The present invention relates to an image processing method and apparatus. One of the most common reasons for an acquired digital photograph to be discarded or spoiled is because one or more of the facial regions in the photograph suffer from photographic defects other than red-eye defects, even though red eye defects can be common in cameras not operating with the advantages of the techniques described, e.g., at U.S. Pat. No. 6,407,777, and at US published applications nos. 2005/0140801, 2005/0041121, 2006/0093212, and 2006/0204054, which are assigned to the same assignee and hereby incorporated by reference. Common examples occur when people move or shake their head; when someone closes their eyes or blinks or someone yawns. Where there are several faces in a photograph, it is sufficient for one face to be “defective” for the whole shot to be spoiled. Although digital cameras allow users to quickly shoot several pictures of the same scene. Typically, such cameras do not provide warnings of facial errors, nor provide a way to correct for such errors without repeating the composition stages (i.e. getting everyone together again in a group) of taking the photograph and re-shooting the scene. This type of problem is particularly difficult with children who are often photographed in unusual spontaneous poses which cannot be duplicated. When such a shot is spoiled because the child moved their head at the moment of acquisition, it is very disappointing for the photographer.
U.S. Pat. No. 6,301,440, which is incorporated by reference, discloses an image acquisition device wherein the instant of exposure is controlled by image content. When a trigger is activated, the image proposed by the user is analysed and imaging parameters are altered to obtain optimum image quality before the device proceeds to take the image. For example, the device could postpone acquisition of the image until every person in the image is smiling.
An image processing method is provided including acquiring a main image of a scene. One or more facial regions are determined in the main image. The one or more main image facial regions are analyzed for defects and one or more are determined to be defective. A sequence of relatively low resolution images nominally of the scene are acquired. One or more sets of low resolution facial regions in the sequence are analyzed to determine one or more that correspond to a defective main image facial region. At least a portion of the defective main image facial region is corrected with image information from one or more corresponding low resolution facial regions not including a same defect as said portion of said defective main image facial region.
The sequence of low resolution images may be specifically acquired for a time period not including a time for acquiring the main image. The method may also include combining defect-free low resolution facial regions into a combined image, and correcting at least the portion of the defective main image facial region with image information from the combined image.
Another image processing method is provided that including acquiring a main image of a scene. One or more facial regions in the main image are determined, and analyzed to determine if any are defective. A sequence of relatively low resolution images is acquired nominally of the scene for a time period not including a time for acquiring the main image. One or more sets of low resolution facial regions are determined in the sequence of low resolution images. The sets of facial regions are analyzed to determine if any facial regions of a set corresponding to a defective facial region of the main image include a defect. Defect free facial regions of the corresponding set are combined to provide a high quality defect free facial region. At least a portion of any defective facial regions of said main image are corrected with image information from a corresponding high quality defect free facial region.
The time period may include one or more of a time period preceding or a time period following the time for acquiring the main image. The correcting may include applying a model including multiple vertices defining a periphery of a facial region to each high quality defect-free facial region and a corresponding defective facial region. Pixels may be mapped of the high quality defect-free facial region to the defective facial region according to the correspondence of vertices for the respective regions. The model may include an Active Appearance Model (AAM).
The main image may be acquired at an exposure level different to the exposure level of the low resolution images. The correcting may include mapping luminance levels of the high quality defect free facial region to luminance levels of the defective facial region.
Sets of low resolution facial regions from the sequence of low resolution images may be stored in an image header file of the main image.
The method may include displaying the main image and/or corrected image, and selected actions may be user-initiated.
The analyzing of the sets may include, prior to the combining in the second method, removing facial regions including faces exceeding an average size of faces in a set of facial regions by a threshold amount from said set of facial regions, and/or removing facial regions including faces with an orientation outside an average orientation of faces in a set of facial regions by a threshold amount from said set of facial regions.
The analyzing of sets may include the following:
The analyzing of sets may include the following:
The analyzing of facial regions may include applying an Active Appearance Model (AAM) to each facial region, and analyzing AAM parameters for each facial region to provide an indication of facial expression, and/or analyzing each facial region for contrast, sharpness, texture, luminance levels or skin color or combinations thereof, and/or analyzing each facial region to determine if an eye of the facial region is closed, if a mouth of the facial region is open and/or if a mouth of the facial region is smiling.
The method may be such that the correcting, and the combining in the second method, only occur when the set of facial regions exceeds a given number. The method may also include resizing and aligning faces of the set of facial regions, and the aligning may be performed according to cardinal points of faces of the set of facial regions.
The correcting may include blending and/or infilling a corrected region of the main image with the remainder of the main image.
Embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:
Certain embodiments can be implemented with a digital camera which incorporates (i) a face tracker operative on a preview image stream; (ii) a super-resolution processing module configured to create a higher resolution image from a composite of several low-resolution images; and (iii) a facial region quality analysis module for determining the quality of facial regions.
Preferably, super-resolution is applied to preview facial regions extracted during face tracking.
The embodiments enable the correction of errors or flaws in the facial regions of an acquired image within a digital camera using preview image data and employing super-resolution techniques.
