This application claims priority from Japanese Patent Application No. 2008-025954, filed on Feb. 6, 2008, the entire subject matter of which is incorporated herein by reference.
Aspects of the present invention relate to an image processing apparatus and an image processing program.
A device has a media print function of directly printing out image data photographed by a digital camera and the like stored in a memory card by mounting the memory card in a slot provided in the device, without using a personal computer. A device is configured such that image data read from the memory card can be previewed on a display panel.
Further, a photographing apparatus, which is installed in an amusement facility and the like, automatically photographs a user in a set photo booth and prints a photographed image on print media, such as a seal, and then provides the seal to the user.
For example, JP-A-2007-181163 describes a photographing apparatus including an image arranging unit that arranges a frame image on the entire photographed image so as to overlap and an image detecting unit that deletes at least a part of the frame image arranged by the image arranging unit so that a user can edit the photographed image according to the user's preference.
However, in the apparatus described in JP-A-2007-181163, the photographed image and the frame image are displayed in a state of being combined in advance, and the user performs editing while viewing the combined state. Accordingly, for example, when the user wants to add an edit image little by little without breaking the atmosphere of the original photographed image, it becomes difficult to see the original photographed image itself.
Exemplary embodiments of the present invention address the above disadvantages and other disadvantages not described above. However, the present invention is not required to overcome the disadvantages described above, and thus, an exemplary embodiment of the present invention may not overcome any of the problems described above.
Accordingly, it is an aspect of the present invention to provide an image processing apparatus and an image processing program allowing a user to designate a suitable region as a combining position of an additional image while checking the content or atmosphere of an original image.
According to an exemplary embodiment of the present invention, there is provided an image processing apparatus including: a display unit which displays an image; a detection unit which detects a position on the display unit designated from an outside; an original image display unit which displays an original image based on original image data in a first display area on the display unit; a specifying unit which, when a position within the first display area is designated from the outside, specifies a designated region corresponding to the designated position in the first display area based on a detection result of the detection unit; and a combining unit which displays at least a part of an additional image based on additional image data in the designated region in the first display area to display a combined image, in which the original image and the additional image are combined, on the display unit.
According to another exemplary embodiment of the present invention, there is provided a computer-readable medium having a computer program stored thereon and readable by a computer including a display unit which displays an image and a detection unit which detects a position on the display unit designated from an outside, the computer program, when executed by the computer, causing the computer to perform operations. The operations include: displaying an original image based on original image data in a first display area on the display unit; when a position within the first display area on the display unit is designated from the outside, specifies a designated region corresponding to the designated position in the first display area based on a detection result of the detection unit; and displaying at least a part of an additional image based on additional image data in the specified designated region in the first display area to display a combined image, in which the original image and the additional image are combined, on the display unit.
The above and other aspects of the present invention will become more apparent and more readily appreciated from the following description of exemplary embodiments of the present invention taken in conjunction with the attached drawings, in which:
Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.
The MFP 1 is a multi function peripheral having various functions, such as a photo capture function, a copy function, a facsimile function, and a scanner function.
In addition, the MFP 1 reads original image data from a memory card mounted in a memory card slot 6 and displays an original image based on the original image data on an LCD 5.
Moreover, the MFP 1 is configured such that an additional image showing, for example, a photograph date may be combined in the original image and displayed on the LCD 5 and a user can designate a suitable region as a combining position of the additional image while checking the content or atmosphere of the original image, which will be described in detail later. Herein, the additional image may be a photograph, pattern, and the like and may include a character. Additionally, the character may include any character defined by a character code and may include not only a character for expressing a language but also a symbol and a figure.
A scanner 2 for reading a document in executing a facsimile function, a scanner function, or a copy function is provided at an upper portion of the MFP 1. A glass plate for placing a document thereon is provided at a lower side of a document cover. In addition, a printer 3 which is a so-called ink-jet printer is provided, as a device that prints an image on a recording sheet, in a housing.
The memory card slot 6 is provided on a front surface of the MFP 1. Image data read by the scanner function can be stored in a memory card mounted in the memory card slot 6, or original image data can be read from the memory card mounted in the memory card slot 6 by the photograph capture function and is then displayed on the LCD 5 or printed on a recording medium.
