Japanese Patent Application No. 2011-272197 filed on Dec. 13, 2011, is hereby incorporated by reference in its entirety.
The present invention relates to an image processing device, an imaging device, an image processing method, and the like.
A super-resolution process has been proposed as a method that generates a high-resolution image from a low-resolution image (e.g., High-Vision movie). For example, the maximum-likelihood (ML) technique, the maximum a posteriori (MAP) technique, the projection onto convex sets (POCS) technique, the iterative back projection (IBP) technique, the techniques disclosed in JP-A-2009-124621, JP-A-2008-243037, and JP-A-2011-151569, and the like have been known as a technique that implements the super-resolution process.
According to one aspect of the invention, there is provided an image processing device comprising:
an image acquisition section that acquires pixel-sum values of a first summation unit group when each summation unit of summation units for acquiring the pixel-sum values is set on a plurality of pixels, and the summation units are classified into the first summation unit group and a second summation unit group;
a candidate value generation section that generates a plurality of candidate values for the pixel-sum values of the second summation unit group;
a determination section that performs a determination process that determines the pixel-sum values of the second summation unit group based on the pixel-sum values of the first summation unit group and the plurality of candidate values; and
an estimation section that estimates pixel values of pixels included in the summation units based on the pixel-sum values of the first summation unit group and the pixel-sum values of the second summation unit group.
According to another aspect of the invention, there is provided an image processing device comprising:
an image acquisition section that acquires pixel-sum values of a first summation unit group when each summation unit of summation units for acquiring the pixel-sum values is set on a plurality of pixels, and the summation units are classified into the first summation unit group and a second summation unit group;
a determination section that stores the pixel-sum values of the second summation unit group that have been determined in advance from a plurality of generated candidate values corresponding to the pixel-sum values of the first summation unit group in a look-up table, and performs a determination process that determines the pixel-sum values of the second summation unit group referring to the look-up table; and
an estimation section that estimates pixel values of pixels included in the summation units based on the pixel-sum values of the first summation unit group and the pixel-sum values of the second summation unit group.
According to another aspect of the invention, there is provided an imaging device comprising the above image processing device.
According to another aspect of the invention, there is provided an image processing method comprising:
acquiring pixel-sum values of a first summation unit group when each summation unit of summation units for acquiring the pixel-sum values is set on a plurality of pixels, and the summation units are classified into the first summation unit group and a second summation unit group;
generating a plurality of candidate values for the pixel-sum values of the second summation unit group;
performing a determination process that determines the pixel-sum values of the second summation unit group based on the pixel-sum values of the first summation unit group and the plurality of candidate values; and
estimating pixel values of pixels included in the summation units based on the pixel-sum values of the first summation unit group and the pixel-sum values of the second summation unit group.
Several aspects of the invention may provide an image processing device, an imaging device, an image processing method, and the like that can acquire a high-quality and high-resolution image of an object that makes a motion.
According to one embodiment of the invention, there is provided an image processing device comprising:
an image acquisition section that acquires pixel-sum values of a first summation unit group when each summation unit of summation units for acquiring the pixel-sum values is set on a plurality of pixels, and the summation units are classified into the first summation unit group and a second summation unit group;
a candidate value generation section that generates a plurality of candidate values for the pixel-sum values of the second summation unit group;
a determination section that performs a determination process that determines the pixel-sum values of the second summation unit group based on the pixel-sum values of the first summation unit group and the plurality of candidate values; and
an estimation section that estimates pixel values of pixels included in the summation units based on the pixel-sum values of the first summation unit group and the pixel-sum values of the second summation unit group.
According to the image processing device, a plurality of candidate values for the pixel-sum values of the second summation unit group are generated, and the pixel-sum values of the second summation unit group are determined based on the plurality of candidate values and the pixel-sum values of the first summation unit group. The pixel values of the pixels included in the summation units are estimated based on the pixel-sum values of the second summation unit group and the pixel-sum values of the first summation unit group. This makes it possible to acquire a high-quality and high-resolution image of an object that makes a motion.
Exemplary embodiments of the invention are described in detail below. Note that the following exemplary embodiments do not in any way limit the scope of the invention defined by the claims laid out herein. Note also that all of the elements described in connection with the following exemplary embodiments should not necessarily be taken as essential elements of the invention.
