This application claims the benefit of Japanese Patent Application No. 2007-267859 filed on Oct. 15, 2007 in Japan, the contents of which are incorporated herein by reference.
The present invention relates to a method of setting a condition of a filter used for image processing of a nuclear medicine image, and to an image processing apparatus and program for carrying out the method. In particular, the invention relates to a method of determining a cutoff frequency of a Butterworth filter used for image processing of a nuclear medicine image, and to an image processing apparatus and program for carrying out the method. Nuclear medicine images to which the invention is applied include an image provided by positron emission tomography (PET) and an image provided by single photon emission computed tomography (SPECT).
Nuclear medicine images, typified by a PET image and a SPECT image, are effective for diagnosis of heart failure, cancer, and other various diseases. At the present time, diagnosis using a nuclear medicine image is made in 1200 facilities or more throughout Japan (Working Group for Investigation and Research on Nuclear Medicine Image Quantification and Standardization, the Japanese Society of Nuclear Medicine Technology, Questionnaire Report for Practical Conditions of Nuclear Medicine Examination and Standardization of Image Acquisition, Processing, Display and Output, the Japanese Journal of Nuclear Medicine Technology, Vol. 24, No. 2 (2004), 95-118).
In a nuclear medicine image examination, a drug labeled with a specific radioisotope (hereinafter referred to as a “radiopharmaceutical”) is given to a subject, and gamma rays emitted directly or indirectly from the drug are detected by means of a dedicated camera. A plurality of image data obtained from the results of detecting gamma rays at different angles (hereinafter referred to as “projection data”) are reconstructed to obtain a nuclear medicine tomogram. Here, acquired image data includes noise caused by statistical fluctuations. In general, creating a reconstruction image without removing noise from acquired image data cannot provide an image that can be used in diagnosis. In order to obtain a good image that can be used in diagnosis, it is required to remove noise included in image data, prior to an image reconstruction process.
As methods of removing noise included in image data, there are known a filtering process using a Butterworth filter, a Gaussian filter, or the like, a smoothing process, and the like. The most relied-upon and clinically widely-used method of these methods is a method in which image data is filtered with a Butterworth filter. In this method, image data is multiplied by a filter function that is defined by an order and a cutoff frequency.
Removing noise using a Butterworth filter requires that an order and a cutoff frequency be set. Of these parameters, a cutoff frequency is known to greatly affect image quality of a reconstruction image. Butterworth filtering without using an appropriate cutoff frequency may cause an incorrect diagnosis result.
Conventionally, a cutoff frequency of a Butterworth filter would be set based on the experience of an operator. That is, image processing would be performed a plurality of times with a cutoff frequency being varied, and an operator would choose from the plurality of obtained images an image that the operator considers to be optimum. Then, the operator would set the cutoff frequency used for obtaining the chosen image as an optimum value. However, this method has a problem that image quality of a nuclear medicine image to be obtained largely depends on the experience and skill of an operator. For image processing, a method is desired in which a cutoff frequency can be set uniquely, but such a method is hitherto unknown.
The above-mentioned document describes a result of a questionnaire addressed to all nuclear medicine treatment facilities that have a gamma camera. According to the questionnaire result, the most popular answer to “questions in a nuclear medicine examination and items that should be explained by equipment makers” is the setting of a cutoff frequency of a Butterworth filter.
A purpose of the invention made in view of the above-mentioned background is to provide an image processing apparatus, an image processing method, and a program that can perform filtering with an optimum cutoff frequency being set automatically.
The present inventors have made intensive study addressing the technical issue of automatically setting an optimum cutoff frequency of a Butterworth filter and, as a result, have found that there is a correlation between a parameter related to a radial intensity distribution of a spatial frequency of a nuclear medicine image and an optimum cutoff frequency. Based on this finding, the inventors have completed the invention in which a Butterworth filter is set with an optimum cutoff frequency.
An image processing program of the invention is a program for performing image processing on nuclear medicine image data, and causes a computer to execute the steps of: inputting nuclear medicine image data; applying a two-dimensional Fourier transform to the inputted nuclear medicine image to obtain a spatial frequency of the nuclear medicine image; calculating a radial intensity distribution of the spatial frequency of the nuclear medicine image; determining a cutoff frequency corresponding to a parameter related to the radial intensity distribution determined for the nuclear medicine image, with reference to a cutoff frequency table storing information on a relation between a parameter related to a radial intensity distribution of a spatial frequency of a nuclear medicine image and a Butterworth filter cutoff frequency to be applied to the nuclear medicine image concerned; and filtering the nuclear medicine image data by means of a Butterworth filter set with the cutoff frequency.