In addition, a horizontally long operation panel 4 is provided in front of the document cover. An operation key 40, the LCD 5, and a touch panel 7 (see
The touch panel 7 is a kind of input device and is provided on a screen of the LCD 5. When a user touches the LCD 5 with a finger, the touch panel 7 can detect the touch position of the finger as a designated position designated from the outside to the LCD 5.
Next, the electrical configuration of the MFP 1 will be described with reference to
Among those described above, the CPU 11, the EEPROM 12, and the RAM 13 are connected to one another through a bus line 26. In addition, the operation key 40, the LCD 5, the touch panel 7, the scanner 2, the printer 3, the memory card slot 6, the NCU 23, the modem 24, and the bus line 26 are connected to one another through an input and output port 27.
The CPU 11 controls each function that the MFP 1 has or each portion connected with the input and output port 27 according to a fixed value or program stored in the EEPROM 12 or the RAM 13 or various signals transmitted and received through the NCU 23.
The EEPROM 12 is a nonvolatile memory capable of storing, for example, fixed value data or a control program 12a executed by the CPU 11 so that the fixed value data or the control program 12a can be rewritten and of holding the content even after the power is off. The control program 12a includes a program related to flow charts illustrated in
In addition, a character region definition table 12b is provided in the EEPROM 12. The MFP 1 determines a region including a character display area such that when a character included in an additional image is combined in the original image, a part of the character to be combined in the original image is not missing, which will be described in detail later. A calculation expression for determining a region including a character is stored in the character region definition table 12b, which will be described in detail later with reference to
The RAM 13 temporarily stores various kinds of data when executing various operations of the MFP 1. The RAM 13 includes a video memory 13a, a first frame buffer 13b, a second frame buffer 13c, a third frame buffer 13d, a fourth frame buffer 13e, and a mode memory 13f.
The video memory 13a stores the content displayed on the LCD 5. Data written in the video memory 13a is formed by combination of data (frames) stored in the first frame buffer 13b, the second frame buffer 13c, the third frame buffer 13d, and the fourth frame buffer 13e. In addition, the content of the data stored in the video memory 13a and the first to fourth frame buffers 13a to 13e will be described later with reference to
The mode memory 13f stores which one of a scratch mode and a delete mode is currently set. The scratch mode is a mode in which the additional image is combined in the original image, and the delete mode is a mode in which a portion, which is designated by the user, of the additional image combined in the original image is deleted. Processing executed in each mode will be described later with reference to
The NCU 23 is connected to a telephone network (not shown) and controls transmission of a dial signal to the telephone network, response of a call signal from the telephone network, and the like. The modem 24 modulates image data, transmission of which is instructed by the facsimile function, to a signal, which can be transmitted to the telephone network, and transmits the signal through the NCU 23. In addition, the modem 24 receives a signal, which is input through the NCU 23 from the telephone network, and displays the signal on the LCD 5 or demodulates the signal to image data recordable by the printer 3.
Next, a screen of the LCD 5 in the scratch mode will be described with reference to
As shown in
It is noted that, in the present exemplary embodiment, an image that includes a character string showing photograph date and time information read from the header of the original image data and has a white color as a background color is illustrated as an example of the additional image 42. However, other information may also be used as the additional image 42.
Moreover, in the present exemplary embodiment, it is assumed that the right-half area of the screen of the LCD 5 where the original image 41 is displayed at the start of the scratch mode is referred to as a ‘right screen 43’ and the left-half area of the screen of the LCD 5 where the additional image 42 is displayed at the start of the scratch mode is referred to as a ‘left screen 44’. As shown in
In addition, as shown in
As shown in
In addition, when the designated region 45 is specified, the MFP 1 specifies a corresponding region 46 on the left screen 44 corresponding to the designated region 45 on the right screen 43. In addition, an image in the corresponding region 46 is copied to the designated region 45. Specifically, the display of the designated region 45 of the right screen 43 is replaced with a portion of the additional image 42 displayed on the corresponding region 46 of the left screen 44. As shown in
According to this configuration, a combined image, in which the original image 41 and the additional image 42 are combined, is displayed on the right screen 43 by displaying a part of the additional image 42 in the designated region 45 as described above, so that the user can view the combined image.