The following description is given taking a pixel-sum value (i.e., a value obtained by summing up the pixel values of adjacent pixels) as an example. Note that the pixel value of a super-resolution pixel equal to or smaller than the minimum pixel unit can be calculated as long as a pixel value obtained by a pixel shift by a pitch equal to or less than the pixel pitch of the minimum pixel unit is considered to be the pixel-sum value.
A digital camera or a video camera may be designed so that the user can select a still image shooting mode or a movie shooting mode. For example, a digital camera or a video camera may be designed so that the user can shoot a still image having a resolution higher than that of a movie by operating a button when shooting a movie. However, it may be difficult for the user to shoot a still image at the best moment when it is necessary to operate a button.
In order to allow the user to shoot the best moment, a high-resolution image at an arbitrary timing may be generated from a shot movie by utilizing the super-resolution process. For example, the ML technique, the techniques disclosed in JP-A-2009-124621 and JP-A-2008-243037, and the like have been known as a technique that implements the super-resolution process. However, the ML technique, the technique disclosed in JP-A-2009-124621, and the like have a problem in that the processing load increases due to repeated filter calculations, and the technique disclosed in JP-A-2008-243037 has a problem in that an estimation error increases to a large extent when the initial value cannot be successfully specified when estimating the pixel value.
In order to deal with the above problems, several embodiments of the invention employ a method that restores a high-resolution image using a method described later with reference to
The pixel-sum values aij may be acquired by acquiring the pixel-sum values a00, a10, a11, and a01 in time series (in different frames) while shifting each pixel (see JP-A-2011-151569, for example). However, this method has a problem in that the restoration accuracy decreases when the object makes a motion since four low-resolution frame images are used to restore a high-resolution image.
According to several embodiments of the invention, unknown pixel-sum values (e.g., an) within one frame are interpolated using known pixel-sum values (e.g., a10) within one frame, and a high-resolution image is restored from the known pixel-sum values and the interpolated pixel-sum values (see
2. First interpolation method
A method that interpolates unknown pixel-sum values (e.g., an) within one frame is described in detail below. Note that the term “frame” used herein refers to a timing at which an image is captured by an image sensor, or a timing at which an image is processed by image processing, for example. Each image included in movie data may be also be appropriately referred to as “frame”.
As illustrated in
The pixel-sum values aij are obtained by simple summation or weighted summation of four pixel values {vij, v(i+1)j, v(i+1)(j+1), vi(j+1)}. The four pixels may be identical in color, or may differ in color. Note that the pixel-sum values aij may be appropriately referred to as “4-pixel sum value”.
The unknown 4-pixel sum value a11 within one frame is interpolated using the known 4-pixel sum values {a01, a10, a21, a12} adjacent to the 4-pixel sum value a11. Note that the following description also applies to an unknown 4-pixel sum value aij other than the unknown 4-pixel sum value a11. The 4-pixel sum values {a01, a10, a21, a12} adjacent to the unknown 4-pixel sum value a11 share pixels with the unknown 4-pixel sum value a11, and change when the unknown 4-pixel sum value a11 changes, and vice versa. It is possible to calculate an interpolated value with high likelihood by utilizing the above relationship. The details thereof are described later.
A plurality of candidate values a11[x] (=a11[1] to a11[N]) are generated corresponding to the unknown 4-pixel sum value a11. Note that N is a natural number, and x is a natural number equal to or less than N. The candidate value a11[x] is a value within the domain (given range in a broad sense) of the 4-pixel sum value aij. For example, when the domain of the pixel value vij is [0, 1, . . . , M−1] (M is a natural number), the domain of the 4-pixel sum value aij is [0, 1, . . . , 4M−1]. In this case, all of the values within the domain are generated as the candidate values a11 to a11[4M] (=0 to 4M−1) (N=4M).