In operation, the processor 120, in response to a user input at 122, such as half pressing a shutter button (pre-capture mode 32), initiates and controls the digital photographic process. Ambient light exposure is determined using a light sensor 40 in order to automatically determine if a flash is to be used. The distance to the subject is determined using a focusing mechanism 50 which also focuses the image on an image capture device 60. If a flash is to be used, processor 120 causes a flash device 70 to generate a photographic flash in substantial coincidence with the recording of the image by the image capture device 60 upon full depression of the shutter button. The image capture device 60 digitally records the image in colour. The image capture device is known to those familiar with the art and may include a CCD (charge coupled device) or CMOS to facilitate digital recording. The flash may be selectively generated either in response to the light sensor 40 or a manual input 72 from the user of the camera. The high resolution image recorded by image capture device 60 is stored in an image store 80 which may comprise computer memory such a dynamic random access memory or a non-volatile memory. The camera is equipped with a display 100, such as an LCD, both for displaying preview images and displaying a user interface for camera control software.
In the case of preview images which are generated in the pre-capture mode 32 with the shutter button half-pressed, the display 100 can assist the user in composing the image, as well as being used to determine focusing and exposure. Temporary storage 82 is used to store one or plurality of the stream of preview images and can be part of the image store 80 or a separate component. The preview image is usually generated by the image capture device 60. For speed and memory efficiency reasons, preview images usually have a lower pixel resolution than the main image taken when the shutter button is fully depressed, and are generated by sub-sampling a raw captured image using software 124 which can be part of the general processor 120 or dedicated hardware or combination thereof.
In the present embodiment, a face detection and tracking module 130 such as described in U.S. application Ser. No. 11/464,083, filed Aug. 11, 2006, which is hereby incorporated by reference, is operably connected to the sub-sampler 124 to control the sub-sampled resolution of the preview images in accordance with the requirements of the face detection and tracking module. Preview images stored in temporary storage 82 are available to the module 130 which records the locations of faces tracked and detected in the preview image stream. In one embodiment, the module 130 is operably connected to the display 100 so that boundaries of detected and tracked face regions can be superimposed on the display around the faces during preview.
In the embodiment of
According to the preferred embodiment, the device 20 further comprises an image correction module 90. Where the module 90 is arranged for off-line correction of acquired images in an external processing device 10, such as a desktop computer, a colour printer or a photo kiosk, face regions detected and/or tracked in preview images are preferably stored as meta-data within the image header. However, where the module 90 is implemented within the camera 20, it can have direct access to the buffer 82 where preview images and/or face region information is stored.
In this embodiment, the module 90 receives the captured high resolution digital image from the store 80 and analyzes it to detect defects. The analysis is performed as described in the embodiments to follow. If defects are found, the module can modify the image to remove the defect. The modified image may be either displayed on image display 100, saved on a persistent storage 112 which can be internal or a removable storage such as CF card, SD card or the like, or downloaded to another device via image output means 110 which can be tethered or wireless. The module 90 can be brought into operation either automatically each time an image is captured, or upon user demand via input 30. Although illustrated as a separate item, where the module 90 is part of the camera, it may be implemented by suitable software on the processor 120.
The main components of the image correction module include a quality module 140 which is arranged to analyse face regions from either low or high resolution images to determine if these include face defects. A super-resolution module 160 is arranged to combine multiple low-resolution face regions of the same subject generally with the same pose and a desirable facial expression to provide a high quality face region for use in the correction process. In the present embodiment, an active appearance model (AAM) module 150 produces AAM parameters for face regions again from either low or high resolution images.
AAM modules are well known and a suitable module for the present embodiment is disclosed in “Fast and Reliable Active Appearance Model Search for 3-D Face Tracking”, F Dornaika and J Ahlberg, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 34, No. 4, pg 1838-1853, August 2004, although other models based on the original paper by TF Cootes et al “Active Appearance Models” Proc. European Conf. Computer Vision, 1998, pp 484-498 could also be employed.
The AAM module 150 can preferably cooperate with the quality module 140 to provide pose and/or expression indicators to allow for selection of images in the analysis and optionally in the correction process described below. Also, the AAM module 150 can preferably cooperate with the super-resolution module 160 to provide pose indicators to allow for selection of images in the correction process, again described in more detail below.
Referring now to
Another or alternative stage of analysis focuses on the mouth region and determines if the mouth is opened in a yawn or indeed not smiling; again the face region is categorized accordingly. As mentioned previously, if AAM analysis is performed on the image, then the AAM parameters can be used to indicate the state of a subject's mouth.
Other exemplary tests might include luminance levels, skin colour and texture histograms, abrupt facial expressions (smiling, frowning) which may cause significant variations in facial features (mouth shape, furrows in brow). Specialized tests can be implemented as additional or alternative image analysis filters, for example, a Hough transform filter could be used to detect parallel lines in a face region above the eyes indicating a “furrowed brow”. Other image analysis techniques such as those known in the art and as disclosed in U.S. Pat. No. 6,301,440 can also be employed to categorise the face region(s) of the main image.
After this analysis, it is decided (for each face region) if any of these defects occurred, step 260, and the camera or external processing device user can be offered the option of repairing the defect based on the buffered (low resolution) face region data, step 265.