In addition, since the portion of the additional image 42 displayed in the corresponding region 46 of the left screen 44 corresponding to the designated region 45 on the right screen 43 is combined in the original image 41, the user can combine an arbitrary portion of the additional image 42 in the original image 41.
In
As shown in
In this manner, the user can make the combined image displayed with a sense like exposing an additional image existing behind an original image by rubbing an arbitrary portion of the right screen 43, on which the original image 41 is displayed, with a finger or the like. As a result, it becomes easy and intuitive to partially combine the additional image 42 in the original image 41.
In addition, the user can view the combined image updated according to expansion of the designated region 45 while expanding the designated region 45 by moving the designated position in a desired direction with user's operation. In addition, since the region obtained by adding the width to the locus of the designated position is specified as the designated region 45, the user can easily designate a small region, for example, compared with a case in which a region within a closed curve defined by the locus of a designated position is specified as a designated region. As a result, an operation becomes easy even if the display area of the LCD 5 is small.
Then, for example, when a user's instruction to end editing for the combining result is input, the MFP 1 creates print data by processing and editing original image data such that the same image as the combining result can be printed, and then outputs the print data to the printer 3 or stores the print data in a storage medium, such as a memory card.
According to the MFP 1, since the combined image where the additional image 42 is combined in the designated region 45 is displayed after the user designates the designated region 45 where the additional image 42 is to be combined while viewing the original image 41 (after the user touches the right screen 43 in the present exemplary embodiment), the user can designate a suitable region of the original image 41 as a combining position of the additional image 42 while checking the content or atmosphere of the original image.
In addition, the user can see which portion of the entire additional image 42 is combined in the original image 41 by checking the indicator 47 displayed on the left screen 44.
According to the MFP 1, the user can individually view the original image 41 and the additional image 42 to be combined in the original image 41 by the right screen 43 and the left screen 44 of the LCD 5. Accordingly, the user can designate a suitable region of the original image 41 as a combining position of the additional image 42 while viewing the content or atmosphere of each of the original image 41 and the additional image 42.
As shown in
In addition, since the right screen 43 and the left screen 44 have the same size, the user can clearly recognize the size relationship between the original image 41 and the additional image 42 to be combined in the original image 41.
As shown in
When it is determined that the position (surface) on the left screen 44 is designated based on the detection result of the touch panel 7, the MFP 1 replaces a portion, which is displayed in a circular region 48 having a radius of B dots with the designated position as a center, of the additional image 42 with the background color of the left screen 44. The ‘B’ is a value set in advance. Thus, some characters of the additional image 42 in the region 48 are deleted. The processing of replacing the inside of the region 48 with a background color is an example of deleting a portion displayed in a region based on the designated position. However, instead of this processing, processing of painting the region 48 with a color other than the background color may be performed.
Moreover, deletion of a portion of the additional image 42 on the left screen 44 is reflected on the combined image displayed on the right screen 43, that is, the additional image already combined in the original image 41. In other words, the designated region 45 on the right screen 43 remains as it is and a portion of a character, which has been replaced with the background color on the left screen 44, of the additional image combined in the designated region 45, is replaced with the background color like the left screen 44.
In this manner, the user can easily delete the portion of the additional image in the combined image by operating the left screen 44 side when the user wants to modify the combined additional image 42 after viewing the combined image. Thus, the combined image that the user wants can be displayed. In
Next, processing that the MFP 1 executes when a character string of text data is included in the additional image 42 will be described with reference to
Specifically, when a character string including one or more characters is included in the additional image 42 and text data of the character string can be acquired, the MFP 1 determines a character region 51, which is defined as a region including a character display area, for each character included in the character string as shown in
Then, it is determined whether the position on the left screen 44 corresponding to the designated position on the right screen 43 designated by the user is included in the character region 51 of a character. Then, when the position on the left screen 44 is included in the character region 51, the additional image is combined in the original image 41 by specifying the designated region 45 such that the entire character region 51 can be included, as shown in
In this manner, without thinking of whether the entire part of a character can be included, the user can combine an entire region of a character in the original image 41 only by designating one point on the right screen 43 corresponding to a desired character displayed on the left screen 44. That is, when an area of the corresponding region 46 of the left screen 44 corresponding to the designated region 45 specified by user's designation on the right screen 43 exists up to the middle of a character included in the additional image, a part of the character might be missing if the additional image of the corresponding region 46 is combined in the designated region 45 as it is. In contrast, according to the above-described method, since the additional image is combined in the unit of the character region 51, it is possible to prevent a part of a character from being missing in the combining result.