An image processing program according to another aspect of the invention is a program for performing image processing on nuclear medicine image data, and causes a computer to execute the steps of: inputting a plurality of nuclear medicine image data of an object taken from different angles; applying a two-dimensional Fourier transform to a nuclear medicine image chosen from the plurality of inputted nuclear medicine images to obtain a spatial frequency of the chosen nuclear medicine image; calculating a radial intensity distribution of the spatial frequency of the chosen nuclear medicine image; determining a cutoff frequency corresponding to a parameter related to the radial intensity distribution determined for the chosen nuclear medicine image, with reference to a cutoff frequency table storing information on a relation between a parameter related to a radial intensity distribution of a spatial frequency of a nuclear medicine image and a Butterworth filter cutoff frequency to be applied to the nuclear medicine image concerned; filtering the plurality of nuclear medicine image data by means of a Butterworth filter set with the cutoff frequency; and reconstructing the plurality of filtered nuclear medicine image data to generate a reconstruction image of the object.
The image processing program of the invention may use the maximum value of frequency components contained in the radial intensity distribution or may use the sum total of each frequency component in the radial intensity distribution, as the parameter of the radial intensity distribution. The “frequency component” is a power spectrum corresponding to the frequency.
An image processing method of the invention comprises the steps of: preparing a cutoff frequency table storing information on a relation between a parameter related to a radial intensity distribution of a spatial frequency of a nuclear medicine image and a Butterworth filter cutoff frequency to be applied to the nuclear medicine image concerned; inputting nuclear medicine image data; applying a two-dimensional Fourier transform to the inputted nuclear medicine image to obtain a spatial frequency of the nuclear medicine image; calculating a radial intensity distribution of the spatial frequency of the nuclear medicine image; determining a cutoff frequency corresponding to a parameter related to the radial intensity distribution determined for the nuclear medicine image, with reference to the cutoff frequency table; and filtering the nuclear medicine image data by means of a Butterworth filter set with the cutoff frequency.
An image processing apparatus of the invention comprises: a cutoff frequency table storing information on a relation between a parameter related to a radial intensity distribution of a spatial frequency of a nuclear medicine image and a Butterworth filter cutoff frequency to be applied to the nuclear medicine image concerned; a nuclear medicine image input unit for inputting nuclear medicine image data; a Fourier transform unit for applying a two-dimensional Fourier transform to the inputted nuclear medicine image to obtain a spatial frequency of the nuclear medicine image; a radial intensity distribution calculation unit for calculating a radial intensity distribution of the spatial frequency of the nuclear medicine image; a cutoff frequency setting unit for setting a cutoff frequency corresponding to a parameter related to the radial intensity distribution determined for the nuclear medicine image, with reference to the cutoff frequency table; and a Butterworth filter for filtering the nuclear medicine image data with the set cutoff frequency.
In the image processing apparatus of the invention, the cutoff frequency table may include different tables depending on the type of collimator or on an equation for the Butterworth filter to be used, and the cutoff frequency setting unit may set the cutoff frequency corresponding to the parameter related to the radial intensity distribution determined for the nuclear medicine image, with reference to a table corresponding to the type of collimator used for taking the nuclear medicine image or to an equation for the Butterworth filter to be used.
In the invention, a cutoff frequency table storing information on a relation between a parameter related to a radial intensity distribution of a spatial frequency of a nuclear medicine image and a Butterworth filter cutoff frequency to be applied to the nuclear medicine image concerned is prepared in advance, and a cutoff frequency corresponding to an inputted nuclear medicine image is read from the cutoff frequency table and set, so that an optimum cutoff frequency can be set automatically regardless of the experience and skill of an individual operator.
There are other aspects of the invention as described below. This disclosure of the invention therefore intends to provide part of the invention and does not intend to limit the scope of the invention described and claimed herein.
The following is a detailed description of the invention. It will be understood that the embodiment described below is only an example of the invention, and the invention can be varied in various aspects. Therefore, the specific configurations and functions disclosed below do not limit the claims.
