This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2010-254200, filed on Nov. 12, 2010 the entire contents of which are incorporated herein by reference.
The embodiments discussed herein are related to an image processing apparatuses and a non-transitory storage medium storing an image processing program.
What-is-called calibration processing is performed in a vehicle or robot having a camera. The calibration processing includes checking the attached position and/or attitude of the camera and calibrates the difference from the designed value or values of the attached position and/or attitude of the camera. In general, the calibration processing is implemented by capturing a marker disposed in a predetermined position within a camera capturing range with the camera and using the position of the marker on the captured image, that is, the coordinates of a feature of the marker appearing in the image.
The marker to be used has a pattern which allows easy extraction of a feature from the captured image with the marker. For example,
According to an aspect of the invention, a non-transitory storage medium stores an image processing program causing a computer to execute processing of: acquiring, on a first image of a captured marker having a pattern formed by a plurality of first areas which has a first color and a plurality of second areas which has a second color that is different from the first color, a position of a first point where the plurality of first areas and the plurality of second areas cross; acquiring, on the first image, a boundary between one of the plurality of the first areas and one of the plurality of the second areas having the first point; converting the first image to a second image having a plurality of pixels to other positions with pixel values by using the position of the first point, the position of a second point present on the boundary and the positions of the plurality of pixels included in the first image and the pixel values of the plurality of pixels; scanning on the second image; acquiring an expectation value indicating a possibility that an intersection where the plurality of first areas and the plurality of second areas cross exists excluding the first point; acquiring the position of the intersection on the second image on the basis of the expectation value; inverting the other positions of the plurality of pixels included in the second image to the corresponding positions on the first image; acquiring the position of the first point and the position of the intersection on the first image; and determining the acquired position of the first point and the position of the intersection as the positions of features of the pattern.
The object and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the invention, as claimed.
As described previously, though the calibration processing extracts one feature from the image of captured one marker as illustrated in
The disclosed art was made in view of the problem above, it is an object of the disclosed art to provide an image processing apparatus which allows stable extraction of a plurality of features from an image of captured one marker.
With reference to drawings, embodiments of the image processing apparatus disclosed in the subject application will be described in detail below. The art disclosed in the subject application is not limited by the embodiments which will be described below of the image processing apparatus disclosed in the subject application. According to the following embodiments, the image processing apparatus disclosed in the subject application, a method will be described which extracts as a feature a plurality of intersections of boundaries forming different color areas from an image of a captured marker (jig) provided at a predetermined position.
Because a marker M1 illustrated in
The marker M2 having a form as illustrated in
For example, the intersections of boundaries forming different color areas of the marker M2 illustrated in
For example, the aforementioned publicly known art may be used to extract all intersections of different colors of the marker M2 illustrated in
Therefore, according to the publicly known art, like the marker M1 illustrated in
However, on the image having the captured marker M2, the curved line corresponding to the circumference of the circular part of the marker M2 may be a distorted curved line which is not an arc in some positional relationship between the position of the camera and the position of the marker M2. This may prevent extraction of four points appearing on the circumference of the circular part of the marker M2 as features according to the publicly known art. In particular, because the marker is often provided at a horizontally remote position from the front of the camera, the image of a captured object may have more distortion as its distance from the front of the camera increases. Such a distorted image acquired as the marker image may result in a lower precision of extraction of features from the image. For example, when the feature extraction is implemented by filter matching, for example, the distorted image matched with the filter may prevent feature detection.
Moreover, when the image of the marker M2 may be distorted under an influence of a lens or when the image of the marker M2 may be unclear under an influence of illumination, boundaries and/or intersections of different colors within the image may be unclear. Also in this case, the publicly known art may not allow stable extraction of four points on the circumference of the marker M2.
