1. Technical Field
This disclosure generally relates to an information processing apparatus, and more particularly to an information processing apparatus including a Central Processing Unit (hereinafter referred to as a “CPU”).
2. Description of the Related Art
In an information processing apparatus such as a personal computer or a device controller integrated in, for example, a vending machine, as a method of cooling high heat generating parts including a CPU, a natural cooling method is widely adopted. In the natural cooling method, an opening is formed above high heat generating parts, and heat is dissipated outside the casing by rising air currents produced by the high heat generating parts.
However, when an information processing apparatus using the natural cooling method is installed at a site not under environmental control such as in the open air, air currents against the direction of the rising air currents may occur, thereby preventing the generated heat from dissipating from the casing, or foreign material may be introduced into the casing, thereby damaging the apparatus.
The present invention enables an information processing apparatus to be capable of improving cooling efficiency.
According to an aspect of this disclosure, there is provided an information processing apparatus including a central processing unit, a substrate on which the central processing unit is mounted, a first chassis accommodating the substrate; and a second chassis separately disposed on the one side of the first chassis at a predetermined distance.
According to the above aspect, the information processing apparatus includes the first chassis and the second chassis disposed separately by a prescribed distance from the first chassis, and a substrate on which a CPU is mounted is accommodated in the first chassis. Because of this feature, electronic parts accommodated in the second chassis can be isolated from the negative effect of heat from the CPU. Further, since the surface area of the entire information processing apparatus is increased, the cooling efficiency for the electronic parts in the first chassis and the second chassis can be increased.
Other aspects, features, and advantages will become more apparent from the following descriptions when read in conjunction with the accompanying drawings, in which:
In the following, an embodiment of the present invention is described with reference to
The base 12 may be formed by applying a sheet metal process to a steel sheet. The base 12 includes a base part 12a, a front wall part 12b, a rear wall part 12c, and fixing parts 12d and 12e. The base part 12a has substantially a square shape in plan view. The front wall part 12b and the rear wall part 12c are formed along a fringe on the −X side and +X side, respectively, of an upper surface of the base part 12a with the longitudinal directions of the front wall part 12b and the rear wall part 12c parallel to the Y axis direction. The two fixing parts 12d and 12e are formed along a fringe on the −Y side and the +Y side, respectively, of the upper surface of the base part 12a with their longitudinal directions parallel to the X axis direction.
The upper parts of the fixing parts 12d and 12e are folded inside in the horizontal direction so that the folded positions are slightly lower than the tops of the front wall part 12b and the rear wall part 12c.
An interface 12A is formed on the front wall part 12b. The interface 12A includes a power connector, a USB terminal, a mouse terminal, a serial connector, and a Local Area Network (LAN) adaptor so as to provide electrical connections between the information processing apparatus 100 and external peripherals.
The substrate 21 may be a general-purpose motherboard conforming to ATX standards used in personal computers. There are some electronic parts including high heat generating parts such as a CPU 31 and a chipset 32 mounted on the surface of the substrate 21.
Referring back to
There is a circular opening formed at the center of the +Y side of the connecting section 30e of the heat dissipating member 30. As shown in
As described above, the movable parts 13a of the connection part 13 are movable up and down. Because of this feature, as shown in
Further, as shown in
The cover 11 may be formed by applying a sheet metal process on an anodized aluminum sheet. As shown in
As shown in
Referring back to
As described above, the information processing apparatus 100 according to this embodiment of the present invention includes the first chassis 10A and the second chassis 10B so that the second chassis 10B is separated downward from the first chassis 10A by a prescribed distance. Further, the first chassis 10A accommodates the substrate 21 on which high heat generating parts such as the CPU 31 and the chipset 32 are mounted. On the other hand, the second chassis 10B mainly accommodates electronic parts having a low heating value and low heat resistance such as a hard disk and a PCI card 23.
Because of this configuration, the first chassis 10A and the second chassis 10B are mostly thermally isolated from each other. As a result, thermal influence on the electronic parts accommodated in the second chassis 10B can be reduced. Further, the electronic parts are separately accommodated in the first chassis 10A and the second chassis 10B, so that it is possible to increase the area of surfaces for dissipating the heat generated from the electronic parts accommodated in the first chassis 10A and the second chassis 10B, thereby improving the cooling efficiency of the information processing apparatus 100.
It should be noted that main parts where heat is generated in the information processing apparatus 100 are the CPU 31 and the chipset 32 mounted on the substrate 21. However, the heat generated from the CPU 31 and the chipset 32 is transferred to the first chassis 10A through the heat dissipating member 30 in contact with the CPU 31 and the chipset 32. As a result, the first chassis 10A works as a heat sink, and the heat generated from the CPU 31 and the chipset 32 is effectively dissipated to the outside, thereby improving the cooling efficiency of the information processing apparatus 100.
Further, it is not necessary to form an opening in the first chassis 10A and the second chassis 10B to improve the cooling efficiency of the apparatus 100, thereby providing a dust preventing structure. Because of this structure, the information processing apparatus 100 can maintain stable operations regardless of the environment in which the apparatus is installed.