Next, a configuration for displaying a combined image on the right screen 43 and the left screen 44 will be described with reference to
As shown in
As shown in
Data obtained by overlapping the second frame 62 and the fourth frame 64 each other is written in a region of the video memory 13a corresponding to the right screen 43 of the LCD 5, and an image is displayed on the right screen 43 based on the data. Here, since the designated region 45 has been not designated yet, only the original image 41 is displayed on the right screen 43. In the present exemplary embodiment, uniform pixel data, for example, white pixel data is written in the entire second frame 62 at an initial state. When overlapping the frames, internal setting is made such that a portion of white pixel data in the second frame 62 is treated as no data. When overlapping the second frame 62 and the fourth frame 64 each other, data processing is performed such that data of the second frame is positioned on a front surface.
In
Then, as shown in
Then, as shown in
In the present exemplary embodiment, all data of pixels included in the designated region 45 in the second frame 62 is replaced with data of corresponding pixels of the third frame. Accordingly, since the background color of the designated region 45 on the right screen 43 becomes equal to that of the left screen 44, the designated region 45 is displayed on the right screen 43 so as to be distinguished from the other region which is not designated. As a result, the user can appropriately view the designated region 45.
Next, the above processing that the MFP 1 executes will be described with reference to
First, it is determined whether it is selected which original image 41 or additional image 42 is to be displayed and an instruction of OK is input by the user, or initialization of display of the LCD 5 is selected by the user (S1).
When the determination in step S1 is positive (S1: Yes), the first frame buffer 13b and the second frame buffer 13c are initialized (S2). Then, additional image data is created based on, for example, photograph date and time information read from the header of original image data, and is copied to the third frame buffer 13d (S4). Then, the original image data, which is to be displayed, read from a memory card is copied to the fourth frame buffer 13e (see
Then, the first frame 61 and the third frame 63 are made to overlap each other and are written in a region corresponding to the left screen 44 of the video memory 13a, and the second frame 62 and the fourth frame 64 are made to overlap each other and are written in a region corresponding to the right screen 43 of the video memory 13a (S8). As a result the original image 41 based on the original image data read from the memory card is displayed on the right screen 43, and the additional image 42 is displayed on the left screen 44 so as to be adjacent to the original image 41.
On the other hand, when the determination in step S1 is negative (S1: No), it is then determined whether an operation for selecting a mode is performed (S9). When the determination in step S9 is negative (S9: No), the process returns to step S1.
On the other hand, when the determination in step S9 is positive (S9: Yes), it is then determined whether a scratch mode is selected (S10). When the determination in step S10 is positive (S10: Yes), it is then determined whether text data of a character string included in the additional image 43 can be acquired (S12). When the determination in step S12 is positive (S12: Yes), the additional image combining processing based on a character region described with reference to
On the other hand, when the determination in step S12 is negative (S12: No), the additional image combining processing described with reference to
When the determination in step S10 is negative (S10: No), delete mode processing (S18) is executed, and the process returns to step S1. The delete mode processing (S18) will be described later with reference to
If the user inputs an instruction to end editing in a state where the original image 41 or a combined image, in which the additional image 42 is combined in the original image 41, is displayed on the right screen 43 of the LCD 5 while the display processing shown in
In the additional image combining processing (S14), a touch position (designated position) detected by the touch panel 7 is first acquired. Then, it is determined whether the right screen 43 of the LCD 5 is touched (or whether there is a designation from the outside) based on the acquired touch position (S704). When the determination in step S704 is positive (S704: Yes), coordinate information (xr, yr) indicating the touch position on the right screen 43 is calculated based on the touch position and the designated region 45 (see
Then, the corresponding region 46 of the left screen 44 corresponding to the designated region 45 is specified, data of pixels included in the corresponding region 46 is read from the third frame buffer 13d, and the data is copied to the second frame buffer 13c as data of pixels included in the designated region 45 (S706).