When the repair option is actuated by the user, each of the low-resolution face regions is first analyzed by the face region quality analyzer, step 270. As this analysis is operative on lower resolution images acquired and stored at steps 200/210, the analysis may vary from the analysis of face regions in the main acquired image at step 250. Nevertheless the analysis steps are similar in that each low-resolution face region is analyzed to determine if it suffers from image defects in which case it should not be selected at step 280 to reconstruct the defective face region(s) in the main image. After this analysis and selection, if there are not enough “good” face regions corresponding to a defective face region available from the stream of low-resolution images, an indication is passed to the user that image repair is not viable. Where there are enough “good” face regions, these are passed on for resizing and alignment, step 285.
This step re-sizes each face region and performs some local alignment of cardinal face points to correct for variations in pose and to ensure that each of the low-resolution face regions overlap one another as uniformly as is practical for later processing.
It should also be noted that as these image regions were captured in sequence and over a relatively short duration, it is expected that they are of approximately the same size and orientation. Thus, image alignment can achieved using cardinal face points, in particular those relating to the eyes, mouth, lower face (chin region) which is normally delineated by a distinct boundary edge, and the upper face which is normally delineated by a distinctive hairline boundary. Some slight scaling and morphing of extracted face regions may be used to achieve reasonable alignment, however a very precise alignment of these images is not desirable as it would undermine the super-resolution techniques which enable a higher resolution image to be determined from several low-resolution images.
It should be noted that the low-resolution images captured and stored at steps 200/210 can be captured either from a time period before capturing the main image or from a period following capture of the main image (indicated by the dashed line extending from step 230). For example, it may be possible to capture suitable defect free low resolution images in a period immediately after a subject has stopped moving/blinking etc following capture of the main image.
This set of selected defect free face regions is next passed to a super-resolution module 160 which combines them using known super-resolution methods to yield a high resolution face region which is compatible with a corresponding region of the main acquired image.
Now the system has available to it, a high quality defect-free combination face region and a high resolution main image with a generally corresponding defective face region.
If this has not already been performed for quality analysis, the defective face region(s) as well as the corresponding high quality defect-free face region are subjected to AAM analysis, step 300. Referring now to
It will therefore be seen that the AAM module 150 can also be used in the facial region analysis steps 250/270 to provide in indicator of whether a mouth or eyes are open i.e. smiling and not blinking; and also to help determine in steps 285/290 implemented by the super-resolution module 160 whether facial regions are similarly aligned or inclined for selection before super-resolution.
So, using
In relation to
In any case, if the super-resolved face region is deemed to be compatible with the defective face region, information from the super-resolved face region can be pasted onto the main image by any suitable technique to correct the face region of the main image, step 320. The corrected image can be viewed and depending on the nature of the mapping, it can be adjusted by the user, before being finally accepted or rejected, step 330. So for example, where dithering around the periphery of the corrected face region is used as part of the correction process, step 320, the degree of dithering can be adjusted. Similarly, luminance levels or texture parameters in the corrected regions can be manually adjusted by the user, or indeed any parameter of the corrected region and the mapping process can be manually adjusted prior to final approval or rejection by the user.
While AAM provides one approach to determine the outside boundary of a facial region, other well-known image processing techniques such as edge detection, region growing and skin color analysis may be used in addition or as alternatives to AAM. However, these may not have the advantage of also being useful in analysing a face region for defects and/or for pose information. Other techniques which can prove useful include applying foreground/background separation to either the low-resolution images or the main image prior to running face detection to reduce overall processing time by only analysing foreground regions and particularly foreground skin segments. Local colour segmentation applied across the boundary of a foreground/background contour can assist in further refining the boundary of a facial region.
Once the user is satisfied with the placement of the reconstructed face region they may choose to merge it with the main image; alternatively, if they are not happy they can cancel the reconstruction process. These actions are typically selected through buttons on the camera user interface where the correction module is implemented on the acquisition device 20.
As practical examples let us consider an example of the system used to correct an eye defect. An example may be used of a defect where one eye is shut in the main image frame due to the subject “blinking” during the acquisition. Immediately after the main image acquisition the user is prompted to determine if they wish to correct this defect. If they confirm this, then the camera begins by analyzing a set of face regions stored from preview images acquired immediately prior to the main image acquisition. It is assumed that a set of, say, 20 images was saved from the one second period immediately prior to image acquisition. As the defect was a blinking eye, the initial testing determines that the last, say, 10 of these preview images are not useful. However the previous 10 images are determined to be suitable. Additional testing of these images might include the determination of facial pose, eliminating images where the facial pose varies more than 5% from the averaged pose across all previews; a determination of the size of the facial region, eliminating images where the averaged size varies more than 25% from the averaged size across all images. The reason the threshold is higher for the latter test is that it is easier to rescale face regions than to correct for pose variations.
