The present invention relates to an image processing device, an image processing system, an image processing method, and an image processing program. In particular, the present invention relates to an image processing device, an image processing system, an image processing method, and image processing program, which can improve the quality of moving images.
An example of traditional methods for improving image quality is described in Non-Patent Document 1. The image quality improving method restores a higher resolution image on a subject from a plurality of input images in which the same subject is taken so that positions of the subject are shifted by sub-pixel unit.
Assume that there are N input images (gn) (0≦n≦N−1). In the method described in Non-Patent Document 1, each input image (gn) is regarded to be image taken by going through the image taking process expressed by the following equation.
gn(x,y)=s↓(h(u,v)*f−(Tn(x,y)))+ηn(x,y) (1)
Here, f− is a high resolution image of a subject, Tn is a geometric conversion for nth input image, h is a point spread function which is invariant and linear with respect to any coordinate (x, y) on the image, s↓ is an operator for down-sampling the image, and ηn is noise expressed by a normal distribution with mean zero. The above equation can be expressed in matrix operation form as the equation (2).
[Equation 1]
gn=Mn
The f− in the equation (2) is a lexicographic ordering of a pixel value f−(x, y). The same goes for the gn and ηn in the equation (2). Also, Mn in the equation (2) is a single matrix into which Tn, h, and s↓ in the equation (1), each of which is linear transformation, are combined.
The image taking process of all the input images can be put into a single equation to obtain the equation (3).
At this equation, the maximum a posterior estimate (fmap) of the high resolution image can be expressed as the equation (4).
[Equation 3]
fmap=arg
In this regard, favg is an average image for which the positions in each input image are adjusted to be aligned.
In order to solve this problem, a numerical calculation technique such as a conjugate gradient method or the like is generally used. That is, starting the calculation from a certain initial value, an optimum solution can be obtained by converging solutions with performing an iterative calculation.
Non-Patent Document 1: D. Capel “Image Mosaicing and Super-Resolution”, Springer Verlag, January, 2004, pp. 86-147
Although the above method is intended to generate a high resolution still image as an output by inputting a plurality of low resolution images, the method is also applicable to a system for outputting a high resolution moving image by inputting a low resolution moving image. Upon application of the method to such a system, for each frame of the low resolution moving image, continuous frames located in a temporal neighborhood of the frame are inputted to generate a high resolution still image of the same frame by the above processing. By continuously playing back the image generated for each frame, a high resolution moving image can be generated.
However, it is difficult to generate the high resolution moving image in real time with the above method. The reason is that, since the high resolution moving image generation is performed by an iterative calculation in the above method, the amount of throughput required for obtaining a high resolution image for each frame becomes high. Generally, dedicated hardware is essential for real-time processing of NTSC video signals.
It is therefore object of the present invention to provide an image processing device, an image processing system, an image processing method, and an image processing program, which can provide higher resolution moving images in real time.
The image processing device and image processing system according to the present invention includes a conversion parameter calculation unit, an initial image generation unit, a high resolution image generation unit, and an input image and conversion parameter storage unit. The image processing device and image processing system can achieve the object of the present invention by converting the high resolution image generated at the previous frame in accordance with a current frame based on the conversion parameter for the current frame with respect to the previous frame, and, by using the converted high resolution image as an initial value, performing the high resolution image generation processing of the current frame.
According to the present invention, the number of iterative calculations at high resolution image generation processing can be reduced. The reason is that, since the high resolution image of the previous frame can be considered to be similar to the high resolution image of the current frame desired to be generated, the previous frame is utilized as an initial value of the high resolution image generation processing at the current frame. With this, the iterative calculation can be started from the initial value that is close to the optimal solution. Therefore, the amount of throughput required for obtaining high resolution for each frame is reduced, and thus a moving image with higher resolution can be realized in real time without equipping the dedicated hardware or the like.
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
(Exemplary Embodiment 1)
In
The computer (central processing device; processor; data processing device) 100 includes a conversion parameter calculation unit 101, an initial image generation unit 102, and a high resolution image generation unit 103.
The conversion parameter calculation unit 101 calculates the conversion parameter that indicates the geometric transformation of a current frame with respect to the previous frame. The input image and conversion parameter storage unit 110 stores the current frame image and the conversion parameter calculated by the conversion parameter calculation unit 101. The initial image generation unit 102 transforms the high resolution image generated at the previous frame into an image that geometrically conforms to the current frame using the conversion parameter.