In addition, data for displaying the indicator 47 at the position of the left screen 44 corresponding to the position indicated by the coordinate information (xr, yr) is written in the first frame buffer 13b (S708).
Then, it is determined whether a display update time set in advance has elapsed (S710). When the determination in step S710 is positive (S710: Yes), the first frame 61 and the third frame 63 are made to overlap each other and are written in the region corresponding to the left screen 44 of the video memory 13a, and the second frame 62 and the fourth frame 64 are made to overlap each other and are written in the region corresponding to the right screen 43 of the video memory 13a (S712). On the other band, when the determination in step S710 is negative (S710: No), processing of S712 is skipped.
Then, it is determined whether the user is instructed to end the additional image combining processing S14 (S714). This is determined based on whether the end of editing is input by the user, for example. When the determination in step S714 is negative (S714: No), the process returns to step S702 to repeat the processing. As a result, the designated region 45 is sequentially updated according to a user's change of designated position, and the display of the additional image 42 in the designated region 45 is updated based on the updated designated region 45, such that the combined image is updated. Since such an update of display was described in detail in
When the determination in step S714 is positive (S714: Yes) while repeating the processing as described above, the additional image combining processing (S14) is ended.
In the additional image processing (S16) based on a character region, data of pixels included in the corresponding region 46 of the left screen 44 corresponding to the designated region 45 is copied from the third frame 63 to the second frame 62 (S706) and then region determination processing is executed (S807). This region determination processing (S807) is processing for determining whether a position on the left screen 44 corresponding to the designated position on the right screen 43 is included in the character region 51 and will be described in detail later with reference to
Then, it is determined whether the position on the left screen 44 corresponding to the designated position on the right screen 43 is included in the character region 51, as a result of the region determination processing (S807), (S808). When the determination in step S808 is negative (S808: No), the step S810 is skipped to proceed to step S708.
On the other hand, when the determination in step S808 is positive (S808: Yes), data of pixels of the character region 51 (see
As shown in
Since the determination in step S902 is positive at first (S902: Yes), a calculation expression for calculating the character region 51 of a character to be checked is acquired referring to the character region definition table 12b (see
The relationship between the character region 51 and the calculation expression will be described with reference to
Referring back to
For example, when the position of the lower-case letter ‘o’ in the additional image 42 is the coordinates (200, 100) on the touch panel as shown in
(x−200)2+(y−100)2≦100 (1)
Then, it is determined whether a position on the left screen 44 corresponding to the designated position (coordinate information (xr, yr)) on the right screen 43 is included in the character region 51 (S908). For example, when the coordinates of the position on the left screen 44 are (0, 0), the relationship of the expression (1) is not satisfied as shown in the following expression (2) as substituting x=0 and y=0 into a left side of the relational expression (1). As a result, it is determined that the position is outside the character region 51.
(0−200)2+(0−100)2>100 (2)
When the determination in step S908 is negative (S908: No), a next character is set as an object to be checked (S912), and the process returns to step S902. Then, if processing on all characters are completed after repeating the processing, the determination in step S902 becomes negative (S902: No). Then, it is determined that the position is outside the character region 51, and the process returns to step S808 in
On the other hand, when a character that makes the determination in step S908 positive is found (S908: Yes), it is determined that the position is within the character region 51, and the process returns to step S808 in
According to the region determination processing (S807), it is possible to determine which character area 51 of the additional image 42 the position on the left screen 44 corresponding to a position on the right screen 43 designated by the user is included in.
In the delete mode processing (S14), a touch position is first acquired from the touch panel 7 (S102). Then, it is determined whether the right screen 43 of the LCD 5 is touched, that is, designated from the outside (S104). When the determination in step S104 is positive (S104: Yes), coordinate information (xr, yr) indicating the touch position on the right screen 43 is then calculated and a delete circular region (not shown) having the radius of A dots with a position indicated by the coordinate information (xr, yr) as a center is determined (S105).