In variations of the above described embodiment, the regions that are combined may include portions of the background region surrounding the main face region. This is particularly important where the defect to be corrected in the main acquired image is due to face motion during image exposure. This will lead to a face region with a poorly defined outer boundary in the main image and the super-resolution image which is superimposed upon it typically incorporates portions of the background for properly correcting this face motion defect. A determination of whether to include background regions for face reconstruction can be made by the user, or may be determined automatically after a defect analysis is performed on the main acquired image. In the latter case, where the defect comprises blurring due to face motion, then background regions will normally be included in the super-resolution reconstruction process. In an alternative embodiment, a reconstructed background can be created using either (i) region infilling techniques for a background region of relatively homogeneous colour and texture characteristics, or (ii) directly from the preview image stream using image alignment and super-resolution techniques. In the latter case the reconstructed background is merged into a gap in the main image background created by the separation of foreground from background; the reconstructed face region is next merged into the separated foreground region, specifically into the facial region of the foreground and finally the foreground is re-integrated with the enhanced background region.
After applying super-resolution methods to create a higher resolution face region from multiple low-resolution preview images, some additional scaling and alignment operations are normally involved. Furthermore, some blending, infilling and morphological operations may be used in order to ensure a smooth transition between the newly constructed super-resolution face region and the background of the main acquired image. This is particularly the case where the defect to be corrected is motion of the face during image exposure. In the case of motion defects it may also be desirable to reconstruct portions of the image background prior to integration of the reconstructed face region into the main image.
It is also be desirable to match the overall luminance levels of the new face region with that of the old face region, and this is best achieved through a matching of the skin colour between the old region and the newly constructed one. Preview images are acquired under fixed camera settings and can be over/under exposed. This may not be fully compensated for during the super-resolution process and may involve additional image processing operations.
While the above described embodiments have been directed to replacing face regions within an image, it will be seen that AAM can be used to model any type of feature of an image. So in certain embodiments, the patches to be used for super-resolution reconstruction may be sub-regions within a face region. For example, it may be desired to reconstruct only a segment of the face regions, such as an eye or mouth region, rather than the entire face region. In such cases, a determination of the precise boundary of the sub-region is of less importance as the sub-region will be merged into a surrounding region of substantially similar colour and texture (i.e. skin colour and texture). Thus, it is sufficient to center the eye regions to be combined or to align the corners of the mouth regions and to rely on blending the surrounding skin coloured areas into the main image.
In one or more of the above embodiments, separate face regions may be individually tracked (see also U.S. application Ser. No. 11/464,083, which is hereby incorporated by reference). Regions may be tracked from frame-to-frame. Preview or post-view face regions can be extracted, analyzed and aligned with each other and with the face region in the main or final acquired image. In addition, in techniques according to certain embodiments, faces may be tracked between frames in order to find and associate smaller details between previews or post-views on the face. For example, a left eye from Joe's face in preview N may be associated with a left eye from Joe's face in preview N+1. These may be used together to form one or more enhanced quality images of Joe's eye. This is advantageous because small features (an eye, a mouth, a nose, an eye component such as an eye lid or eye brow, or a pupil or iris, or an ear, chin, beard, mustache, forehead, hairstyle, etc. are not as easily traceable between frames as larger features (and their absolute or relative positional shifts between frames tend to be more substantial relative to their size.
The present invention is not limited to the embodiments described above herein, which may be amended or modified without departing from the scope of the present invention as set forth in the appended claims, and structural and functional equivalents thereof.
In methods that may be performed according to preferred embodiments herein and that may have been described above and/or claimed below, the operations have been described in selected typographical sequences. However, the sequences have been selected and so ordered for typographical convenience and are not intended to imply any particular order for performing the operations.
In addition, all references cited above herein, in addition to the background and summary of the invention sections themselves, are hereby incorporated by reference into the detailed description of the preferred embodiments as disclosing alternative embodiments and components. The following are also incorporated by reference for this purpose: U.S. patent applications Nos. 60/829,127, 60/804,546, 60/821,165 11/554,539, 11/464,083, 11/027,001, 10/842,244, 11/024,046, 11/233,513, 11/460,218, 11/573,713, 11/319,766, 11/464,083, 11/744,020 and 11/460,218, and U.S. published application no. 2006/0285754.