Now, an image processing apparatus of an embodiment of the invention will be described with reference to the drawings.
The image processing apparatus 1 comprises an image choice unit 18, a two-dimensional Fourier transform unit (hereinafter referred to as the “FFT unit”) 20, a radial intensity distribution calculation unit 22, a cutoff frequency setting unit 24, and a cutoff frequency table 26, as a configuration for setting a cutoff frequency of the Butterworth filter 12.
The image choice unit 18 has a function to choose projection image data to be used for setting the cutoff frequency, from inputted projection image data. PET or the like uses, for example, 60 projection images of a subject taken every six degrees in order to generate a reconstruction image from projection images. The all projection image data may be used to set the cutoff frequency but, in the embodiment, the image choice unit 18 chooses a projection image to be used for setting the cutoff frequency in order to reduce the cutoff frequency setting process.
If a region to be subjected to image processing does not have much dependence on the imaging direction e.g. as a head does not, the image choice unit 18 may choose any projection image. If the region to be subjected to image processing is a heart for example, there is an influence of the liver or the like depending on the imaging direction, and thus the characteristics of a radial distribution function obtained from the projection images varies. In such a case, the image choice unit 18 chooses, for example, N images taken at 360 (degrees)/N intervals. The image choice unit 18 may also be configured to choose a projection image in accordance with the region. For example, if the target region is a heart, the image choice unit 18 chooses an image in which the liver and the heart are sufficiently separated from each other. Usually, an image obtained from the front or back of the patient can be used. If a 360-degree acquisition is performed, images obtained from the front and back of the patient may be summed up to improve the data sensitivity. This allows the image choice unit 18 to choose a projection image of the heart that is not much affected by the liver.
The FFT unit 20 applies a two-dimensional Fourier transform to a projection image chosen by the image choice unit 18 and obtains a two-dimensional spatial frequency of the projection image.
In a case where a plurality of projection images are chosen by the image choice unit 18, (1) the two-dimensional Fourier transform may be applied after the plurality of projection images are combined together, or (2) the two-dimensional Fourier transform may be applied to each projection image and then, when the radial intensity distribution is determined, a process may be performed in which data determined from each chosen projection image are summed up.
The radial intensity distribution calculation unit 22 determines a radial intensity distribution of a projection image transformed into frequency space by the two-dimensional Fourier transform.
An intensity distribution of frequency components determined for only one direction (X-axis direction, in this example) as shown in
The cutoff frequency setting unit 24 reads from the cutoff frequency table 26 a cutoff frequency corresponding to the maximum value of frequency components in a radial intensity distribution determined by the radial intensity distribution calculation unit 22, and sets the read cutoff frequency as a cutoff frequency of the Butterworth filter 12.
While
Now, a description will be made of a process of determining the optimum cutoff frequency by visual evaluation made by a plurality of experts. First, a plurality of reconstruction images are generated, with the cutoff frequency being varied, from projection image data obtained from one object, and experts choose therefrom an optimum reconstruction image. Subsequently, the maximum and minimum cutoff frequencies are removed from cutoff frequencies corresponding to the reconstruction images chosen by the experts, and the remaining cutoff frequencies are averaged to determine the optimum cutoff frequency. The removal of the maximum and minimum cutoff frequencies is to prevent the outliers from affecting the average value. The relation between the thus determined optimum cutoff frequency and the maximum frequency component in the radial intensity distribution of the spatial frequency of the projection image data concerned is determined, and this relation is stored in the cutoff frequency table.
The image processing apparatus 1 reads from the cutoff frequency table 26 a cutoff frequency corresponding to the maximum value of frequency components in the radial intensity distribution, and sets the Butterworth filter 12 with the read cutoff frequency (S5). The image processing apparatus 1 filters the plurality of projection image data by means of the Butterworth filter 12 (S6). Subsequently, the image processing apparatus 1 reconstructs the filtered projection image data to generate a reconstruction image (S7), and outputs the generated reconstruction image (S8).
While
The main module 32 is a module for controlling the execution of: the image input module 34; the image choice module 36; the FFT module 38; the radial intensity distribution calculation module 40; the cutoff frequency setting module 42; the filtering module 44; the image reconstruction module 46; and the image output module 48.
