The present invention relates to image processing apparatuses and methods, display apparatuses and methods, and electronic apparatuses, i.e., to an image processing apparatus and method, a display apparatus and method, and an electronic apparatus with which driving of display elements can be controlled appropriately.
Video signals acquired by imaging by an imager 11 implemented by a lens, a CCD, and so forth are input to a video processor 12. The video processor 12 executes predetermined camera signal processing to convert the input video signals into digital signals, and supplies the digital signals to an image processor 13.
The image processor 13 stores the input digital video signals in a video memory 14, and reads the digital video signals and executes predetermined signal processing as needed, thereby generating video signals having horizontal and vertical blanking periods. The image processor 13 outputs the converted video signals to a display controller 15. Blanking periods serve to prevent images from being displayed in retrace periods, and blanking signals are included in the periods.
Furthermore, the image processor 13 compresses the input digital video signals, and records the compressed digital video signals, for example, on a recording medium 19 that is detachable from the digital video camera 1.
The display controller 15 is a driving apparatus for a display 16. The display controller 15 receives driver control signals from a controller 17 by serial communications, and displays on the display 16 an image corresponding to the video signals input from the image processor 13 based on panel setting data represented by the driver control signals (converts the input image signals into signals in a format compatible with display elements of the display 16 based on the panel setting data).
For example, based on the panel setting data represented by the driver control signals input from the controller 17, the display controller 15 sets and updates setting values of panel setting parameters (e.g., RGB, AMP, amplitude of a signal of the potential of a common electrode of liquid crystal, DC component of the signal of the potential of the common electrode of liquid crystal, contrast, inversion of image, white balance, and ON/OFF of backlight), and controls image display on the display 16 based on the setting values.
The display 16 is implemented, for example, by a liquid crystal panel. The display 16 is driven by the display controller 15 so that a certain image is displayed.
The controller 17 controls the image processor 13, an input controller 18, and the display controller 15. More specifically, the controller 17 outputs panel setting data to the display controller 15 as driver control signals by serial communications, the panel setting data serving for setting of panel setting parameters according to operations of various dials, buttons, or the like that are not shown.
The input controller 18 notifies the controller 17 of operations of the various dials, buttons, or the like that are not shown.
The driver control signals include a clock SCK, data SI (panel setting data), and a clock CS. Thus, between the controller 17 and the display controller 15, three lines for serial communications are provided in total. The data SI is read at each rise of the clock SCK. The reading operation is started from each fall of the clock CS.
The controller 17 and the display controller 15 are usually implemented by separate devices, and are provided at remote positions. Thus, when lines for serial communications are provided therebetween, reduction of the size of apparatus is inhibited, and incorrect operations could occur due to interference between lines. Thus, it has been proposed to reduce the number of serial communication lines themselves, as described in Patent Document 1.
[Patent Document 1 Japanese Unexamined Patent Application Publication No. 2001-69583
However, even when it is attempted to reduce the number of serial communication lines themselves, driver control signals themselves are needed, so that serial communication lines are needed between the controller 17 and the display controller 15. Thus, the problem described above has not been solved.
The present invention has been made in view of the situation described above, and it allows the display controller 15 to be controlled via the image processor 13.
An image processing apparatus according to the present invention includes superposing means for superposing control data for controlling driving means on a predetermined segment of an image signal; and outputting means for outputting the image signal with the control data superposed thereon to the driving means.
The predetermined segment may be a segment in which vertical blanking data of the image signal is included.
In the predetermined segment, the control data may be superposed so that the control data is provided for each parameter of the display apparatus that is to be controlled by the driving means and so that the control data for each parameter is provided repeatedly a plurality of times.
An image processing method according to the present invention includes a superposing step of superposing control data for controlling driving means of a display apparatus on a predetermined segment of an image signal that is input to the driving means; and a sending step of sending the image signal with the control data superposed thereon to the driving means.
In the image processing apparatus and method according to the present invention, control data for controlling driving means of a display apparatus is superposed on the predetermined segment of an image signal input to the driving means, and the image signal with the control signal superposed thereon is sent to the driving means.
A display apparatus according to the present invention includes a display configured to display an image; driving means for driving the display; and extracting means for extracting control data for controlling the display, the control data being superposed on a predetermined segment of an input image signal; wherein the driving means drives the display based on the control data extracted by the extracting means so that an image corresponding to the image signal is displayed.