Number | Name | Date | Kind |
---|---|---|---|
4047187 | Mashimo et al. | Sep 1977 | A |
4317991 | Stauffer | Mar 1982 | A |
4367027 | Stauffer | Jan 1983 | A |
RE31370 | Mashimo et al. | Sep 1983 | E |
4448510 | Murakoshi | May 1984 | A |
4456354 | Mizokami | Jun 1984 | A |
4638364 | Hiramatsu | Jan 1987 | A |
4690536 | Nakai et al. | Sep 1987 | A |
4796043 | Izumi et al. | Jan 1989 | A |
4970663 | Bedell et al. | Nov 1990 | A |
4970683 | Harshaw et al. | Nov 1990 | A |
4975969 | Tal | Dec 1990 | A |
5008946 | Ando | Apr 1991 | A |
5018017 | Sasaki et al. | May 1991 | A |
RE33682 | Hiramatsu | Sep 1991 | E |
5051770 | Cornuejols | Sep 1991 | A |
5063603 | Burt | Nov 1991 | A |
5111231 | Tokunaga | May 1992 | A |
5150432 | Ueno et al. | Sep 1992 | A |
5161204 | Hutcheson et al. | Nov 1992 | A |
5164831 | Kuchta et al. | Nov 1992 | A |
5164992 | Turk et al. | Nov 1992 | A |
5227837 | Terashita | Jul 1993 | A |
5280530 | Trew et al. | Jan 1994 | A |
5291234 | Shindo et al. | Mar 1994 | A |
5305048 | Suzuki et al. | Apr 1994 | A |
5311240 | Wheeler | May 1994 | A |
5331544 | Lu et al. | Jul 1994 | A |
5353058 | Takei | Oct 1994 | A |
5384615 | Hsieh et al. | Jan 1995 | A |
5384912 | Ogrinc et al. | Jan 1995 | A |
5430809 | Tomitaka | Jul 1995 | A |
5432863 | Benati et al. | Jul 1995 | A |
5450504 | Calia | Sep 1995 | A |
5465308 | Hutcheson et al. | Nov 1995 | A |
5488429 | Kojima et al. | Jan 1996 | A |
5493409 | Maeda et al. | Feb 1996 | A |
5496106 | Anderson | Mar 1996 | A |
5576759 | Kawamura et al. | Nov 1996 | A |
5633678 | Parulski et al. | May 1997 | A |
5638136 | Kojima et al. | Jun 1997 | A |
5638139 | Clatanoff et al. | Jun 1997 | A |
5652669 | Liedenbaum | Jul 1997 | A |
5680481 | Prasad et al. | Oct 1997 | A |
5684509 | Hatanaka et al. | Nov 1997 | A |
5706362 | Yabe | Jan 1998 | A |
5710833 | Moghaddam et al. | Jan 1998 | A |
5715325 | Bang et al. | Feb 1998 | A |
5724456 | Boyack et al. | Mar 1998 | A |
5745668 | Poggio et al. | Apr 1998 | A |
5764803 | Jacquin et al. | Jun 1998 | A |
5771307 | Lu et al. | Jun 1998 | A |
5774129 | Poggio et al. | Jun 1998 | A |
5774591 | Black et al. | Jun 1998 | A |
5774747 | Ishihara et al. | Jun 1998 | A |
5774754 | Ootsuka | Jun 1998 | A |
5781650 | Lobo et al. | Jul 1998 | A |
5802208 | Podilchuk et al. | Sep 1998 | A |
5802220 | Black et al. | Sep 1998 | A |
5812193 | Tomitaka et al. | Sep 1998 | A |
5818975 | Goodwin et al. | Oct 1998 | A |
5835616 | Lobo et al. | Nov 1998 | A |
5842194 | Arbuckle | Nov 1998 | A |
5844573 | Poggio et al. | Dec 1998 | A |
5850470 | Kung et al. | Dec 1998 | A |
5852669 | Eleftheriadis et al. | Dec 1998 | A |
5852823 | De Bonet | Dec 1998 | A |
RE36041 | Turk et al. | Jan 1999 | E |
5870138 | Smith et al. | Feb 1999 | A |
5905807 | Kado et al. | May 1999 | A |
5911139 | Jain et al. | Jun 1999 | A |
5966549 | Hara et al. | Oct 1999 | A |
5978519 | Bollman et al. | Nov 1999 | A |
5991456 | Rahman et al. | Nov 1999 | A |
6028960 | Graf et al. | Feb 2000 | A |
6035074 | Fujimoto et al. | Mar 2000 | A |
6053268 | Yamada | Apr 2000 | A |
6061055 | Marks | May 2000 | A |
6072094 | Karady et al. | Jun 2000 | A |
6097470 | Buhr et al. | Aug 2000 | A |
6101271 | Yamashita et al. | Aug 2000 | A |
6108437 | Lin | Aug 2000 | A |
6128397 | Baluja et al. | Oct 2000 | A |
6128398 | Kuperstein et al. | Oct 2000 | A |
6134339 | Luo | Oct 2000 | A |
6148092 | Qian | Nov 2000 | A |
6151073 | Steinberg et al. | Nov 2000 | A |
6173068 | Prokoski | Jan 2001 | B1 |
6188777 | Darrell et al. | Feb 2001 | B1 |
6192149 | Eschbach et al. | Feb 2001 | B1 |
6246779 | Fukui et al. | Jun 2001 | B1 |
6246790 | Huang et al. | Jun 2001 | B1 |
6249315 | Holm | Jun 2001 | B1 |