Accordingly, the distortion of the acquired image may be corrected for stable extraction of features. With reference to
For example, when an image A of the distorted marker M2 as illustrated in
If, as illustrated in
The methodology described with reference to
However, even when a segment crossing the center is detected as in the image B of the marker M2 illustrated in
Even the conversion of the quadrangle P1P2P3P4 formed by connecting four corner points P1 to P4 of the marker M2 on the image C of the marker M2 illustrated in
An embodiment for stable extraction of a plurality of features from an image of one captured marker will be described in view of the problems described with reference to
As illustrated in
For example, the image processing apparatus 200 uses the marker M2 as a marker to be used for the extraction of features. The marker M2 has a circular part at the center of a 40 centimeter square, for example and has a pattern having white areas and black areas alternately. The circular part of the marker M2 has a pair of white areas facing across the center of the marker M2 and a pair of black areas facing across the center of the marker M2. The marker M2 having a pattern having white areas and black areas alternately is for clear appearance of the center of the circular part of the marker M2 as a feature on the image of the marker M2. The area surrounding the circular part of the marker M2 also having white areas and black areas alternately is for clear appearance of the boundaries of the circular part of the marker M2 on the image of the marker M2 independent of the influence of the image relating to the surface of the floor or the background where the marker M2 is placed.
The image processing apparatus 200 is not limited to the case where the marker M2 illustrated in
Referring back to
The image processing apparatus 200 next extracts the position having the peak response value of the filter, as referred by (5) in
Referring back to
The storage unit 220 has an image storage unit 221, as illustrated in
A feature extracting unit 230 has a center point acquiring unit 231, a generating unit 232, an extracting unit 233, a converting unit 234, a peak extracting unit 235 and an inverter unit 236, as illustrated in
The center point acquiring unit 231 acquires an image of the marker M2 from the image storage unit 221 (hereinafter, called an “original image”) and acquires the position of the center point of the marker M2 where a white area and a black area cross on the original image. For example, the center point acquiring unit 231 detects edges of the original image and acquires the position of the point that is close to the center of the marker M2 as the position of the center point, among points where the detected edges cross.
Alternatively center point acquiring unit 231 may repeatedly degenerate the color areas of the white areas and black areas of the marker M2 on the original image to a form that is close to an ellipse form and acquire the position of the center point of the marker M2 on the basis of the positional relationship of the degenerated color areas. The present inventor found that the color areas of the circular part of the marker M2 has an elliptical characteristic when it is completely separated from another area within the image of the marker M2. Accordingly, the center point acquiring unit 231 first repeatedly degenerates the color areas of the circular part of the marker M2 until it has an elliptical characteristic. After the degeneration completely separates the color areas of the circular part of the marker M2, the center point acquiring unit 231 acquires the position of the center point of the marker M2 on the basis of the positional relationship of the color areas which face across the center of the marker M2.
The generating unit 232 acquires the original image from the image storage unit 221 and converts the luminance values of the original image to generate the grayscale image. When the original image is an RGB color image, the generating unit 232 may use Expression (1) below for each pixel, for example, to convert R, G, and B values to a luminance value Y and thus generate a grayscale image.
Y=0.299 R+0.587 G+0.114 B (1)
The extracting unit 233 acquires for each radiation the positions of the boundaries between white areas and black areas extending radially from the center of the marker M2 on the grayscale image generated by the generating unit 232 as the angle of elevation at a predetermined position from the center. With reference to
As illustrated in
The converting unit 234 uses the position of the center point C and the positions of the four boundaries for standardization conversion to correct the distortion of the grayscale image G1. For example, the converting unit 234 performs standardization conversion on the grayscale image G1 such that adjacent two boundaries can be orthogonal at the position of the center point C. In other words, it considers that the boundaries of the white areas and black areas are orthogonal at the center of the marker M2. With reference to
First, the converting unit 234 acquires the grayscale image G1 and acquires the coordinates (X0,Y0) of the center point C of the marker M2 and coordinates (x1,y1), (x2,y2), (x3,y3), and (x4,y4) on the boundaries of the marker M2. The converting unit 234 then determines the image size (such as 2A) after the standardization and allocates a buffer that stores the positions of the points (pixels) on the standardized image G3. For each of areas of the grayscale image G1 divided by four boundaries, the converting unit 234 then arranges the pixel values of the pixels within the area to the corresponding pixels on the standardized image G3 to convert the grayscale image G1 to the standardized image G3, as illustrated in
where the coordinates of a point on the grayscale image G1 are (x,y) and the coordinates corresponding to the coordinates (x,y) of the point on the standardized image are (x′,y′).