The high resolution image generation unit 103 generates the high resolution image of the current frame by the method disclosed in, for example, Non-Patent Document 1, using the continuous frames located in the temporal neighborhood of the current frame and their conversion parameters stored in the input image and conversion parameter storage unit 110, with the transformed image generated in the initial image generation unit 102 as an initial value. The generated high resolution image is delivered to the initial image generation unit 102 to be used for the high resolution image generation of the next frame.
Next, the overall operation of this exemplary embodiment will be described in detail with reference to
First, a current frame image is inputted into the computer 100 (step A1). Then, the conversion parameter indicating the transformation of the current frame image with respect to the previous frame image is calculated in the conversion parameter calculation unit 101 (step A2). The input image of the current frame and the conversion parameter calculated by the conversion parameter calculation unit 101 are then stored in the input image and conversion parameter storage unit 110.
Here, since the storage capacity of the input image and conversion parameter storage unit 110 is limited, input images and their conversion parameters stored before certain number of frames are deleted from the storage area (step A3).
Next, the initial image generation unit 102 generates the high resolution image that geometrically conforms to the current frame by transforming the high resolution image generated at the previous frame by the high resolution image generation unit 103 using the conversion parameter for the current frame calculated by the conversion parameter calculation unit 101 (step A4). Here, the “geometrically conform” refers to the state in which the position, size, and posture of the subject in the high resolution image conform to those in the current frame.
The high resolution image generation unit 103 reads in the continuous frames located in the temporal neighborhood of the current frame and their conversion parameters stored in the input image and conversion parameter storage unit 110 (step A5). Here, the number of frames to be read in is the number of images necessary for the next high quality image generation processing (for example, ten), and is set by a user in advance.
The high resolution image generation unit 103 then performs high resolution image generation processing, with the image generated in the initial image generation unit 102 as an initial value, using the input images (continuous frames) and the conversion parameters read in at step A5 so as to output the generated image (step A6). Finally, the high resolution image generated in step A6 is delivered to the initial image generation unit 102 (step A7).
According to this exemplary embodiment, the image processing device transforms the high resolution image of the previous frame which can be considered to be similar to the high resolution image of the current frame desired to be generated into the image that geometrically conforms to the current frame, and utilizes the transformed image as an initial value of the high resolution image generation processing at the current frame. Accordingly, it becomes possible to start an iterative calculation based on the initial value that is close to the optimal solution, and thus the number of iterative calculations for each frame can be reduced; namely, the processing can be speeded up.
(Exemplary Embodiment 2)
Another exemplary embodiment for carrying out the present invention will next be described with reference to the drawings.
Referring to
The image processing program is read into an image processing unit 300 from the recording medium 310. Alternatively, it may be downloaded from a server (not shown) or the like through a communication medium to be read into the image processing unit 300. By the image processing program be loaded into the main memory of the image processing unit 300 to be executed, the operation of the image processing unit 300 is controlled so that the image processing method of the present invention can be carried out.
The image processing program is the program for the image processing unit 300 to execute the functions of the conversion parameter calculation unit 101, the initial image generation unit 102, the high resolution image generation unit 103, and the input image and conversion parameter storage unit 110 of the first exemplary embodiment. In this exemplary embodiment, the memory included in the image processing unit 300 functions as the input image and conversion parameter storage unit 110 of the first exemplary embodiment.
Next, a specific example of the image processing system according to the present invention will be described with reference to
The image processing system of this example includes a video playback device 404 for outputting video signals, an image processing device 400, and a display 405 as shown in
The image processing device 400 is a computer (central processing device; processor; data processing device) operable under program control, and includes a conversion parameter calculation unit 401, an initial image generation unit 402, a high resolution image generation unit 403, and input image and conversion parameter storage unit 410.
The conversion parameter calculation unit 401 calculates the conversion parameter indicating the geometric transformation of a current frame image 501 with respect to a previous frame image 500 shown in
Typically, the model expressed as equation (5), in which a subject is assumed to be a plane, is frequently used as a conversion parameter for its simplicity. Here, (u1, v1, 1) and (u2, v2, 1) are homogeneous coordinates of congruent points respectively; a, b, c, d, e, f, g, h are image conversion parameters; and t is an arbitrary constant number.