Then, data of pixels included in the delete region in the second frame buffer 13c is cleared (S106), and the process proceeds to step S108. The cleared portion returns to original white pixel data.
Then, in step S112 to be described later, a portion, which is displayed in the determined delete region, of the additional image combined in the original image 41 of the right screen 43 is deleted by combining the second frame 62 with the fourth frame 64 and accordingly the original image 41 is displayed on the delete region.
In this manner, the user can return to the display of original image by deleting an additional image only by touching an arbitrary portion in a display area of the additional image combined in the original image 41. As a result, a combined image that satisfies the user's preference can be displayed. In addition, the user can edit a display image with a sense like exposing the lower original image by deleting the additional image put on the original image, and therefore, the user can easily see operation and perform operations intuitively.
In addition, although only the additional image which is combined in the original image 41 and is displayed on the right screen 43 is deleted in step S106 in the present exemplary embodiment, a portion of the additional image 42 displayed in a corresponding region of the left screen 44 may also be deleted together.
On the other hand, when the determination in step S104 is negative (S104: No), it is then determined whether the left screen 44 of the LCD 5 is touched (S116). When the determination in step S116 is negative (S116: No), the process returns to step S102. However, when the determination in step S116 is positive (S116: Yes), coordinate information (x1, y1) indicating the touch position on the left screen 44 is calculated and the circular region 48 (see
Then, data of pixels, which are included in the circular region 48 based on the designated position, of the third frame buffer 13d is replaced with data of the background color (S118). In the subsequent step S112, a portion displayed in the region 48 of the additional image 42 is deleted. Although the deletion is performed by replacing the inside of the entire region 48 with the background color in the present exemplary embodiment, the region 48 may also be replaced with black data or white data, for example.
A change in the third frame buffer 13d is reflected on the second frame buffer 13c. That is, although data obtained by coping the third frame buffer 13d is stored in a portion corresponding to the designated region 45 of the second frame buffer 13c as described above, the MFP 1 reads data of the portion corresponding to the designated region 45 again from the third frame buffer 13d and copies the data to the second frame buffer 13c (S120).
In this case, deletion of the portion of the additional image 42 on the left screen 44 is reflected in the combined image displayed on the right screen 43, that is, reflected in the additional image combined in the original image 41 in the subsequent step S112.
Then, the process proceeds to step S108 in which data for displaying the indicator 47 corresponding to the position indicated by the coordinate information (xr, yr) or coordinate information (x1, y1) is written in the first frame buffer 13b (S108).
Then, it is determined whether the display update time set in advance has elapsed (S110). When the determination in step S110 is positive (S110: Yes), data obtained by overlapping the frames 61, 62, 63, and 64 is written in the video memory 13a (S112).
Herein, when it is determined that the right screen 43 is touched in step S104 (S104: Yes), the first frame 61 and the third frame 63 are made to overlap and are then written in the region corresponding to the left screen 44 of the video memory 13a in step S112. In this manner, the indicator 47 is displayed at the corresponding position of the left screen 44, as described with reference to
On the other hand, when it is determined that the left screen is touched in step S116 (S116: Yes), the first frame 61, the second frame 62, and the fourth frame 64 are made to overlap and are then written in the region corresponding to the right screen 43 of the video memory 13a. That is, as described with reference to
In addition, when the determination in step S110 is negative (S110: No), the processing of S112 is skipped.
Then, it is determined whether the user is instructed to end the delete mode processing (S18) (S114). When the determination in step S114 is negative (S114: No), the process returns to step S102 to repeat the processing.
When the determination in step S114 is positive (S114: Yes) while repeating the processing as described above, the delete mode processing (S14) is ended.
According to the delete mode processing, the user can delete a part of the additional image combined in the original image 41 using either the right screen 43 or the left screen 44. If the right screen 43 is used, an image can be edited by directly designating a portion, which is to be deleted, of the additional image combined in the original image 41, which is convenient.