For example, the converting unit 234 handles the four areas of the standardized image separately and calculates the matrix H that formulates the correspondence relationship between the coordinates (x,y) and coordinates (x′,y′) in each of the areas. In this case, the converting unit 234 defines the following prerequisites. Hereinafter, the grayscale image G1 will be called an “image G1”, and the standardized image G3 will be called an “image G3”. The converting unit 234 defines that the coordinates (x0,y0), (x1,y1), (x2,y2), (x3,y3) and (x4,y4) on the image G1 correspond to the points (A,A), (2A,A), (A,2A), (0,A) and (A,0) on the image G3, respectively. On the image G3 standardized under the defined prerequisites, the angle formed by the straight line at X=A and the straight line at Y=A is 90 degrees. In this case, 2A refers to the length of one side of the square of the standardized image, that is, corresponds to the size of the standardized image. A predetermined value (such as A=100) may be given thereto.
For example, if the coordinates (x′,y′) on the standardized image are within the area of “A≦x′≦2A and A≦y′≦2A” among the four areas of the standardized image, the converting unit 234 calculates the matrix H by the following Expression (3).
If the coordinates (x′,y′) on the standardized image are within the area of “0≦x′<A and A≦y′≦2A” among the four areas of the standardized image, the converting unit 234 calculates the matrix H by using the following Expression (4).
If the coordinates (x′,y′) on the standardized image are within the area of “0≦x′<A and 0≦y′<A” among the four areas of the standardized image, the converting unit 234 calculates the matrix H by using the following Expression (5).
If the coordinates (x′,y′) on the standardized image are within the area of “A≦x′≦2A and 0≦y′<A” among the four areas of the standardized image, the converting unit 234 calculates the matrix H by using the following Expression (6).
The converting unit 234 then substitutes the matrix H calculated by one of the Expressions (3) to (6) into Expression (2) and uses Expression (2) to calculates the coordinates (x,y) on the image G1. The converting unit 234 acquires the pixel value of the coordinates (x,y) on the image G1 and stores the acquired value to the buffer as the pixel value of the coordinates (x′,y′) on the image G3 corresponding to the coordinates (x,y) on the image G1. Through the processing described above, the conversion by the converting unit 234 completes.
Referring back to
For example, the peak extracting unit 235 acquires the standardized image G3 and determines a size K of the filter F1. The size K of the filter F1 may properly be in the order of one-tenth of the standardized image G3, for example. The peak extracting unit 235 next determines the width B of the filter's target area. The width B of the filter's target area may properly be half of the size K of the filter F1, for example, and may only be required to perform filtering so as to at least include the intersection between a white area and a black area on the circumference of the marker M2.
The peak extracting unit 235 then defines an area 1, an area 2, an area 3 and an area 4 as filter's target areas. For example, in order to scan on the y′ axis and x′ axis with the width B, the peak extracting unit 235 defines the range of the areas 1 to 4 as follows.
area 1: A<x′<2A, A−B<y′<A+B
area 2: 0<x′<A, A−B<y′<A+B
area 3: A−B<x′<A+B, A<y′<2A
area 4: A−B<x′<A+B, 0<y′<A
The peak extracting unit 235 uses the filter F1 having the size K to scan the filter's target areas (area 1 to area 4) and acquires coordinates (x′,y′) of the point on the standardized image G3 having the peak response value of the filter in the areas.
Referring back to
On the basis of the position (coordinates) of the feature transmitted from the point extracting unit 230, the position/attitude estimating unit 240 calculates the position and attitude of the imaging apparatus 100 which has captured the image of the marker M2. The position/attitude estimating unit 240 may correspond to an electronic circuit or an integrated circuit, for example. The electronic circuit may be a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), for example. The integrated circuit may be an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array), for example.
With reference to
First of all, with reference to
The extracting unit 233 then extracts the positions of the four boundaries between the white areas and black areas extending radially from the center of the marker from the grayscale image generated in step S102 (step S104). The converting unit 234 uses the position of the center point acquired in step S102 and the positions of the four boundaries extracted in step S104 to perform standardization processing which corrects distortion of the grayscale image generated in step S103 (step S105). The standardization processing in step S105 will be described below with reference to
Next, the peak extracting unit 235 uses a filter through which the response value to be acquired increases as the possibility that an intersection between a white area and a black area exists increases to perform peak extraction processing which scans the standardized image acquired by the standardization processing in step S105 (step S106). The peak extraction processing in step S106 will be described with reference to
The inverter unit 236 then inverts the coordinates (x′i,y′i) of the point on the standardized image G3 with a peak response value of the filter acquired by the peak extraction processing in step S106 to the coordinates (xi,yi) of the point on the grayscale image G1 (step S107). The inverter unit 236 then determines the result of step S107 as the position of a feature of the marker image and transmits it to the position/attitude estimating unit 240 (step S108).