6252976 | Schildkraut et al. | Jun 2001 | B1 |
6263113 | Abdel-Mottaleb et al. | Jul 2001 | B1 |
6268939 | Klassen et al. | Jul 2001 | B1 |
6278491 | Wang et al. | Aug 2001 | B1 |
6282317 | Luo et al. | Aug 2001 | B1 |
6301370 | Steffens et al. | Oct 2001 | B1 |
6301440 | Bolle et al. | Oct 2001 | B1 |
6332033 | Qian | Dec 2001 | B1 |
6349373 | Sitka et al. | Feb 2002 | B2 |
6351556 | Loui et al. | Feb 2002 | B1 |
6360021 | McCarthy et al. | Mar 2002 | B1 |
6393148 | Bhaskar | May 2002 | B1 |
6400830 | Christian et al. | Jun 2002 | B1 |
6404900 | Qian et al. | Jun 2002 | B1 |
6407777 | DeLuca | Jun 2002 | B1 |
6421468 | Ratnakar et al. | Jul 2002 | B1 |
6426779 | Noguchi et al. | Jul 2002 | B1 |
6438234 | Gisin et al. | Aug 2002 | B1 |
6438264 | Gallagher et al. | Aug 2002 | B1 |
6456732 | Kimbell et al. | Sep 2002 | B1 |
6459436 | Kumada et al. | Oct 2002 | B1 |
6463163 | Kresch | Oct 2002 | B1 |
6473199 | Gilman et al. | Oct 2002 | B1 |
6501857 | Gotsman et al. | Dec 2002 | B1 |
6502107 | Nishida | Dec 2002 | B1 |
6504942 | Hong et al. | Jan 2003 | B1 |
6504951 | Luo et al. | Jan 2003 | B1 |
6516154 | Parulski et al. | Feb 2003 | B1 |
6526161 | Yan | Feb 2003 | B1 |
6529630 | Kinjo | Mar 2003 | B1 |
6549641 | Ishikawa et al. | Apr 2003 | B2 |
6556708 | Christian et al. | Apr 2003 | B1 |
6564225 | Brogliatti et al. | May 2003 | B1 |
6567983 | Shiimori | May 2003 | B1 |
6587119 | Anderson et al. | Jul 2003 | B1 |
6606398 | Cooper | Aug 2003 | B2 |
6633655 | Hong et al. | Oct 2003 | B1 |
6661907 | Ho et al. | Dec 2003 | B2 |
6697503 | Matsuo et al. | Feb 2004 | B2 |
6697504 | Tsai | Feb 2004 | B2 |
6700999 | Yang | Mar 2004 | B1 |
6747690 | Molgaard | Jun 2004 | B2 |
6754368 | Cohen | Jun 2004 | B1 |
6754389 | Dimitrova et al. | Jun 2004 | B1 |
6760465 | McVeigh et al. | Jul 2004 | B2 |
6760485 | Gilman et al. | Jul 2004 | B1 |
6765612 | Anderson et al. | Jul 2004 | B1 |
6778216 | Lin | Aug 2004 | B1 |
6792135 | Toyama | Sep 2004 | B1 |
6801250 | Miyashita | Oct 2004 | B1 |
6816611 | Hagiwara et al. | Nov 2004 | B1 |
6829009 | Sugimoto | Dec 2004 | B2 |
6850274 | Silverbrook et al. | Feb 2005 | B1 |
6876755 | Taylor et al. | Apr 2005 | B1 |
6879705 | Tao et al. | Apr 2005 | B1 |
6885760 | Yamada et al. | Apr 2005 | B2 |
6900840 | Schinner et al. | May 2005 | B1 |
6937773 | Nozawa et al. | Aug 2005 | B1 |
6940545 | Ray et al. | Sep 2005 | B1 |
6959109 | Moustafa | Oct 2005 | B2 |
6965684 | Chen et al. | Nov 2005 | B2 |
6977687 | Suh | Dec 2005 | B1 |
6993157 | Oue et al. | Jan 2006 | B1 |
7003135 | Hsieh et al. | Feb 2006 | B2 |
7020337 | Viola et al. | Mar 2006 | B2 |
7027619 | Pavlidis et al. | Apr 2006 | B2 |
7027621 | Prokoski | Apr 2006 | B1 |
7034848 | Sobol | Apr 2006 | B2 |
7035456 | Lestideau | Apr 2006 | B2 |
7035462 | White et al. | Apr 2006 | B2 |
7035467 | Nicponski | Apr 2006 | B2 |
7038709 | Verghese | May 2006 | B1 |
7038715 | Flinchbaugh | May 2006 | B1 |
7039222 | Simon et al. | May 2006 | B2 |
7042511 | Lin | May 2006 | B2 |
7043465 | Pirim | May 2006 | B2 |
7050607 | Li et al. | May 2006 | B2 |
7057653 | Kubo | Jun 2006 | B1 |
7064776 | Sumi et al. | Jun 2006 | B2 |
7082212 | Liu et al. | Jul 2006 | B2 |
7099510 | Jones et al. | Aug 2006 | B2 |
7106374 | Bandera et al. | Sep 2006 | B1 |
7106887 | Kinjo | Sep 2006 | B2 |
7110569 | Brodsky et al. | Sep 2006 | B2 |
7110575 | Chen et al. | Sep 2006 | B2 |
7113641 | Eckes et al. | Sep 2006 | B1 |
7119838 | Zanzucchi et al. | Oct 2006 | B2 |
7120279 | Chen et al. | Oct 2006 | B2 |
7151843 | Rui et al. | Dec 2006 | B2 |
7158680 | Pace | Jan 2007 | B2 |
7162076 | Liu | Jan 2007 | B2 |
7162101 | Itokawa et al. | Jan 2007 | B2 |
