The present invention relates to an image processing system, and more particularly, to an image processing system which captures a spectroscopic image of a subject and performs the processing color reproduction of the subject with high precision.
Recently, the increase in concern over the beautification and health is confirmed. In the beatification, the whitening for suppressing the melanin pigment of the skin becomes a field of the trend for esthetic pursuit.
Conventionally, a camera system is used for the skin check which observes the skin surface on a monitor by enlarging it. The camera system for skin check is used in the dermatology, esthetic salon, beauty counseling, and the like. In the dermatology among them, the pecuriality of the skin surface is checked by observing an image of the crista cutis or sulcus cutis and then the counseling is performed.
For example, Japanese Unexamined Patent Application Publication No. 8-149352 discloses one camera for skin check. As disclosed in the Japanese Unexamined Patent Application Publication No. 8-149352, a skin observing apparatus comprises: a case having the opening in front thereof; an optical system having an optical axis as the center of the opening arranged in the case; a solid-state image pick-up device which forms an optical image from the optical system on an image pick-up surface; and a plurality of light-emitting devices which are arranged to illuminate a subject out of the opening via the opening from the inside of the case, have the light illumination in the direction to the opening, are arranged like a ring with the optical axis as the center, and have blue luminescent color.
Further, Japanese Unexamined Patent Application Publication No. 7-322103 discloses another camera for skin check comprising: a lens which is arranged in a case, facing an image pick-up window opened in front of a case main body; an image pick-up device which picks-up an optical image incident via the lens; a circular-line fluorescent lamp which is arranged in the case and illuminates the image pick-up window; a reflecting unit which adjusts an advancing angle by the reflection upon guiding illuminating light from the circular-line fluorescent lamp; a transparent sliding pipe which is arranged coaxially to the image pick-up window in the case with the same diameter as that of the circumference of the image pick-up window and is freely movable in the axial direction; and a shading ring unit which is attached to a part of the transparent sliding pipe and realizes a first state and a second state. The first state permits the passage of the illuminating light from the circular-line fluorescent lamp via a transparent portion of the transparent sliding pipe in response to the movement of the transparent sliding pipe in the axial direction and which prohibits the passage of the illuminating light from the circular-line fluorescent lamp via the reflecting unit. Further, the second state permits the passage of the illuminating light from the circular-line fluorescent lamp via the reflecting unit and which prohibits the passage of the illuminating light from the fluorescent lamp of the image pick-up window via the transparent sliding pipe.
The dentistry needs to finish the color with the sense of comfort to the patient teeth in the case of creating a prosthetic tooth. Generally, data on the teeth color is obtained with the subjectivity by the direct comparison with the patient teeth color by using a shading guide.
In addition to the dermatology and the dentistry, the paint color of a vehicle and a building, the spectroscopic characteristics of food, and the dyeing of cloths require a technology for reproducing the color of the subject with accuracy for the purpose of using on the diagnosis, examination, confirmation, and determination.
As one conventional technology for reproducing the color with high accuracy, Japanese Unexamined Patent Application Publication No. 2000-152269 discloses a color reproducing system in which multi-band image data is captured by picking-up an image of a subject under exterior lighting with many spectroscopic filters arranged on a rotary filter turret and further the color is reproduced by estimating the spectroscopic spectrum of the subject with high accuracy.
However, the color reproducing system disclosed in the Japanese Unexamined Patent Application Publication No. 2000-152269 is used to obtain spectrum data of the subject in a laboratory or the like, with the heavy weight in the fixing type, and needs another illuminating sensor which is used for the color reproduction with the exterior lighting. However, the above-mentioned fields of users, for whom the compact size, light weight, and handy property are necessary for the operation, do not satisfy with the conventional color reproducing system.
The dermatology conventionally uses a handy-type image processing system that does not obtain the multi-band data. Therefore, the handy-type image processing system does not satisfy the need for color reproduction with high precision.
It is an object of the present invention to provide a mobile image processing system for reproducing the color with the high precision and with the compact size and light weight.
According to a first aspect of the invention, a photographing apparatus includes: a plurality of light-emitting devices for illuminating a subject and emitting illumination light having characteristics of spectroscopic distributions varied in at least a visible light range; an image pick-up optical system which forms a subject image of a subject illuminated by the light-emitting device; an image pick-up device unit which picks-up the subject image formed by the image pick-up optical system and outputs an image signal; and a control unit which controls lighting-on of the plurality of light-emitting devices and image picking-up by the image pick-up device unit.
In addition, according to the first aspect of the invention, the photographing apparatus is configured two switch between a spectroscopic image capturing mode for capturing multi-band spectroscopic still images of the subject and a moving image capturing mode for capturing a moving image.
In the spectroscopic image capturing mode, the control unit controls the plurality of light emitting devices to sequentially light-on according to the characteristics of spectroscopic distributions, and controls the image pick-up device unit to perform the image picking-up a plurality of times synchronously with the lighting-on of the light emitting devices to capture multi-band sequential spectroscopic images of the subject.
In the moving image capturing mode, the control unit one of: (i) controls light emitting devices of a single specific primary color or a plurality of specific primary colors selected from the plurality of light emitting devices to light-on sequentially or simultaneously, and (ii) controls a plurality of groups of the light-emitting devices to sequentially light-on group by group, the groups including light-emitting devices having different characteristics of spectroscopic distributions selected from the plurality of light-emitting devices, and the control unit controls the image pick-up device unit to capture a moving image.