Next, with reference to
The converting unit 234 next divides the standardized image to four area and performs the processing in step S206 to step S218. In other words, the converting unit 234 repeatedly performs processing (step S208 to step S216) which calculates the matrix H for each of the four divided areas of the standardized image within the range of 0≦x′≦2A and 0≦y′≦2A. Steps S206, S207, S217, and S218 mean that the processing in steps S208 to S216 is repeated by incrementing the x′ value and y′ value by one within the range of 0≦x′≦2A and 0≦y′≦2A.
The converting unit 234 first determines whether the coordinates (x′,y′) on the standardized image are within the area of “A≦x′≦2A and A≦y′≦2A” or not (step S208). If it is determined that the coordinates (x′,y′) on the standardized image are within the area of “A≦x′≦2A and A≦y′≦2A” (Yes in step S208), the converting unit 234 calculates the matrix H by Expression (3) (step S209).
On the other hand, if it is determined that the coordinates (x′,y′) on the standardized image are not within the area of “A≦x′≦2A and A≦y′≦2A” (No in step S208), the converting unit 234 performs the next determination. That is, the converting unit 234 determines whether the coordinates (x′,y′) on the standardized image are within the area of “0≦x′<A and A≦y′≦2A” or not (step S210). If it is determined that the coordinates (x′,y′) on the standardized image are within the area of “0≦x′<A and A≦y′≦2A” (Yes in step S210), the converting unit 234 calculates the matrix H by Expression (4) above (step S211).
On the other hand, if it is determined the coordinates (x′,y′) on the standardized image are not within the area of “0≦x′<A and A≦y′≦2A” (No in step S210), the converting unit 234 performs the next determination. That is, the converting unit 234 determines whether the coordinates (x′,y′) on the standardized image are within the area of the “0≦x′<A and 0≦y′<A” or not (step S212). If it is determined that the coordinates (x′,y′) on the standardized image are within the area of “0≦x′<A and 0≦y′<A” (Yes in step S212), the converting unit 234 calculates the matrix H by Expression (5) above (step S213).
On the other hand, if it is determined that the coordinates (x′,y′) on the standardized image are not within the area of “0≦x′<A and 0≦y′<A” (No in step S212), the converting unit 234 performs the processing as follows. That is, the converting unit 234 determines that the coordinates (x′,y′) on the standardized image are within the area of “A≦x′≦2A and 0≦y′<A” and calculates the matrix H by Expression (6) above (step S214).
After the matrix H is calculated in one of steps S209, S211, S213, and S214, the converting unit 234 uses Expression (2) above to perform processing in the next step S215. That is, the converting unit 234 uses Expression (2) above to calculate the coordinates (x,y) on the grayscale image I(x,y) corresponding to the coordinates (x′,y′) on the standardized image (step S215). The converting unit 234 acquires the pixel value of the coordinates (x,y) calculated in step 215 and stores the acquired pixel value in association with the coordinates (x′,y′) on the standardized image to the buffer I′(x′,y′) (step S216).
After the processing in step S206 to step S218 completes, the converting unit 234 transmits the data stored in the buffer I′(x′,y′) to the peak extracting unit 235 (step S219). Through the processing described above, the conversion by the converting unit 234 completes.
Next, with reference to
Next, the peak extracting unit 235 performs processing in step S305 to step S309. In other words, the converting unit 234 repeatedly performs the processing in step S306 to step S308 on all of the area 1, area 2, area 3 and area 4 defined in step S304 until the processing completes. Steps S305 and S309 mean that the processing in step S306 to S308 is repeated on all of the area 1, area 2, area 3 and area 4.
The peak extracting unit 235 first applies the filter (size K) to the area i (i=one of 1, 2, 3, and 4) to acquire a response value F(x′,y′) of the filter (step S306). The peak extracting unit 235 acquires a maximum value Fmax among the response values F(x′,y′) of the filter acquired for the area i (i=1, for example) (step S307). The peak extracting unit 235 then acquires the coordinates (xi′,yi′) on the standardized image I′(x′,y′) corresponding to the maximum value Fmax acquired in step S307 (step S308).