When executed by the computer, the image input module 34 realizes the function of the image input unit 10 shown in
When executed by the computer, the image choice module 36 realizes the function of the image choice unit 18 shown in
When executed by the computer, the FFT module 38 realizes the function of the FFT unit 20 shown in
When executed by the computer, the radial intensity distribution calculation module 40 realizes the function of the radial intensity distribution calculation unit 22 shown in
When executed by the computer, the cutoff frequency setting module 42 realizes the function of the cutoff frequency setting unit 24 shown in
When executed by the computer, the filtering module 44 filters inputted projection image data by means of the Butterworth filter 12 with a cutoff frequency set by the cutoff frequency setting module 42.
When executed by the computer, the image reconstruction module 46 realizes the function of the image reconstruction unit 14 shown in
When executed by the computer, the image output module 48 realizes the function of the image output unit 16 shown in
Recording media for recording the image processing program 30 of the embodiment include a hard disk, a flexible disk, a CD-ROM, a DVD, or other recording media, such as a ROM, or semiconductor memories. A recording medium in which the image processing program 30 is stored is inserted into a reader provided on the computer, and the image processing program 30 thereby becomes accessible by the computer, so that the image processing program 30 concerned allows the computer to operate as the image processing apparatus 1.
The image processing program 30 may be provided via a network as a computer data signal superimposed on a carrier wave. In this case, the image processing program 30 is received by a communications device provided on the computer and stored in a memory also provided on the computer. Then the image processing program 30 is executed by the computer.
Up to this point, there have been described the image processing apparatus 1, image processing method, and image processing program 30 for realizing them, of the embodiment.
In the embodiment, the cutoff frequency table 26 storing information on a relation between a parameter related to a radial intensity distribution of a spatial frequency of a nuclear medicine image and a cutoff frequency of the Butterworth filter 12 to be applied to the nuclear medicine image concerned is stored, and a cutoff frequency corresponding to an inputted nuclear medicine image is read from the cutoff frequency table 26 and set. This configuration allows an optimum cutoff frequency to be set automatically regardless of the experience and skill of an individual operator. Butterworth filtering with this cutoff frequency can provide nuclear medicine image data with reduced noise and can provide an appropriate diagnosis.
The cutoff frequency table 26 used in the embodiment is not susceptible to an individual difference between imaging apparatuses for nuclear medicine images and to a difference between radiopharmaceuticals. As a result, an appropriate cutoff frequency can be set with the one cutoff frequency table regardless of a difference between imaging apparatuses and between radiopharmaceuticals.
While in the above-described embodiment the maximum value of frequencies in the radial intensity distribution is used as the parameter related to the radial intensity distribution, the parameter related to the radial intensity distribution is not limited to the maximum value of frequency components. The sum total of frequency components may also be used as the parameter related to the radial intensity distribution.
Now, the invention will be described more specifically with working examples, the contents of which, however, does not limit the subject matter of the invention. In each working example, the order of the Butterworth filter was eight.
In this working example, the optimum cutoff frequency was determined based on 10 experts' visual evaluation. The head of a subject was to be imaged. First, 10 reconstruction images were generated, with the cutoff frequency being varied, from projection image data obtained from the imaged target, and an optimum reconstruction image was chosen by each expert. In the working example, the projection image was taken with an SHR fan-beam collimator. The maximum and minimum cutoff frequencies were removed from 10 cutoff frequencies corresponding to the reconstruction images chosen by the experts, and the average value of the remaining eight cutoff frequencies was determined as the optimum cutoff frequency. The above-described procedure was performed on 42 cases of projection image data obtained by imaging 42 subjects, and the optimum cutoff frequency corresponding to each of the projection image data was determined.
Subsequently, data to be stored in the cutoff frequency table was generated based on the optimum cutoff frequency determined by the experts as described above. Specifically, the relation between the optimum cutoff frequency, CF, for the 42 cases of projection image data and the maximum frequency component, H, in the radial intensity distribution of the spatial frequency of the projection image data concerned was determined.
In the working example, the cutoff frequency table generated as described above was used to generate a reconstruction image.
As shown in
where
The above-described numerical evaluation of the degree of approximation of the images resulted in an extremely small error of 1.6%.