Next, eight 2-pixel sum values are respectively estimated for each candidate value using the candidate value a11[x] and the 4-pixel sum values {a01, a10, a21, a12}. As illustrated in
Next, whether or not the eight 2-pixel sum values calculated using the candidate value a11[x] are within the range of the 2-pixel sum values is determined. For example, when the domain of the pixel value vij is [0, 1, . . . , M−1], the domain of the 2-pixel sum value bij is [0, 1, . . . , 2M−1]. In this case, when at least one of the eight 2-pixel sum values calculated using the candidate value a11[x] does not satisfy the following expression (1), the candidate value a11[x] is excluded since the 2-pixel sum values that correspond to the candidate value a11[x] are theoretically incorrect.
0≦bij[x]≦2M−1 (1)
When the number of remaining candidate values is one, the remaining candidate value is determined to be the interpolated value a11. When the number of remaining candidate values is two or more, the interpolated value a11 is determined from the remaining candidate values. For example, a candidate value among the remaining candidate values that is closest to the average value of the adjacent 4-pixel sum values {a01, a10, a21, a12} is determined to be the interpolated value a11.
When the interpolated value a11 has been determined, the complete 4-pixel sum values aij (i.e., the known 4-pixel sum values {a01, a10, a21, a12} and the interpolated value a11) are obtained. The pixel values vij of the original high-resolution image are estimated by applying the restoration process described with reference to
According to the first interpolation method, an image processing device includes an image acquisition section, a candidate value generation section, a determination section, and an estimation section. As illustrated in
For example, a readout section (not illustrated in the drawings) that reads data from a data recording section 110 (see
According to the above configuration, since a high-resolution image can be restored based on the pixel-sum values within one frame, it is possible to implement a restoration process that can easily deal with the motion of the object as compared with the case of using the pixel-sum values acquired over a plurality of frames. It is likely that the amount of data (i.e., the number of pixel-sum values) used for the restoration process decreases, and the accuracy of the restoration process decreases when using only the pixel-sum values within one frame as compared with the case of uses the pixel-sum values acquired over a plurality of frames. According to the first interpolation method, however, a plurality of candidate values are generated when interpolating the second summation unit group, and a candidate value with high likelihood that is estimated to be close to the true value can be selected from the plurality of candidate values. This makes it possible to improve the restoration accuracy even if the amount of data is small.
Although the above description has been given taking an example in which the pixel-sum values aij are obtained by summation of a plurality of pixel values, and the plurality of pixel values are restored, each pixel-sum value aij may be the pixel value of one pixel, and the pixel values of a plurality of pixels obtained by dividing the one pixel may be estimated. Specifically, an image may be captured while mechanically shifting each pixel by a shift amount (e.g., p/2) smaller than the pixel pitch (e.g., p) of the image sensor so that one pixel of the image corresponds to each pixel-sum value aij, and the pixel values of a plurality of pixels (e.g., 22=4 pixels) obtained by dividing the one pixel corresponding to the shift amount may be estimated.
As illustrated in
According to the above configuration, since the determination target pixel-sum value a11 and the overlap pixel-sum values {a10, a01, a21, a12} adjacent to the pixel-sum value a11 share a common pixel, the number of candidate values can be reduced by selecting the candidate value that is consistent with the domain. The details thereof are described later with reference to
More specifically, the summation units may include m×m pixels (m is a natural number equal to or larger than 2 (e.g., m=2)) as the plurality of pixels. In this case, the selection condition may be a condition whereby the intermediate pixel values bij obtained by summation of the pixel values of 1×m pixels or m×1 pixels are consistent with the domain (e.g., [0 to M−1]) of the pixel values (e.g., vu) (see the expression (1)). The determination section may calculate the intermediate pixel values (e.g., bij[x]) corresponding to each candidate value (e.g., a11[x]) based on each candidate value (e.g., a11[x]) and the pixel-sum values (e.g., {a10, a01, a21, a12}) of the overlap summation units, and may select the candidate values (e.g., a11[x]) for which the intermediate pixel values (e.g., bij[x]) satisfy the selection condition.
This makes it possible to select the candidate value that satisfies the selection condition based on the pixel-sum values ({a10, a01, a21, a12}) of the overlap summation units. It is possible to estimate the intermediate pixel values bij since the adjacent summation units share (have) a common pixel, and select the candidate value using the intermediate pixel value bij (described later with reference to
The candidate value generation section may generate values within the range (e.g., [0 to 4M−1]) of the pixel-sum values (e.g., aij) based on the domain (e.g., [0 to M−1]) of the pixel values (e.g., vij) as the plurality of candidate values (e.g., a11[1] to a11[N=4M] (=0 to 4M−1)).