After the processing in step S305 to S309 completes, the coordinates (xi′,yi′) corresponding to the Fmax of the area i (i=1, 2, 3, 4) to the inverter unit 236 (step S310). Through the processing described above, the peak extracting unit 235 completes the processing.
As described above, the image processing apparatus 200 performs standardization conversion to correct the distortion of a marker image on the basis of the position of the center point on the marker image and the position of the boundary on the marker image. The image processing apparatus 200 then uses a filter through which the response value to be acquired increases as the possibility that an intersection between a white area and a black area exists increases to scan the standardization-converted image and acquires the position on the standardized image with a peak response value of the filter. The image processing apparatus 200 then inverts the standardized image to acquire the position on the grayscale image corresponding to the position on the standardized image with a peak response value of the filter and determines the position as a feature. Therefore, according to the first embodiment, a plurality of features may be extracted from one marker in a stable manner.
According to the first embodiment, standardization conversion is performed on a grayscale image such that the angle formed by boundaries on the marker image can be 90 degrees. Therefore, according to the first embodiment, for example, the distortion of an image of a capture marker in which boundaries are orthogonal to each other may be corrected with high precision.
According to the first embodiment, a filter through which the response value to be acquired increases as the possibility that an intersection between a white area and a black area exists increases to scan a standardized image and acquire the position having a peak response value of the filter within the standardized image. Therefore, according to the first embodiment, the intersection between a white area and a black area which can be a feature on the marker image may be extracted with high precision.
According to the first embodiment, the thus acquired feature is used to calculate the position and/or attitude of the imaging apparatus 100. Therefore, the calibration processing may be performed in a stable manner even on an image of captured one marker.
Hereinafter, another embodiment of the image processing program and image processing apparatus disclosed in the subject application will be described.
(1) Configuration of Apparatus and Others
The configuration of function blocks of the image processing apparatus 200 illustrated in
(2) Image Processing Program
The processing to be executed by the image processing apparatus 200 according to the aforementioned first embodiment may be implemented by execution of a predetermined program by an electronic apparatus such as a microcomputer provided in an ECU (Electronic Control Unit) mounted in a vehicle, for example. Alternatively, the processing to be executed by the image processing apparatus 200 according to the aforementioned first embodiment may be implemented by execution of a predetermined program in an electronic apparatus such as a microprocessor provided in a robot, for example.
Hereinafter, with reference to
As illustrated in
As illustrated in
Instead of the CPU 310, for example, an electronic circuit such as an MPU (Micro Processing Unit) or an integrated circuit such as an ASIC (Application Specific Integrated Circuit) and an FPGA (Field Programmable Gate Array) may be used. Instead of the memory 360, a semiconductor memory device such as a flash memory may be used.
The hard disk device 350 stores an image processing program 351 which has the same functions as the functions of the image processing apparatus 200 and the image processing data 352. The image processing program 351 may be distributed and may be stored in a storage unit in another computer connected communicably over a network.
The CPU 310 may read the image processing program 351 from the hard disk device 350 and expands it to the memory 360 so that, as illustrated in
The image processing process 361 may include processing to be executed in the feature extracting unit 230 in the image processing apparatus 200 illustrated in
The image processing program 351 may not be prestored originally in the hard disk device 350. For example, programs may be stored in a “portable physical medium” such as a flexible disk (FD), a CD-ROM, a DVD disk, a magneto-optical disk, and an IC card the supporting drive of which can be connected to an ECU in which the electronic apparatus 300 is provided. The electronic apparatus 300 may read and execute a program from it.
The programs may be stored in “another computer (or server)” connected to an ECU in which the electronic apparatus 300 is provided through a public line, the Internet, a LAN, a WAN or the like. The electronic apparatus 300 may read and execute a program from it.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiments of the present inventions have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2010-254200 | Nov 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7145556 | Pettersson | Dec 2006 | B2 |
20010012394 | Yoshida | Aug 2001 | A1 |
Number | Date | Country |
---|---|---|
5-258146 | Oct 1993 | JP |
2010-87743 | Apr 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20120121127 A1 | May 2012 | US |