In this example, a table was generated which used the sum total of frequency components as the parameter related to the radial intensity distribution. The sum total of frequency components can be determined as the area of the region bounded by the graph of the radial intensity distribution and the horizontal and vertical axes, so in the example the area of the radial intensity distribution was used as the sum total of frequency components.
As in the case of the above-described Example 1, 10 experts determined the optimum cutoff frequency as well as the radial intensity distribution of projection image data, for the 42 cases of projection image data obtained by imaging the heads of the subjects.
Also in this working example, the optimum cutoff frequency was determined based on 10 experts' visual evaluation. Heart muscles of a subject were imaged; 10 reconstruction images were generated, with the cutoff frequency being varied, from the obtained projection image data; and an optimum reconstruction image was chosen by experts. The maximum and minimum cutoff frequencies were removed from 10 cutoff frequencies corresponding to the reconstruction images chosen by the experts, and the average value of the remaining eight cutoff frequencies was determined as the optimum cutoff frequency.
In the working example, the above-described procedure was performed on 53 cases of projection image data obtained by imaging 53 subjects, and the optimum cutoff frequency corresponding to each of the projection image data was determined. In the working example, 99mTc-tetrofosmin (35 cases) and 201TICI (18 cases) were used as radiopharmaceuticals. Projection images were acquired by using a GP collimator for 11 cases and projection images were taken by using an HR collimator for 24 cases, out of the 35 cases where 99mTc-tetrofosmin was used. An HR collimator was used to take projection images for the 18 cases where 201TICI was used.
The radial intensity distribution of the projection image data was determined as below. Two pieces of projection image data taken from the front and back of a subject were chosen from the projection image data of the subject, and the chosen front and back projection image data were added together to generate an image. The reason why the images taken from the front and back of a subject were chosen is because those are not much affected by the liver. Subsequently, a square ROI (region of interest) was set in the heart muscle region; an image of the ROI concerned was extracted; and the extracted image of the ROI was linearly interpolated to generate an image of 128×128 pixels. A region where only the heart muscles showed up (region where the liver did not show up) was chosen as the ROI. The radial distribution function for the linearly interpolated image was then created, and the maximum value of frequency components was calculated by using the created radial distribution function.
Then, the relation between the optimum cutoff frequency for projection image data and the maximum frequency component in the radial intensity distribution of the spatial frequency of the projection image data concerned was determined for the 53 cases.
From the data obtained by imaging with the GP collimator, a line CF=0.00939×H+0.31134 representing the correlation was determined and information on this relational expression was stored in the cutoff frequency table 26 in association with information indicating the GP collimator. From the data obtained by imaging with the HR collimator, a line CF=0.00937×H+0.37785 representing the correlation was determined and information on this relational expression was stored in the cutoff frequency table 26 in association with information indicating the HR collimator.
In this example, a table was generated which used the sum total of frequency components as the parameter related to the radial intensity distribution. The sum total of frequency components can be determined as the area of the region bounded by the graph of the radial intensity distribution and the horizontal and vertical axes, so in the example the area of the radial intensity distribution was used as the sum total of frequency components.
As in the case of the above-described Example 3, 10 experts determined the optimum cutoff frequency as well as the radial intensity distribution of projection image data, for the 53 cases of projection image data obtained by imaging heart muscles of the subjects.
From the data obtained by imaging with the HR collimator, a line CF=0.00361×S+0.37605 representing the correlation was determined and information on this relational expression was stored in the cutoff frequency table 26 in association with information indicating the HR collimator. From the data obtained by imaging with the GP collimator, a line CF=0.00389×S+0.30733 representing the correlation was determined and information on this relational expression was stored in the cutoff frequency table 26 in association with information indicating the GP collimator.
While there has been described what is at present considered to be a preferred embodiment of the invention, it will be understood that various modifications and variations may be made thereto, and it is intended that appended claims cover all such modifications and variations as fall within the true spirit and scope of the invention.
The invention has an advantage of being able to automatically set an optimum cutoff frequency for a filter to be used for image processing of a nuclear medicine image regardless of the experience and skill of an individual operator, and is useful for PET, SPECT, and the like.
Number | Date | Country | Kind |
---|---|---|---|
2007-267859 | Oct 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/002131 | 8/6/2008 | WO | 00 | 7/21/2010 |