7171023 | Kim et al. | Jan 2007 | B2 |
7171025 | Rui et al. | Jan 2007 | B2 |
7190829 | Zhang et al. | Mar 2007 | B2 |
7194114 | Schneiderman | Mar 2007 | B2 |
7200249 | Okubo et al. | Apr 2007 | B2 |
7218759 | Ho et al. | May 2007 | B1 |
7227976 | Jung et al. | Jun 2007 | B1 |
7254257 | Kim et al. | Aug 2007 | B2 |
7269292 | Steinberg | Sep 2007 | B2 |
7274822 | Zhang et al. | Sep 2007 | B2 |
7274832 | Nicponski | Sep 2007 | B2 |
7295233 | Steinberg et al. | Nov 2007 | B2 |
7315630 | Steinberg et al. | Jan 2008 | B2 |
7315631 | Corcoran et al. | Jan 2008 | B1 |
7317815 | Steinberg et al. | Jan 2008 | B2 |
7336821 | Ciuc et al. | Feb 2008 | B2 |
7362368 | Steinberg et al. | Apr 2008 | B2 |
7403643 | Ianculescu et al. | Jul 2008 | B2 |
7408581 | Gohda | Aug 2008 | B2 |
7440593 | Steinberg et al. | Oct 2008 | B1 |
7515740 | Corcoran et al. | Apr 2009 | B2 |
7612794 | He et al. | Nov 2009 | B2 |
7620214 | Chen et al. | Nov 2009 | B2 |
7636485 | Simon et al. | Dec 2009 | B2 |
7764311 | Bill | Jul 2010 | B2 |
20010005222 | Yamaguchi | Jun 2001 | A1 |
20010028731 | Covell et al. | Oct 2001 | A1 |
20010031142 | Whiteside | Oct 2001 | A1 |
20010038712 | Loce et al. | Nov 2001 | A1 |
20010038714 | Masumoto et al. | Nov 2001 | A1 |
20020090116 | Miichi et al. | Jul 2002 | A1 |
20020105662 | Patton et al. | Aug 2002 | A1 |
20020106114 | Yan et al. | Aug 2002 | A1 |
20020114535 | Luo | Aug 2002 | A1 |
20020118287 | Grosvenor et al. | Aug 2002 | A1 |
20020136433 | Lin | Sep 2002 | A1 |
20020150662 | Dewis et al. | Oct 2002 | A1 |
20020168108 | Loui et al. | Nov 2002 | A1 |
20020172419 | Lin et al. | Nov 2002 | A1 |
20020176609 | Hsieh et al. | Nov 2002 | A1 |
20020181801 | Needham et al. | Dec 2002 | A1 |
20020191861 | Cheatle | Dec 2002 | A1 |
20030012414 | Luo | Jan 2003 | A1 |
20030023974 | Dagtas et al. | Jan 2003 | A1 |
20030025812 | Slatter | Feb 2003 | A1 |
20030035573 | Duta et al. | Feb 2003 | A1 |
20030048950 | Savakis et al. | Mar 2003 | A1 |
20030052991 | Stavely et al. | Mar 2003 | A1 |
20030059107 | Sun et al. | Mar 2003 | A1 |
20030059121 | Savakis et al. | Mar 2003 | A1 |
20030071908 | Sannoh et al. | Apr 2003 | A1 |
20030084065 | Lin et al. | May 2003 | A1 |
20030107649 | Flickner et al. | Jun 2003 | A1 |
20030118216 | Goldberg | Jun 2003 | A1 |
20030123713 | Geng | Jul 2003 | A1 |
20030123751 | Krishnamurthy et al. | Jul 2003 | A1 |
20030142209 | Yamazaki et al. | Jul 2003 | A1 |
20030151674 | Lin | Aug 2003 | A1 |
20030169907 | Edwards et al. | Sep 2003 | A1 |
20030202715 | Kinjo | Oct 2003 | A1 |
20040022435 | Ishida | Feb 2004 | A1 |
20040095359 | Simon et al. | May 2004 | A1 |
20040120391 | Lin et al. | Jun 2004 | A1 |
20040120399 | Kato | Jun 2004 | A1 |
20040170397 | Ono | Sep 2004 | A1 |
20040175021 | Porter et al. | Sep 2004 | A1 |
20040179719 | Chen et al. | Sep 2004 | A1 |
20040218832 | Luo et al. | Nov 2004 | A1 |
20040223649 | Zacks et al. | Nov 2004 | A1 |
20040228505 | Sugimoto | Nov 2004 | A1 |
20040264744 | Zhang et al. | Dec 2004 | A1 |
20050013479 | Xiao et al. | Jan 2005 | A1 |
20050041121 | Steinberg et al. | Feb 2005 | A1 |
20050068446 | Steinberg et al. | Mar 2005 | A1 |
20050068452 | Steinberg et al. | Mar 2005 | A1 |
20050069208 | Morisada | Mar 2005 | A1 |
20050089218 | Chiba | Apr 2005 | A1 |
20050104848 | Yamaguchi et al. | May 2005 | A1 |
20050105780 | Ioffe | May 2005 | A1 |
20050140801 | Prilutsky et al. | Jun 2005 | A1 |
20050169536 | Accomazzi et al. | Aug 2005 | A1 |
20050185054 | Edwards et al. | Aug 2005 | A1 |
20050275721 | Ishii | Dec 2005 | A1 |
20060006077 | Mosher et al. | Jan 2006 | A1 |
20060008152 | Kumar et al. | Jan 2006 | A1 |
20060008173 | Matsugu et al. | Jan 2006 | A1 |