This makes it possible to select a candidate value with high likelihood that is estimated to be close to the true value from the values within the range of the pixel-sum values aij.
A method interpolates the unknown 4-pixel sum value a11 using a look-up table is described below.
When using the second interpolation method, a look-up table is provided in advance using the first interpolation method. More specifically, the first interpolation method is applied to each combination of the 4-pixel sum values {a01, a10, a21, a12} adjacent to the unknown 4-pixel sum value a11 to narrow the range of the candidate value a11 that satisfies the domain of the 2-pixel sum values b11[x]. Each combination of the 4-pixel sum values {a01, a10, a21, a12} and the candidate value a11[x] is thus determined.
As illustrated in
When calculating the interpolated value a11 from the known 4-pixel sum values {a01, a10, a21, a12}, the look-up table is searched for 4-pixel sum values {a01[x], a10[x], a21 [x], a12[x]} for which the Euclidean distance from each known 4-pixel sum value is zero. The candidate value a11[x]′ that corresponds to the 4-pixel sum values thus searched is determined to be the interpolated value of the unknown 4-pixel sum value a11.
A plurality of candidate values a11[x]′ may be searched corresponding to the known 4-pixel sum value combination pattern {a01, a10, a21, a12}. In this case, the average value of the plurality of candidate values a11[1]′, . . . , and a11[xn]′ (n is a natural number) is determined to be the interpolated value a11 (see the following expression (2)).
a
11
={a
11
[x1]′+a11[x2]+ . . . +a11[xn]′}/n (2)
There may be a case where the number of known 4-pixel sum value combination patterns {a01, a10, a21, a12} is too large. In this case, the number of combination patterns may be reduced (coarse discrete pattern) while coarsely quantizing each component, and the 4-pixel sum values {a01[x], a10[x], a21[x], a12[x]} for which the Euclidean distance from the known 4-pixel sum values {a01, a10, a21, a12} becomes a minimum may be searched.
More specifically, a known value pattern (vector) is referred to as V=(a01, a10, a21, a12), and a pattern of values estimated using the unknown 4-pixel sum value a11[x] as a variable is referred to as V[x]=(a01[x], a10[x], a21[x], a12[x]). An evaluation value E[x] in which the distance between V and V[x] is an error is calculated (see the following expression (3)). The estimated value a11[x] at which the evaluation value E[x] becomes a minimum is determined to be (selected as) the interpolated value a11 with high likelihood.
The unknown 4-pixel sum value a11[x] and the known 4-pixel sum values {a01, a10, a21, a12} adjacent to the unknown 4-pixel sum value a11[x] are overlap-shift sum values that share a pixel value (i.e., have high dependence), and the range of the original pixel values vij is limited. Therefore, when the 4-pixel sum value a11[x] has been determined, the pattern V[x]=(a01[x], a10[x], a21[x], a12[x]) that is estimated as the 4-pixel sum values adjacent to the 4-pixel sum value a11[x] is limited within a given range. Accordingly, when the unknown 4-pixel sum value a11[x] has been found so that the estimated pattern V[x] coincides with the known 4-pixel sum value pattern V, or the similarity between the estimated pattern V[x] and the known 4-pixel sum value pattern V becomes a maximum, the unknown 4-pixel sum value a11[x] can be considered (determined) to be the maximum likelihood value of the interpolated value a11.
As illustrated in
(i) A candidate value among a plurality of candidate values a11[x] obtained from the look-up table that is closest to the average value of the 4-pixel sum values {a01, a10, a21, a12} adjacent to the unknown 4-pixel sum value a11 is selected as the interpolated value a11.
(ii) The average value of a plurality of candidate values a11[x] obtained from the look-up table is selected as the interpolated value a11.
4. Method that Selects Candidate Value by Check Process
When using the first interpolation method or the second interpolation method, a plurality of candidate values that are consistent with the domain may remain. In this case, the number of candidate values may be reduced by performing a check process.