Or for more simplicity, constraint conditions such as
g=h=0,a=e=cos θ,−b=d=sin θ
and the like are given.
The input image and conversion parameter storage unit 410 stores the current frame image 501 and the conversion parameter calculated by the conversion parameter calculation unit. The initial image generation unit 402 transforms the high resolution image 502 generated at the previous frame into the image (transformed image) 503 that geometrically conforms to the current frame using the conversion parameter.
The high resolution image generation unit 403 generates the high resolution image 504 of the current frame by the method disclosed, for example, in Non-Patent Document 1, using the continuous frames located in the temporal neighborhood of the current frame and their conversion parameters stored in the input image and conversion parameter storage unit 410 with the transformed image 503 generated by the initial image generation unit 402 as an initial value.
The generated high resolution image 504 is outputted to the display 405. Also, it is delivered to the initial image generation unit 402 to be used for the high resolution image generation of the next frame. By performing the foregoing processing for each frame, a high resolution moving image can be outputted.
Additionally, in this example, although the display 405 is given as an example of device into which the video signals outputted by the image processing device 400 are inputted, various kind of device such as a storage device or the like for storing video signals may be used as a device into which video signals are inputted.
While the invention has been particularly shown and described with reference to exemplary embodiments thereof, the invention is not limited to these embodiments. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the claims.
This application is based upon and claims the benefit of priority from Japanese patent applications No. 2006-094536, filed on Mar. 30, 2006, the disclosure of which is incorporated herein in its entirety by reference.
According to the present invention, it can be applied to such an application that when recording a moving image for example taken by a video camera of the NTSC method, the image can be stored being converted into the image having the same image quality and the same resolution as those of high-definition television in real time. Also, it can be applied to such an application that when playing back video signals recorded by the NTSC method on a playback device, the signals can be outputted to a display device being converted into the signals having same image quality and the same resolution as those of a high-definition television in real time. Also, it can be further applied to such an application that, when receiving and displaying the video of the NTSC method on a high-definition compliant television receiver, the video can be displayed being converted into the video having the same image quality and the same resolution as those of a high-definition television in real time.
Number | Date | Country | Kind |
---|---|---|---|
2006-094536 | Mar 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/055054 | 3/14/2007 | WO | 00 | 1/7/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/122911 | 11/1/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5696848 | Patti et al. | Dec 1997 | A |
6075905 | Herman et al. | Jun 2000 | A |
6078936 | Martin et al. | Jun 2000 | A |
6295377 | Dufaux et al. | Sep 2001 | B1 |
6333949 | Nakagawa et al. | Dec 2001 | B1 |
6522339 | Orimo | Feb 2003 | B1 |
7085323 | Hong | Aug 2006 | B2 |
7260274 | Sawhney et al. | Aug 2007 | B2 |
7463783 | Dugan et al. | Dec 2008 | B1 |
7729563 | Kameyama et al. | Jun 2010 | B2 |
7876978 | Berger et al. | Jan 2011 | B2 |
20020063807 | Margulis | May 2002 | A1 |
20040141067 | Nakayama et al. | Jul 2004 | A1 |
20040156561 | Yu-Chuan et al. | Aug 2004 | A1 |
20070133794 | Cloutier et al. | Jun 2007 | A1 |
20070296829 | Nakamura et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
1351502 | Oct 2003 | EP |
2007-52672 | Mar 2007 | JP |
Entry |
---|
High-resolution video mosaicing for documents and photos by estimating camera motion Authors: Sato, Tomokazu; Ikeda, Sei; Kanbara, Masayuki; Iketani, Akihiko; Nakajima, Noboru; Yokoya, Naokazu; Yamada, Keiji Computational Imaging II. Edited by Bouman, Charles A.; Miller, Eric L. Proceedings of the SPIE, vol. 5299, pp. 246-253 (2004). |
D. Capel “Image Mosaicing and Super-Resolution”, Springer Verlag, Jan. 2004, pp. 86-147. |
Communication from the European Patent Office issued Nov. 9, 2012 in counterpart European Application No. 07738525.0. |
Number | Date | Country | |
---|---|---|---|
20090169133 A1 | Jul 2009 | US |