20060018517 | Chen et al. | Jan 2006 | A1 |
20060029265 | Kim et al. | Feb 2006 | A1 |
20060039690 | Steinberg et al. | Feb 2006 | A1 |
20060050933 | Adam et al. | Mar 2006 | A1 |
20060098875 | Sugimoto | May 2006 | A1 |
20060098890 | Steinberg et al. | May 2006 | A1 |
20060120599 | Steinberg et al. | Jun 2006 | A1 |
20060140455 | Costache et al. | Jun 2006 | A1 |
20060147192 | Zhang et al. | Jul 2006 | A1 |
20060177100 | Zhu et al. | Aug 2006 | A1 |
20060177131 | Porikli | Aug 2006 | A1 |
20060203106 | Lawrence et al. | Sep 2006 | A1 |
20060203107 | Steinberg et al. | Sep 2006 | A1 |
20060203108 | Steinberg et al. | Sep 2006 | A1 |
20060204034 | Steinberg et al. | Sep 2006 | A1 |
20060204054 | Steinberg et al. | Sep 2006 | A1 |
20060204055 | Steinberg et al. | Sep 2006 | A1 |
20060204056 | Steinberg et al. | Sep 2006 | A1 |
20060204057 | Steinberg | Sep 2006 | A1 |
20060204058 | Kim et al. | Sep 2006 | A1 |
20060204110 | Steinberg et al. | Sep 2006 | A1 |
20060210264 | Saga | Sep 2006 | A1 |
20060215924 | Steinberg et al. | Sep 2006 | A1 |
20060257047 | Kameyama et al. | Nov 2006 | A1 |
20060268150 | Kameyama et al. | Nov 2006 | A1 |
20060269270 | Yoda et al. | Nov 2006 | A1 |
20060280380 | Li | Dec 2006 | A1 |
20060285754 | Steinberg et al. | Dec 2006 | A1 |
20060291739 | Li et al. | Dec 2006 | A1 |
20070018966 | Blythe et al. | Jan 2007 | A1 |
20070070440 | Li et al. | Mar 2007 | A1 |
20070071347 | Li et al. | Mar 2007 | A1 |
20070091203 | Peker et al. | Apr 2007 | A1 |
20070098303 | Gallagher et al. | May 2007 | A1 |
20070110305 | Corcoran et al. | May 2007 | A1 |
20070116379 | Corcoran et al. | May 2007 | A1 |
20070116380 | Ciuc et al. | May 2007 | A1 |
20070122056 | Steinberg et al. | May 2007 | A1 |
20070133901 | Aiso | Jun 2007 | A1 |
20070154095 | Cao et al. | Jul 2007 | A1 |
20070154096 | Cao et al. | Jul 2007 | A1 |
20070160307 | Steinberg et al. | Jul 2007 | A1 |
20070189606 | Ciuc et al. | Aug 2007 | A1 |
20070189748 | Drimbarean et al. | Aug 2007 | A1 |
20070189757 | Steinberg et al. | Aug 2007 | A1 |
20070201724 | Steinberg et al. | Aug 2007 | A1 |
20070201725 | Steinberg et al. | Aug 2007 | A1 |
20070201750 | Ito et al. | Aug 2007 | A1 |
20070237421 | Luo et al. | Oct 2007 | A1 |
20070296833 | Corcoran et al. | Dec 2007 | A1 |
20080013798 | Ionita et al. | Jan 2008 | A1 |
20080037827 | Corcoran et al. | Feb 2008 | A1 |
20080037838 | Ianculescu et al. | Feb 2008 | A1 |
20080037839 | Corcoran et al. | Feb 2008 | A1 |
20080037840 | Steinberg et al. | Feb 2008 | A1 |
20080043122 | Steinberg et al. | Feb 2008 | A1 |
20080049970 | Ciuc et al. | Feb 2008 | A1 |
20080055433 | Steinberg et al. | Mar 2008 | A1 |
20080075385 | David et al. | Mar 2008 | A1 |
20080144966 | Steinberg et al. | Jun 2008 | A1 |
20080175481 | Petrescu et al. | Jul 2008 | A1 |
20080205712 | Ionita et al. | Aug 2008 | A1 |
20080240555 | Nanu et al. | Oct 2008 | A1 |
20090052750 | Steinberg et al. | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
1128316 | Aug 2001 | EP |
1626569 | Feb 2006 | EP |
1887511 | Feb 2008 | EP |
2370438 | Jun 2002 | GB |
5260360 | Oct 1993 | JP |
25164475 | Jun 2005 | JP |
26005662 | Jan 2006 | JP |
26254358 | Sep 2006 | JP |
WO 02052835 | Jul 2002 | WO |
WO 2007095477 | Aug 2007 | WO |
WO 2007095477 | Aug 2007 | WO |
WO 2007095483 | Aug 2007 | WO |
WO 2007095553 | Aug 2007 | WO |
WO 2007095553 | Aug 2007 | WO |
WO 2007142621 | Dec 2007 | WO |
WO 2008015586 | Feb 2008 | WO |
WO 2008015586 | Feb 2008 | WO |
WO 2008018887 | Feb 2008 | WO |
WO 2008023280 | Feb 2008 | WO |
WO 2008104549 | Sep 2008 | WO |
WO 2008150285 | Dec 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080292193 A1 | Nov 2008 | US |