The additional image 42 which is not combined in the original image 41 is displayed on the left screen 44. If a portion, which is to be deleted, of the additional image 42 is directly designated, the operation can also be reflected not only on the left screen 44 but also on the right screen 43. This is convenient for a case in which not only the combined image but also the additional image 42 needs to be changed.
Thus, in the present exemplary embodiment, results of the combined image finally displayed are different between a case where a deletion operation is performed on the right screen 43 and a case where the deletion operation is performed on the left screen 44. Accordingly, it is advantageous that the user appropriately switch whether to perform the deletion operation on the right screen 43 or to perform the deletion operation on the left screen 44 based on the result of a combined image that the user wants.
While the present invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
For example, in the present exemplary embodiment, although the indicator 47 moves according to a position that the user designates, the indicator 47 may not start moving until the user performs a predetermined operation.
The display processing shown in
First, in a state where the original image 41 is displayed on the right screen 43 of the LCD 5 and the additional image 42 is displayed on the left screen 44, it is determined whether single click or double click is performed on the LCD 5 based on a detection result of the touch panel 7 (S1101). Herein, although not shown, the processing is in a standby state when neither the single click nor the double click is input.
When the LCD 5 is single-clicked (S1101: single click), coordinate information (x, y) of the single-clicked position is specified and data for displaying the indicator 47 at a position, which corresponds to the position indicated by the coordinate information (x, y), on an opposite screen (left screen 44 if the right screen 43 is single-clicked) of the single-clicked screen is written in the first frame 61 (S1102). Then, the third frame 63 is written in the region for display of the left screen 44 in the video memory 13a, and the second frame 62 and the fourth frame 64 are combined in a region for display of the right screen 43. Then, the first frame is overlapped in a region for display of the opposite screen of the single-clicked screen (S1103), and process returns to step S1101.
Accordingly, when the user single-clicks on the LCD 5, the indicator 47 is displayed at the position on the opposite screen corresponding to the single-clicked position. Accordingly, the user can check the position on the opposite screen corresponding to the single-clicked position by single-clicking on the LCD 5.
On the other hand, when it is determined that the LCD 5 is double-clicked in step S1101 (S1101: double click), the process proceeds to step S9 to execute the processing described with reference to
According to the display processing according to the modified example, for example, by single-clicking on one point in the original image 41 displayed on the right screen 43, a position of the left screen 44 corresponding to the position can be viewed by the indicator 47. Therefore, when the user single-clicks on a position of the displayed original image 41, at which the additional image 42 is considered to be combined, a portion of the additional image 42 combined at the position can be confirmed by the indicator 47.
In addition, when the position of the left screen 44 corresponding to the single-clicked position is not a position that the user wants, the user can find a position on the right screen 43 corresponding to a desired position on the left screen 44 by repeating the single click. Then, when the position on the right screen 43 corresponding to the desired position on the left screen 44 is found, the user can start designating the position, at which the additional image is combined, by double-clicking on the position as a start point.
In addition, in the above-described exemplary embodiment, the original image 41 and the additional image 42 are displayed in parallel on one screen. However, for example, when two display units are provided, the original image 41 and the additional image 42 may be separately displayed on the display units.
Further, in the above-described exemplary embodiment, the multi functional peripheral is explained. However, the inventive concept of the present invention can be also applied to other devices, such as a scanner and a printer.
Further, although data read from the memory card is used as original image data in the above-described exemplary embodiment, the present invention is not limited thereto. The inventive concept of the present invention may also be applied to a case in which data received from a PC connected through a network or data read by a scanner is used as the original image data.
Further, in the exemplary embodiment, the circular region having the radius of A dots with a touch position as a center is specified as the designated region 45 and the ‘A’ is a value set in advance. However, the present invention is not limited thereto. For example a value that defines the width of the designated region 45 may be set based on the vertical width of the original image 41 displayed on the LCD 5. In this case, the user can easily designate a suitable region that matches the size of the original image 41 to be edited.
Further, a square region or triangular region having a specific side with a touch position as a center may be specified as the designated region 45.
Number | Date | Country | Kind |
---|---|---|---|
2008-025954 | Feb 2008 | JP | national |