More specifically, the restoration process is performed on each candidate value a11[x] that remains after the domain determination process to calculate the pixel value vij. The 4-pixel sum value a01′ is calculated from the pixel value vij (see the following expression (4)).
a
01
′=v
01
+v
11
+v
02
+v
12 (4)
The 4-pixel sum value a01′ obtained from the candidate value is compared with the known 4-pixel sum value a01, and the candidate value is excluded when the difference is larger than a given value φ (see the following expression (5)). The check process is performed on each candidate value, and only a candidate value that satisfies the expression (5) is allowed to remain. Note that the check process may also be performed on the known 4-pixel sum values {a10, a21, a12}.
|a01−a01′|≦φ (5)
According to the above method, the estimation section estimates the pixel values {v00, v01, v10, v11} of the pixels included in the summation units (e.g., a01) based on the candidate values a11[x] selected by the determination section and the pixel-sum values aij acquired by the image acquisition section. The determination section calculates the pixel-sum value a01′ by summing up the estimated pixel values {v00, v01, v10, v11} (see the expression (4)), compares the pixel-sum value a01′ with the pixel-sum values a01 acquired by the image acquisition section (see the expression (5)), and reduces the number of candidate values based on the comparison results.
This makes it possible to check whether or not the pixel values of the restored high-resolution image match the actual pixel-sum values. The candidate value can be selected by performing the check process on the candidate values selected based on the domain.
When using the first interpolation method or the second interpolation method, the interpolated value a11 with the maximum likelihood that is estimated to be closest to the true value is determined. The principles thereof are described below.
As illustrated in
A 4-pixel sum value aX+1=aY+1 is an interpolated value, and 4-pixel sum values aX, aX+2, aY, and aY+2 are known 4-pixel sum values. 2-pixel sum values bX to bX+3 are estimated from the 4-pixel sum values aX to aX+2 in the horizontal direction, and 2-pixel sum values bY to bY+3 are estimated from the 4-pixel sum values aY to aY+2 in the vertical direction.
a
X
=b
X
+b
X+1=(1,1)·(bX,bX+1) (6)
Since the range Q1 of the vector (bX+1, bX+2) is thus deter mined, the range R1 of the 4-pixel sum value aX+1 obtained by projecting the range Q1 is determined. When using the first interpolation method, all the values within the domain are generated as the candidate values for the 4-pixel sum value aX+1=a11, and the 2-pixel sum values bx to bX+3 are estimated for each candidate value. As illustrated inn
The range R1 of the unknown 4-pixel sum value aX+1 can thus be narrowed since the unknown 4-pixel sum value aX+1 shares pixels with the adjacent 4-pixel sum value aX, and the values aX+1 and aX have a dependent relationship through the 2-pixel sum value bX+1.
When the probability that the values (bY+1, bY+2) coincide with the true value is uniform within the range Q2 (see
An interpolation method that generates the candidate value by an inter-frame interpolation process and an intra-frame interpolation process is described below.
As illustrated in
4-pixel sum values aRij(T−1) and aRij(T+1) that have been sampled in the frames fT−1 and fT−1 and correspond to the unknown 4-pixel sum value aRijT are known 4-pixel sum values. The 4-pixel sum value aRijT is interpolated using the 4-pixel sum values aRij(T−1) and aRij(T+1) to generate a first candidate value aRijT[1]. For example, the first candidate value aRijT[1] is the average value of the 4-pixel sum values aRij(T−1) and aRij(T+1)).
As illustrated in
A 2-pixel sum value bij[x] (x=1, 2, or 3) is estimated using the candidate values aR22[1] to aR22[3] thus generated. The domain determination process is performed on the 2-pixel sum value bij[x], and the selected candidate value is determined to be the interpolated value aR22. As illustrated in
According to the third interpolation method, the image acquisition section may acquire the pixel-sum values {aR10, aR01, aR21, aR12} of the first summation unit group in the processing target frame fT, and may acquire the pixel-sum values {aR00, aR20, aR02, aR22} of the second summation unit group in the frames fT−1 and fT+1 that precede or follow the processing target frame fT (see
The third interpolation method can restore a high-quality image of the object that makes a motion. If a stationary object (or an object that makes a small motion) is spatially interpolated within one frame, the amount of high-frequency components may decrease in the restored image. According to the third interpolation method, the candidate values include the value aR11[1] interpolated based on the values acquired in the frames that precede or follow the processing target frame. When the object is stationary, it is estimated that the candidate value aR11[1] interpolated based on the values acquired in the frames that precede or follow the processing target frame is close to the true value. Therefore, an image that contains a large amount of high-frequency components can be restored by utilizing the candidate value aR11[1].
