This application claims priority to, and the benefit of, Taiwanese Patent Application No. 095108401, filed on Mar. 13, 2006, and Taiwanese Patent Application No. 096108649, filed on Mar. 13, 2007, both of which are incorporated by reference in their entireties herein.
1. Field of the Invention
The invention relates to an image processing chip and related method thereof, and more particularly, to an image processing chip capable of separating video signals and synchronization signals and the related method thereof.
2. Description of the Prior Art
Generally, a monitor can process and display a received video signal according to a horizontal synchronization signal and a vertical synchronization signal. In certain transmission interfaces with specific standards, the horizontal synchronization signal and the vertical synchronization signal are firstly integrated into a composite sync signal, and the composite sync signal is then attached to an image signal. For instant, a G signal of the RGB signal is associated with a green color, or the Y signal of the YPbPr signal is associated with a luminance. The above-mentioned green signal with the synchronization signal is also referred to as the SOG signal (i.e., sync on G), and the luminance signal with the composite synchronization signal is also referred to as the SOY signal (i.e., sync on Y). In order to illustrate these concepts conveniently, the following video signals, which include the composite synchronization signal, are referred to as the composite signal.
Please refer to
The above-mentioned method of utilizing two pins to receive the same composite signal is quite uneconomical. Moreover, when the image processing chip 10 is designed to receive the video signals with a plurality of sources, the amount of pins required for the task will obviously increase. Therefore, the chip size and the cost to manufacture the chip will significantly increase.
It is therefore one of the objectives of the claimed invention to provide an image processing chip and related method for reducing the number of the pins required to achieve said task.
An exemplary embodiment of an image processing chip is disclosed. The image processing chip includes a pin for receiving a composite signal; a synchronization signal detecting circuit, for detecting a synchronization signal from the composite signal; a clamping circuit, for adjusting a voltage level of the composite signal according to the synchronization signal; and an analog to digital converter, for generating a video signal by sampling the composite signal.
Moreover, an exemplary embodiment of a video processing method applied in an image processing chip is disclosed. The image processing chip includes a pin for receiving a composite signal, the method includes detecting a synchronization signal from the composite signal; adjusting a voltage level of the composite signal according to the synchronization signal; and generating a video signal by sampling the composite signal.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
Please refer to
Please note that, the operation of the clamping circuit 106 in the present invention is not limited in above-mentioned embodiments. In another embodiment of the present invention, the clamping circuit 106 also can pull the block 204 or 208 to 500 mV according to the synchronization signal Sync. In this case, the ADC 110 can directly determine the reference voltage level as 500 mV without utilizing the voltage detecting unit 108.
In this embodiment, the synchronization signal detecting circuit 104 further includes a DC restore circuit 112, a comparator 114, and a synchronization signal processing unit 116. When the image processing chip 100 receives the composite signal 200 from the pin 102, the DC restore circuit 112 will pull the lowest voltage level of the composite signal 200 to 200 mV. Thus, the voltage level of the block 202 will shift to 200 mV; the voltage level of the block 204 and 208 will shift to 500 mV; and the other block of the composite signal 200 will also shift. Next, the comparator 114 will compare the composite signal 200 with a threshold value (e.g., 350 mV) and send a comparative signal Sc to represent the comparing result of the composite signal 200 and the threshold value. In this embodiment, when the signal value corresponding to the composite signal 200 is lower than the threshold value, the signal value of the comparative signal Sc becomes −1 to indicate that the synchronization signal was detected; otherwise, the signal value of the comparative signal Sc becomes 0 to indicate that the synchronization signal was not detected. However, the corresponding relationship between the signal value of the comparative signal Sc and competitive result is not limited to the said descriptions in the above embodiments. Next, the synchronization signal processing unit 116 can determine if the composite signal 200 includes the synchronization signal Sync according to the comparative signal Sc. Please note that, in this embodiment, if the synchronization signal processing unit 116 detects that the signal value of the comparative signal Sc only drops to −1 in a very short time, it indicates that the composite signal 200 might be affected by the impulse noise. Therefore, the synchronization signal processing unit 116 will not determine that the synchronization signal Sync is detected. However, when the signal value of the comparative signal Sc maintains −1 for a certain period of time, the synchronization signal processing unit 116 will determine that the composite signal 200 is attached as a synchronization signal Sync, and will therefore send the synchronization signal Sync to the clamping circuit 106 and the voltage detecting unit 108.
It should be noted that the function of the DC restore circuit 112 and the clamping circuit 106 are similar to each other. The difference is that the DC restore circuit 112 starts to operate right after the power is being supplied, but the clamping circuit 106 starts to operate only after the synchronization signal is being triggered. After the synchronization signal detecting circuit 104 generates the synchronization signal, the clamping circuit 106 will be enabled to adjust the voltage level of the composite signal. Thus, the DC restore circuit 112 can stop operating. Moreover, the DC recovery circuit 112 and the clamping circuit 106 can adjust the composite signal to other voltage levels, and determine the threshold value of the comparator 114 according to the selected voltage level, wherein the threshold value is required to be set between the voltage level of the block 202 and 204.
In contrast to the related art, the image processing chip of the present invention relates to integrate the circuit utilized for latching the synchronization signal and video signal. Thus, the image processing chip of the present invention only requires a single pin to process the composite signal, such as the SOG signal and the SOY signal, to achieve the purpose of saving the number of the pins, and reducing the manufacturing cost of the chip. Moreover, for the DC restore circuit 112, utilizing the clamping circuit 106 can effectively improve the shortage that the content of image affects the DC level.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
95108401 A | Mar 2006 | TW | national |
96108649 A | Mar 2007 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
3446914 | Hodge | May 1969 | A |
3792195 | Wilson et al. | Feb 1974 | A |
4095259 | Sawagata | Jun 1978 | A |
4385319 | Hasegawa | May 1983 | A |
4408226 | Dean et al. | Oct 1983 | A |
4580166 | Okano | Apr 1986 | A |
4853782 | Asano et al. | Aug 1989 | A |
5231507 | Sakata et al. | Jul 1993 | A |
5351129 | Lai | Sep 1994 | A |
5712948 | Yamada et al. | Jan 1998 | A |
5721559 | Nagakubo | Feb 1998 | A |
6104440 | Yata | Aug 2000 | A |
6219106 | Sato | Apr 2001 | B1 |
6577348 | Park | Jun 2003 | B1 |
6628222 | Go | Sep 2003 | B2 |
6757484 | Nitta et al. | Jun 2004 | B2 |
7095452 | Tachibana | Aug 2006 | B2 |
20020129380 | Orii | Sep 2002 | A1 |
20020140856 | Inoue | Oct 2002 | A1 |
20020190882 | Go | Dec 2002 | A1 |
20030174249 | Grillo | Sep 2003 | A1 |
20040021796 | Fang et al. | Feb 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070211173 A1 | Sep 2007 | US |