Still further, in the information processing apparatus 100 according to this embodiment of the present invention, the inner spaces of the first chassis 10A and the second chassis 10B are in communication with each other through a connecting member 16, and the electronic parts such as a hard disk and the PCI card 23 accommodated in the second chassis 10B are electrically connected with the substrate 21 accommodated in the first chassis 10A via the connecting substrate 22 disposed inside of the connecting member 16. Because of this structure, the airtightness of the inner spaces of the first chassis 10A and the second chassis 10B is improved, thereby improving the reliability of the apparatus 100 in a severe operating environment.
Still further, in the information processing apparatus 100 according to this embodiment of the present invention, the bases 12 of the first chassis 10A and the second chassis 10B are formed by applying a sheet metal process to a steel sheet having low heat conductivity. On the other hand, the covers 11 of the first chassis 10A and the second chassis 10B are formed by applying a sheet metal process to an aluminum sheet having high heat conductivity. Because of this arrangement, it becomes possible to reduce the heat dissipation in the space between the first and the second chassis and it becomes possible to increase the heat dissipation through the cover sides of the first chassis 10A and the second chassis 10B. As a result, it is possible to improve the heat insulation effect between the first chassis 10A and the second chassis 10B.
Still further, when a metal glossy surface is applied to the surface of the bases 12 of the first chassis 10A and the second chassis 10B, it is possible to further reduce the heat dissipation in the space between the first chassis and the second chassis and further increase the heat dissipation through the cover sides of the first chassis 10A and the second 10B.
Still further, in the information processing apparatus 100 according to this embodiment of the present invention, the high heat generating parts are accommodated in the first chassis 10A, and the heat dissipating through the cover 11 of the first chassis 10A is greater than that of any other cover or base. In view of this point, for example, as shown in FIG. 7, a cooling fan 50 is mounted on an outer wall surface of the cover 11 of the first chassis 10A so as to provide cool air to the cover 11 by the cooling fan 50. As a result, the cooling efficiency of the first chassis 10A can be further improved.
Still further, as shown in
In this case, preferably, the cooling fins are formed on the first chassis 10A, which dissipates more heat. Further, it is preferable that the arranging direction of the cooling fins be generally perpendicular to the direction of cooling air flow. For example, though it is not shown in the figures, when both the first chassis 10A and the second chassis 10B are upright side by side, namely when the second chassis 10B is horizontally separated from the first chassis 10A by some distance, it is preferable that the arranging direction of the cooling fins be parallel to the horizontal direction so as not to block rising air between the first chassis 10A and the second chassis 10B. Still further, for example, as shown in
Still further, according to this embodiment of the present invention, the movable parts 13a of the connection part 13 are movable up and down. Because of this feature, as shown in
Further, as shown in
It should be noted that when the difference between the thicknesses of the CPU 31 and the chipset 32 is negligible, the elastic member 40 may not be supplied between the chipset 32 and the heat dissipating member 30. Further, the connection part 13 may be provided not only on the fixing part 12e of the base 12 but also on the fixing part 12d of the base 12.
Still further, in the information processing apparatus 100 according to this embodiment of the present invention 100, the second chassis 10B accommodates electronic parts such as hard disk drive and the PCI card 23 that need to be periodically exchanged or maintained (hereinafter referred to as “exchange parts”). Because of this structure, only exchange parts can be exposed without exposing precision parts such as the substrate 21, thereby preventing the precision parts such as the substrate 21 from being damaged and preventing the parts such as a screw from being introduced into the inner space of the first chassis 10A.
Still further, when the heat dissipation from the CPU 31 is low, the heat dissipating member 30 may not be used. On the other hand, when heat dissipation from the CPU 31 is high, the size of the heat dissipating member 30 may be enlarged. Still further, another cooling mechanism as well as the heat dissipating member 30 may be jointly used.
Still further, the electronic parts accommodated in the information processing apparatus 100 are not limited to the parts described above in this embodiment of the present invention. For example, a CF card or a SD memory card or any other electronic parts may be accommodated in the chassis 10B. The important point is that high heat generating parts and low heat generating parts, or high heat resistance parts and low heat resistance value are separately accommodated in the first chassis 10A and the second chassis 10B.
Further, in the above description, the information processing apparatus 100 is horizontally installed. However, the embodiment of the present invention is not limited to this configuration. For example, the information processing apparatus 100 may be vertically installed (the chassis 10A and the chassis 10B are upright side by side).
As described above, the information processing apparatus according to an embodiment of the present invention is applicable to, for example, a controller that can be integrated into an external system.
The present invention is not limited to the above embodiments, and variations and modifications may be made without departing from the scope of the present invention.
The present application is based on and claims the benefit of priority of Japanese Patent Application No. 2007-128799, filed on May 15, 2007, the entire contents of which are hereby incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2007-128799 | May 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5949644 | Park | Sep 1999 | A |
6320748 | Roden et al. | Nov 2001 | B1 |
6365964 | Koors et al. | Apr 2002 | B1 |
6597569 | Unrein | Jul 2003 | B1 |
7180747 | Lee | Feb 2007 | B2 |
20050078448 | Kunz | Apr 2005 | A1 |
20060219852 | Kawai et al. | Oct 2006 | A1 |
20060256515 | Watanabe | Nov 2006 | A1 |
20070167055 | Watanabe | Jul 2007 | A1 |
20070285887 | Chang | Dec 2007 | A1 |
20070291450 | Watanabe | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
2006-301816 | Nov 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20080285224 A1 | Nov 2008 | US |