An interpolation method that respectively generates a plurality of candidate values for two interpolated values, and performs the domain determination process while combining the candidate values to select the candidate value is described below.
As illustrated in
The above four candidate values and the known 4-pixel sum values {aR32, aR54} are combined to obtain four combination patterns A1 to A4. Specifically, the combination patterns A1={aR32, aR54, aR52[1], aR34[1]}, A2={aR32, aR54, aR52[1], aR34[2]}, A3={aR32, aR54, aR52[2], aR34[1]}, and A4={aR32, aR54, aR52[2], aR34[2]} are obtained.
As illustrated in
0≦vRij≦M (7)
When one combination pattern remains as a result of the above process, the pixel value vRij estimated from the remaining combination pattern is determined to be the final high-resolution pixel value. When a plurality of combination patterns remain as a result of the above process, a candidate value that is close to a simple interpolated value calculated from the 4-pixel sum values {aR32, aR72, aR50, aR54} adjacent to the unknown 4-pixel sum value aR52 in the horizontal direction or the vertical direction is selected. This also applies to the unknown 4-pixel sum value aR34. For example, an average value is used as the simple interpolated values {aR52′, aR34′} (see the following expression (8)). When the candidate values aR52[x] and aR34[x] are included in the remaining combination pattern, the difference e52 between the candidate value aR52[x] and the simple interpolated value, and the difference e34 between the candidate value aR34[x] and the simple interpolated value are calculated (see the following expression (9)). The candidate values for which the difference is smallest are determined to be the final interpolated values aR52 and aR34. The final high-resolution pixel values vRij are restored using the interpolated values {aR52, aR34} and the known 4-pixel sum values {aR32, aR54}
A method that calculates an interpolated value when the number of acquired 4-pixel sum values is smaller than that of the staggered pattern is described below.
In
The unknown 4-pixel sum values {aR30, aR12, aR32} are interpolated using the known 4-pixel sum values {aR10, aR52, aR14, aR54} adjacent to the unknown 4-pixel sum values. Since the unknown 4-pixel sum values and the known 4-pixel sum values have the above dependent relationship, the interpolated value can be determined by generating all of the candidate values, and selecting the candidate value by applying the first interpolation method, for example. Alternatively, the interpolated value may be determined using a look-up table by applying the second interpolation method. The following description is given taking an example in which the interpolated value is determined using a look-up table.
When a plurality of vectors Q[x] are present for an identical vector V[x], the vectors Q[x] are averaged to obtain a single vector Q[x], and the single vector Q[x] is stored in the look-up table.
Note that the above method may also be applied when summing up four pixels that differ in color (see
9. Method that Checks Interpolated Value
A value that interpolates the unknown 4-pixel sum value is obtained by the first to fifth interpolation methods. A method that checks the interpolated value is described below.
As illustrated in
The calculated pixel values {vR32, v′52, vR34, vR54} are summed up, and the resulting value aR32′ is compared with the known 4-pixel sum value aR32. The value aR32′ should be almost identical with the known 4-pixel sum value aR32. When aR32-aR32′≦δ (δ is a given value), it is determined that the estimated pixel value is correct, and the estimated pixel value is determined to be the final high-resolution pixel value. When aR32-aR32′>δ, it is determined that one of the pixel values {vR32, vR52, vR34, vR54} is incorrect. In this case, the interpolated value is substituted with one of the candidate values (e.g., one of a plurality of candidate values searched from the look-up table), the pixel values {vR32, vR52, vR34, vR54} are calculated again, and the check process is performed.
When the relationship “aR32-aR32′≦δ” is not satisfied even if the interpolated value is substituted with each candidate value, the pixel values {vR32, vR52, vR34, vR54} for which the value aR32′ is closest to the known 4-pixel sum value aR32 are determined to be the final high-resolution pixel values.