The predetermined segment may be a segment in which vertical blanking data of the image signal is included.
In the predetermined segment, the control data may be superposed so that the control data is provided for each parameter of the display that is to be controlled by the driving means and so that the control data for each parameter is provided repeatedly a plurality of times.
The extracting means may integrate the control data for each parameter, the control data being provided repeatedly a plurality of times, and use data according to a result of the integration as the control data.
A display method according to the present invention includes an extracting step of extracting control data for controlling driving means of a display apparatus configured to display an image, the control data being superposed on a predetermined segment of an image signal that is sent to the driving means; and a driving step of driving the display apparatus based on the control data extracted by processing in the extracting step.
In the display apparatus and method according to the present invention, control data for controlling driving means of a display apparatus configured to display an image, superposed on a predetermined segment of an image signal that is sent to the driving means, is extracted, and the display apparatus is driven based on the control data extracted.
An electronic apparatus according to the present invention includes an image processor configured to execute predetermined signal processing on an input signal and to output an image signal; a display controller configured to receive input of the image signal; and a display driven by input of a driving signal output from the display controller; wherein the image processor superposes control data for controlling the display controller on a segment in which vertical blanking data of the image signal is included, and wherein the display controller extracts the control data superposed on the image signal, and outputs a driving signal for driving the display based on the control data extracted.
In the electronic apparatus according to the present invention, including an image processor configured to execute predetermined signal processing on an input signal and to output an image signal; a display controller configured to receive input of the image signal; and a display driven by input of a driving signal output from the display controller, the image processor superposes control data for controlling the display controller on a segment in which vertical blanking data of the image signal is included, and the display controller extracts the control data superposed on the image signal, and outputs a driving signal for driving the display based on the control data extracted.
According to the present invention, panel setting data can be superposed on a predetermined segment of a video signal. For example, problems relating to serial communication lines for sending driver control signals can be overcome.
11: imager; 12: video-signal processor; 14: memory; 16: display; 18: input controller; 19: recording medium; 61: image processor; 62: display controller; 63: controller; 71: input unit; 72: decoder; 73: register set; 74: selector; 75: clock generator; 76: timing generator; 77: counter; 78: selector; 79: switch; 80: D-FF; 81: register; 91: decoder; 92: driver; 101: latch-pulse generator; 102: serial/parallel converters; 161: latch-pulse generator; 162: integration/latch units; 163: comparators; 202: adjusting jig
Now, embodiments of the present invention will be described. The correspondence between the inventions described in this specification and embodiments is, for example, as follows. This description is intended to assure that embodiments supporting the inventions described in this specification are described in this specification. Thus, even if an embodiment described in the embodiments of the present invention is not described as relating to an invention, that does not necessarily mean that the embodiment does not relate to that invention. Conversely, even if an embodiment is described herein as relating to an invention, that does not necessarily mean that the embodiment does not relate to other inventions.
Furthermore, this description should not be construed as covering all the inventions described in this specification. That is, the description does not deny the existence of inventions that are described in this specification but not claimed in this application, i.e., the existence of inventions that in future may be claimed by a divisional application or that may additionally appear through amendments.
An image forming apparatus according to the present invention includes superposing means (e.g., a register set 73 to switch 79 in
The predetermined segment may be a segment including vertical blanking data of the image signal (e.g., a segment corresponding to a blanking period in
In the predetermined segment, the control data may be superposed so that the control data is provided for each parameter of the display apparatus that is to be controlled by the driving means and so that the control data for each parameter is provided repeatedly a plurality of times (e.g., as shown in
A display apparatus according to the present invention includes a display (e.g., a display 16 shown in
The extracting means (e.g., a decoder 151 shown in
An electronic apparatus according to the present invention includes an image processor (an image processor 61 shown in
The controller 63 is a microcomputer including what are called a CPU, a ROM, and a RAM. The controller 63 controls the input controller 18 and the image processor 61, and it supplies driver control signals (clock SCK, data SI, and clock CS) to the image processor 61 by serial communications.
The image processor 61 stores digital video signals input from the video-signal processor 12 in the video memory 14, and it executes predetermined signal processing while reading the digital video signals as needed, thereby generating video signals including horizontal and vertical blanking periods.
At this time, the image processor 61 superposes panel setting data in accordance with driver control signals from the controller 63 on a predetermined segment of the video signals generated. For example, the panel setting data is placed in a segment including vertical blanking data.
