on the difference at corresponding portions between the model image (CG image) generated from the recognition result and model information, and the image of the target object 400 in the pre-acquired image.
Alternatively, the evaluation may be performed based on a distance residual using a range image. More specifically, based on an estimated position and orientation obtained as the recognition result, the distance of the surface of the target object 400 in the position and orientation is calculated from the model. The calculated distance is compared with distance information corresponding to a pre-acquired image, and the sum of distance residuals on the surface of the target object 400 or an error arising from the sum of squares is calculated as the evaluation value.
Alternatively, the similarity between a training image and a pre-acquired image may be evaluated. In this case, the similarity of the existence region of the target object 400 in the pre-acquired image is compared with a CG image generated based on an estimated position and orientation in the recognition result by normalized correlation or the like. The similarity is then calculated as the evaluation value.
Further, the user may visually check a generated CG image and pre-acquired image and evaluate the difference. For example, the error of the positional shift or orientation shift is defined at several levels (for example, about five levels), and the user inputs a subjective evaluation value. Alternatively, a combination of the aforementioned various evaluation values, for example, the linear sum of these evaluation values may be used as the evaluation value.
In evaluation step S2112, if evaluation values using the K dictionaries are obtained for each pre-acquired image, the evaluation values obtained for each pre-acquired image are accumulated for each dictionary, and the accumulated evaluation value is set as an evaluation value for this dictionary.
In dictionary selection step S2113, the selection unit 2110 selects, as an optimum dictionary, a dictionary having a best evaluation value calculated in evaluation step S2112. A good evaluation value is a smaller value when the evaluation value is a detection error such as an edge error or distance residual, and a larger value when the evaluation value is similarity. The good evaluation value depends on the definition of the evaluation value.
In parameter selection step S2114, the selection unit 2110 selects, as an optimum image generation parameter for generating a training image, an image generation parameter candidate used to generate the dictionary selected in dictionary selection step S2113. More specifically, in image generation step S1220, an image generation parameter used to generate a training image set Sk corresponding to the selected dictionary is selected.
In this manner, a parameter (luminance distribution parameter) for generating an optimum training image to be used to generate an optimum dictionary can be decided by evaluating an actual recognition result. An optimum dictionary is created using a training image generated based on the decided parameter. Hence, optimum recognition processing using the dictionary can be performed.
In the above-described first to fourth embodiments, an input image in run-time processing may be used as a pre-acquired image. In this case, an appropriate training image can be dynamically generated upon an environmental change in run-time processing.
Embodiments of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions recorded on a storage medium (e.g., non-transitory computer-readable storage medium) to perform the functions of one or more of the above-described embodiment(s) of the present invention, and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more of a central processing unit (CPU), micro processing unit (MPU), or other circuitry, and may include a network of separate computers or separate computer processors. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2013-074860 filed Mar. 29, 2013 which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2013-074860 | Mar 2013 | JP | national |
This application is a continuation of application Ser. No. 15/261,430 filed Sep. 9, 2016, currently pending, which was a continuation of 14/204,198 filed Mar. 11, 2014; and claims priority under 35 U.S.C. § 119 to Japan Application JP 2013-074860 filed in Japan on Mar. 29, 2013; and the contents of all of which are incorporated herein by reference as if set forth in full.
Number | Name | Date | Kind |
---|---|---|---|
5675407 | Geng | Oct 1997 | A |
8217961 | Chang | Jul 2012 | B2 |
8437537 | Chang et al. | May 2013 | B2 |
9483714 | Aoba | Nov 2016 | B2 |
10198666 | Aoba | Feb 2019 | B2 |
20030128207 | Sawada | Jul 2003 | A1 |
20090092336 | Tsurumi | Apr 2009 | A1 |
20100134688 | Moriwake | Jun 2010 | A1 |
20100245355 | Chang | Sep 2010 | A1 |
20100289797 | Tateno et al. | Nov 2010 | A1 |
20100296724 | Chang et al. | Nov 2010 | A1 |
20110206237 | Saruta et al. | Aug 2011 | A1 |
20120128204 | Aoba | May 2012 | A1 |
20120259462 | Aoba | Oct 2012 | A1 |
20130141570 | Saruta et al. | Jun 2013 | A1 |
20140043620 | Ishii et al. | Feb 2014 | A1 |
20140064022 | Nagae | Mar 2014 | A1 |
20140198951 | Aoba et al. | Jul 2014 | A1 |
20140294292 | Aoba | Oct 2014 | A1 |
20150042952 | Uchida | Feb 2015 | A1 |
20150109474 | Saruta | Apr 2015 | A1 |
20150125035 | Miyatani et al. | May 2015 | A1 |
20150138386 | Yano et al. | May 2015 | A1 |
20150189144 | Yoshii | Jul 2015 | A1 |
20170004385 | Aoba | Jan 2017 | A1 |
20170011523 | Magai et al. | Jan 2017 | A1 |
20170132451 | Namiki et al. | May 2017 | A1 |
20180150699 | Yasunaga | May 2018 | A1 |
20180150725 | Tate et al. | May 2018 | A1 |
20190114508 | Aoba | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
2010-243478 | Oct 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20190114508 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15261430 | Sep 2016 | US |
Child | 16215425 | US | |
Parent | 14204198 | Mar 2014 | US |
Child | 15261430 | US |