A process that estimates and restores the high-resolution image from the pixel-sum values obtained by the above interpolation process is described in detail below. Note that the process is described below taking the pixel-sum values {a00, a10, a11, a01} as an example, but may also be similarly applied to other pixel-sum values. Note also that the process may also be applied to the case where the number of summation target pixels is other than four (e.g., 9-pixel summation process).
The pixel-sum values aij (4-pixel sum values) illustrated in
An intermediate pixel value estimation process is described below taking the intermediate pixel values b00 to b20 in the first row (horizontal direction) as an example. The intermediate pixel values b00 to b20 are estimated based on the pixel-sum values a00 and a10 in the first row (horizontal direction). The pixel values a00 and a10 are shown by the following expression (11).
a
00
=v
00
+v
01
+v
10
+v
11,
a
10
=v
10
+v
11
+v
20
+v
21 (11)
The intermediate pixel values b00, b10, and b20 are defined as shown by the following expression (12).
b
00
=v
00
+v
01,
b
10
=v
10
+v
11,
b
20
=v
20
+v
21 (12)
Transforming the expression (11) using the expression (12) yields the following expression (13).
a
00
=b
00
+b
10,
a
10
=b
10
+b
20 (13)
The following expression (14) is obtained by solving the expression (13) for the intermediate pixel values b10 and b20. Specifically, the intermediate pixel values b10 and b20 can be expressed as a function where the intermediate pixel value b00 is an unknown (initial variable).
b
00=(unknown),
b
10
=a
00
−b
00,
b
20
=b
00
+δi
0
=b
00+(a10−a00) (14)
The pixel value pattern {a00, a10} is compared with the intermediate pixel value pattern {b00, b10, b20}, and an unknown (b00) at which the similarity becomes a maximum is determined. More specifically, an evaluation function Ej shown by the following expression (11) is calculated, and an unknown (b00) at which the evaluation function Ej becomes a minimum is derived. The intermediate pixel values b10 and b20 are calculated by substituting the value b00 into the expression (14).
The estimated pixel values vij are calculated as described below using the intermediate pixel values bij in the first column (vertical direction). The estimated pixel values vij are calculated in the same manner as the intermediate pixel values bij. Specifically, the following expression (16) is used instead of the expression (13).
b
00
=v
00
+v
01,
b
01
=v
01
+v
02 (16)
According to the above restoration process, a first summation unit (e.g., a00) that is set at a first position overlaps a second summation unit (e.g., a10) that is set at a second position that is shifted from the first position (see
The high-resolution image estimation process can be simplified by estimating the intermediate pixel values from the pixel-sum values obtained using the overlap shift process, and calculating the estimated pixel values from the intermediate pixel values. This makes it unnecessary to perform a complex process (e.g., repeated calculations using a two-dimensional filter), for example.
The expression “overlap” used herein means that the summation units have an overlapping area. For example, the expression “overlap” used herein means that the summation unit a00 and the summation unit a10 share two estimated pixels v10 and v11 (see
The position of the summation unit refers to the position or the coordinates of the summation unit in the captured image, or the position or the coordinates of the summation unit indicated by estimated pixel value data (image data) used for the estimation process. The expression “position (coordinates) shifted from . . . ” used herein refers to a position (coordinates) that does not coincide with the original position (coordinates).
An intermediate pixel value pattern (b00, b10, b20) may include consecutive intermediate pixel values that include a first intermediate pixel value and a second intermediate pixel value (e.g., b00 and b20). The estimation calculation section may express a relational expression of the intermediate pixel values included in the intermediate pixel value pattern using the first pixel-sum value a00 and the second pixel-sum value a10 (see the expression (14)), and may compare the intermediate pixel value pattern expressed by the relational expression of the intermediate pixel values with the first pixel-sum value and the second pixel-sum value to evaluate the similarity. The estimation calculation section may determine the inter mediate pixel values b00, b10, b20 included in the intermediate pixel value pattern based on the similarity evaluation result so that the similarity becomes a maximum.
This makes it possible to estimate the intermediate pixel values based on the pixel-sum values acquired while shifting each pixel so that overlap occurs.