The video signals with the panel setting data superposed thereon is supplied to the display controller 62.
More specifically, in the digital video camera 51, three serial communication lines are provided between the controller 63 and the image processor 61, not between the controller 63 and the display controller 62. The controller 63 and the image processor 61 are usually implemented within a single device, and the distance therebetween is shorter than the distance between the controller 63 and the display controller 62. Thus, compared with the case where serial communication lines are provided between the controller 63 and the display controller 62, the serial communication lines can be shortened. This serves to reduce the size of the apparatus, and to overcome problems due to interference.
The image processor 61 captures individual panel setting data of data SI at each rise of the clock SCK of the driver control signals. The reading operation is started at a fall of the clock CS.
The display controller 62 extracts panel setting data superposed on the video signals supplied from the image processor 61, and displays an image corresponding to the video signals on the display 16 based on setting values of panel setting parameters corresponding to the panel setting data.
An input unit 71 inputs a video signal (8 bits) supplied from the video-signal processor 12 to the image processor 61, and outputs the video signal to a switch 79.
A decoder 72 receives input of the driver control signals (clock SCK, clock CK, and data SI) from the controller 63. The decoder 72 decodes the data SI as needed, and rewrites panel setting data stored in registers 81 of the register set 73 in accordance with the result.
Of the nine registers 81-1 to 81-9 of the register set 73, 00h is stored in the register 81-1, and panel setting data (8 bits) of the panel setting parameters is set in the other eight registers 81-2 to 81-9.
A selector 74 sequentially selects the registers 81 of the register set 73 under the control of the selector controller 78, and supplies 00h or the panel setting data stored in the selected register 81 to the switch 79.
A clock generator generates an operation clock, and supplies the operation clock to a timing generator 76, a counter 77, a D flip-flop (hereinafter referred to as a D-FF) 80, and the display controller 62.
The timing generator 76 generates a horizontal synchronization signal shown in part A of
Furthermore, the timing generator 76 outputs a reset signal to the counter 77 at the timing of a fall the vertical synchronization signal (part B of
Then, the counter 77 resets its count value and starts counting, and the switch 79 selects an output of the selector 74.
Furthermore, at the timing of the end of the vertical blanking period after a predetermined period elapses from the fall of the vertical synchronization signal, the timing generator 76 pulls the switching signal to the switch 79 to L. Then, the switch 79 switches input to the output of the input unit 71.
The counter 77 resets its count value in response to the reset signal from the timing generator 76, counts the clock from the clock generator 75, and supplies the resulting count value to the selector controller 78.
The selector controller 78 controls the selector 74 so that the selector 74 sequentially selects the registers 81-1 to 81-9 of the register set 73 each time the counter 77 counts 8 clocks and so that the selector selects the register 81-1 again after selecting the register 81-9 and maintains the selection.
The count value from the counter 77 is 8 bits in this example. Since the selector controller 78 requires count value for 8 clocks (00001000), the low-order three bits b0 to b2 of the 8 bits are disregarded, and only the fourth bit b3 is checked.
The switch 79 switches its input to the output of the input unit 71 or the output of the selector 74 according to the switching signal from the timing generator 76.
A D-FF 80 supplies data from the switch 79 to the display controller 62 in synchronization with the clock from the clock generator 75.
The image processor 61 is configured as described above. That is, the timing generator 76 supplies a switching signal at H to the switch 79 in the vertical blanking period. Thus, in the vertical blanking period, as shown in part E of
From the registers 81, data (panel setting data) is read on each clock, and the selector 74 selects data from the same register 81 for a period of 8 clocks. Thus, the selector 74 repeatedly outputs the same data eight times, as shown in
After the end of the vertical blanking period, the timing generator 76 sends a switching signal at L to the switch 79. Thus, as shown in part E of
In this manner, driver control signals are superposed on video signals.
Next, the construction of the display controller 62 will be described with reference to
A decoder 91 supplies a video signal input from the image processor 61 to a driver 92. Furthermore, the decoder 91 extracts panel setting data superposed on the video signal, and supplies the panel setting data to the driver 92. In this example, panel setting data is included in each vertical blanking period, so that panel setting data is supplied to the driver 92 on a field-by-field basis.
Based on the panel setting data supplied from the decoder 91, the driver 92 sets and updates setting values of the relevant panel setting parameters in a memory 92A. Based on the setting values of the panel setting parameters set in the memory 92A, the driver 92 displays an image corresponding to the video signal on the display 16.