Note that the intermediate pixel value pattern is a data string (data set) of intermediate pixel values within a range used for the estimation process. The pixel-sum value pattern is a data string of pixel-sum values within a range used for the estimation process.
The image sensor 20 captures an image of the object formed by the lens 10, and outputs pixel values vij. The image sensor 20 includes a Bayer color filter array, for example. The summation section 30 sums up the pixel values vij on a color basis, and outputs pixel-sum values aRij, aGrij, aGbij, and aBij. The pixel-sum values are acquired in a staggered pattern, for example. The data compression section 40 compresses the pixel-sum values aRij, aGrij, aGbij, and aBij. The data recording section 50 records the compressed data. The data recording section 50 is implemented by an external memory (e.g., memory card), for example.
The movie frame generation section 60 resamples the pixel-sum values aRij aGrij, aGbij, and aBij to have the number of pixels compliant with the High-Vision standard, for example. The movie frame generation section 60 performs a demosaicing process on the resampled pixels, and outputs display RGB image data Rij, Gij, and Bij. The movie frame generation section 60 may perfoim various types of image processing (e.g., high-quality process) on the image obtained by the demosaicing process. The monitor display section 70 is implemented by a liquid crystal device or the like, and displays the RGB image data Rid, Gij, and Bij.
The image processing device may be an information processing device (e.g., PC) that is provided separately from the imaging device, or an image processing device (e.g., image processing engine) that is provided in the imaging device.
The compressed data recorded by the imaging device is recorded in the data recording section 110. The data recording section 110 is implemented by a reader/writer into which a memory card can be inserted, for example. The data decompression section 115 decompresses the compressed data read from the data recording section 110, and outputs the pixel-sum values aRij, aGrij, aGbij, and aBij to the decompressed data storage section 120. The decompressed data storage section 120 is implemented by a memory (e.g., RAM) provided in the image processing device, for example.
The monitor image generation section 125 generates a display RGB image from the pixel-sum values read from the decompressed data storage section 120, and the monitor image display section 130 displays the RGB image. The user (operator) designates a high-resolution still image acquisition target frame via a user interface (not illustrated in
The interpolation section 150 interpolates the unknown 4-pixel sum value using the pixel-sum values aRij, aGr11, aGbij, and aBij in the selected frame as known pixel-sum values. The interpolation section 150 includes a candidate value generation section 151, an interpolated value selection section 152, and an interpolated value application section 153.
The candidate value generation section 151 generates a plurality of candidate values for the unknown 4-pixel sum value. The interpolated value selection section 152 performs the domain determination process on the 2-pixel sum value and the high-resolution pixel value estimated from each candidate value, and determines the interpolated value from the candidate values that are consistent with the domain. The interpolated value application section 153 generates the complete 4-pixel sum values necessary for the restoration process using the interpolated value and the known pixel-sum values.
The high-resolution image restoration-estimation section 160 performs the restoration process, and estimates the pixel values vij of the high-resolution image. The high-resolution image generation section 170 performs a demosaicing process on the Bayer array pixel values vij to generate an RGB high-resolution image. The high-resolution image generation section 170 may perforin various types of image processing (e.g., high-quality process) on the RGB high-resolution image. The high-resolution image data recording section 180 records the RGB high-resolution image. The high-resolution image data recording section 180 is implemented by the same reader/writer as the data recording section 110, for example. The image output section 190 is an interface section that outputs the high-resolution image data to the outside. For example, the image output section 190 outputs the high-resolution image data to a device (e.g., printer) that can output a high-resolution image.
Note that the configurations of the imaging device and the image processing device are not limited to the configurations illustrated in
Although some embodiments of the invention have been described in detail above, those skilled in the art would readily appreciate that many modifications are possible in the embodiments without materially departing from the novel teachings and advantages of the invention. Accordingly, such modifications are intended to be included within the scope of the invention. Any term cited with a different term having a broader meaning or the same meaning at least once in the specification and the drawings can be replaced by the different term in any place in the specification and the drawings. The configurations and the operations of the image processing device, the imaging device, and the like are not limited to those described in connection with the above embodiments. Various modifications and variations may be made.
Number | Date | Country | Kind |
---|---|---|---|
2011-272197 | Dec 2011 | JP | national |