A latch-pulse generator 101 of the decoder 91 receives a vertical synchronization signal and a clock supplied from the image processor 61.
The latch-pulse generator and serial/parallel converters 102-1 to 102-8 (hereinafter simply referred to as serial/parallel converters 102 where individual distinction is not needed, which also applies to other cases) will be described with reference to a timing chart of signals input and output by the latch-pulse generator 101 and the serial/parallel converters 102, shown in
The latch-pulse generator 101 resets an internal counter at the timing when a vertical synchronization signal (part A of
The serial/parallel converters 102-1 to 102-8 receive input of latch pulses L from the latch-pulse generator 101 and the video signal (8 bits) supplied from the image processor 61.
Upon input of the latch pulses L from the latch-pulse generator 101, the serial/parallel converters 102 latch the data (8 bits) from the image processor 61 input at that timing. Then, the serial/parallel converters 102 execute serial/parallel conversion on the data, and supply specific bits of the resulting 1 byte to the driver 92.
For example, as shown in part D of
Furthermore, as shown in part F of
Next, the driver 92 will be described. As shown in part E of
Part E of
As described above, panel setting data is supplied to the display controller 62 via the image processor 61 so that the display controller 62 can extract the panel setting data appropriately. Thus, serial communication lines can be provided between the controller 63 and the image processor 61. Accordingly, compared with the case where serial communication lines are provided between the controller 63 and the display controller 62, the size of apparatus can be reduced, and interference between lines can be prevented.
A decoder 151 supplies video signals input from the image processor 61 to the driver 92. Furthermore, the decoder 151 extracts panel setting data superposed on the video signals, and supplies the panel setting data to the driver 92. Also in this example, panel setting data is included in each vertical blanking period, so that panel setting data is supplied to the driver 92 on a field-by-field basis.
Based on the panel setting data supplied from the decoder 151, the driver 92 sets and updates the setting value of the relevant panel setting parameter in the memory 92A as needed, and displays an image corresponding to the video signal on the display 16 based on the panel setting value.
A latch-pulse generator 161 of the decoder 151 receives the vertical synchronization signal and the clock supplied from the image processor 61.
The latch-pulse generator 161 and integration/latch units 162-1 to 162-8 (the integration/latch units 162-3 to 162-8 are not shown) will be described with reference to a timing chart of signals input and output by the latch-pulse generator 161 and the integration/latch units 162, shown in
The latch-pulse generator 161 resets an internal counter at a timing when a vertical synchronization signal (part A of
The integration/latch units 162 receive latch pulses L (terminals latch) from the latch-pulse generator 161, signals supplied from the image processor 61 (8 bits) (terminals IN), and clocks (terminals CK). The integration/latch units 162-2 to 162-8 also receive input of latch pulses L (terminals CLR) of previous integration/latch units 162-1 to 162-7, respectively.
For example, the integration/latch unit 162-1 clears an internal integrator at a timing when the vertical synchronization signal (part A of
The integration/latch unit 162-2 clears an internal integrator upon input of the latch pulse L1 (part D of
The integration/latch units 162-3 to 162-8 that are not shown, upon input of the latch pulses L2 (part F of
The comparators 163 compares the count values of the respective bits from the integration/latch units 162 with a predetermined threshold, and outputs 1 when the count value is greater than or equal to the threshold while outputting 0 when the count value is less than the threshold.
For example, the comparator 163-1 compares the count values of the respective 8 bits from the integration/latch unit 162-1 with a threshold (e.g., 4) to generate data (8 bits) composed of bits according to the results of comparison, and outputs the data to the driver 92 as panel setting data.
As described above, a plurality of pieces of panel setting data is integrated, and data in accordance with the results of integration is used as panel setting data. Thus, for example, when panel setting data shown in
For example, the second bit (DATA[2]) is supposed to be 1 (
The sixth bit (DATA[6]) is supposed to be 0 (
The initial setting of the display 16 can be made at the time of manufacturing using an adjusting jig 201 connected to the controller 63 of the video camera 51, as shown in
Although the above description has been given in the context of a digital video camera as an example, the present invention can be applied to electronic apparatuses (e.g., cellular phones and television receivers) that are capable of displaying images.
Number | Date | Country | Kind |
---|---|---|---|
2004-070480 | Mar 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP05/01390 | 2/1/2005 | WO | 11/14/2005 |