According to a second aspect of the invention, in the first aspect, the control unit performs the control by using groups necessary for application in the plurality of groups of the light-emitting devices which respectively comprise the plurality of the light-emitting devices.
According to a third aspect of the invention, in the first aspect, the moving image capturing mode is a mode for capturing a three-primary-color moving image by the image pick-up device unit by sequentially lighting-on groups of the light-emitting devices for every image pick-up frame in the group of the light-emitting devices including a group of the light-emitting devices of blue in the visible light area, a group of the light-emitting devices of red in the visible light area, and a group of the light-emitting devices of green in the visible light area, from among the plurality of light-emitting devices.
According to a fourth aspect of the invention, in the second aspect, the photographing apparatus further includes a photographing operating unit which inputs at least an instruction for starting a spectroscopic image photographing operation, wherein the control unit controls the operation for capturing the plurality of subject spectroscopic images in accordance with the input of the instruction for starting the spectroscopic image photographing operation from the photographing operating unit.
According to a fifth aspect of the invention, in the fourth aspect, the photographing operating unit includes a pressing button switch, and the control unit controls the operation for changing the group upon pressing of the button switch.
According to a sixth aspect of the invention, in the fifth aspect, the control unit controls light-on timings of the devices of the changed group, upon pressing of the button switch.
According to a seventh aspect of the invention, in the fourth aspect, the photographing operating unit includes a pressing button switch, and the control unit controls the switching of the spectroscopic image capturing mode and the moving image capturing mode.
According to an eighth aspect of the invention, in the first aspect, the image pick-up device unit includes a color image pick-up device having a color filter array.
According to a ninth aspect of the invention, in the eighth aspect, at least one of the plurality of light-emitting devices has characteristics of spectroscopic distributions between different bands of the color filter array.
According to a tenth aspect of the invention, in the first aspect, the photographing apparatus further includes a display unit for displaying an image based on the image signal outputted from the image pick-up device unit.
According to an eleventh aspect of the invention, in the first aspect, the photographing apparatus further includes an abutting portion which is abutted to the subject at one end thereof.
According to a twelfth aspect of the invention, in the eleventh aspect, the abutting portion includes a flexible material with a cylindrical shape.
According to a thirteenth aspect of the invention, in the eleventh aspect, the abutting portion includes a material which rejects or reduces influence from ambient light.
According to a fourteenth aspect of the invention, in the eleventh aspect, the abutting portion is detachably coupled to a casing of the photographing apparatus.
According to a fifteenth aspect of the invention, an image processing system includes the photographing apparatus of the first aspect of the invention, and further includes a processing apparatus including a calculating unit which performs a desired image calculation based on the image signal.
According to a sixteenth aspect of the invention, in the fifteenth aspect, the calculating unit includes a color-reproduction calculating unit for calculating image data for displaying an image of the subject which is color-reproduced based on the spectroscopic still images photographed by the photographing apparatus.
According to a seventeenth aspect of the invention, in the sixteenth aspect, the calculating unit further includes an input profile calculating unit for generating an input profile using at least one of the characteristics of spectroscopic distributions of the light-emitting devices, and characteristics data of the image pick-up optical system and the image pick-up device unit, and the color-reproducing calculating unit comprises an XYZ estimation calculating unit for generating image data of XYZ tristimulus values from the spectroscopic still images using the input profile and a color matching function.
According to an eighteenth aspect of the invention, in the fifteenth aspect, the calculating unit further includes an image determination calculating unit which determines or analyzes the subject based on the spectroscopic still images and outputs a result of the determining or analyzing.
Hereinbelow, a description is given of embodiments of the present invention with reference to the drawings.
The image processing system comprises: a photographing apparatus 1 which can take a picture of a subject spectroscopic image by illuminating a subject with illuminating light having a plurality of independent varying wavelength bands in a visible light area; and a processing apparatus 2 which is connected to the photographing apparatus 1 and processes the subject spectroscopic image outputted from the photographing apparatus 1. The processing apparatus 2 is connected to a network 3 if necessary.
In the photographing apparatus 1 according to the first embodiment, the image pick-up operation of a still image and the image pick-up operation of a moving image are performed. That is, in the image pick-up operation of the still image, illuminating light having six types of wavelength bands (six primary-color illuminating light) is sequentially irradiated to the subject, and six subject-spectroscopic-images are captured as the still images. In the image pick-up operation of the moving image, at least one piece of illuminating light is selected from the six primary-color illuminating light, three R-, G-, and B-illuminating light is set and is sequentially irradiated, and the images are captured as a surface-sequential moving image.
Further, the photographing apparatus 1 comprises: a casing 5 having a projecting port 5a which projects the illuminating light, as will be described later, and on which reflecting light from the subject is incident; an abutting portion 4 which is detachably attached to the projecting port 5a of the casing 5 and is cylindrically-shaped, containing a material with the flexibility for shielding so as to prevent the mixing the ambient light and the illuminating light projected to the subject via the projecting port 5a; first to sixth LEDs 6a to 6f serving as light-emitting devices which are built-in the casing 5 and emit the illuminating light by the light-on so as to illuminate the subject; an image pick-up optical system 7 which is built-in the casing 5 and creates a subject image illuminated by the first to sixth LEDs 6a to 6f; a CCD 8 serving as an image pick-up device, included in an image pick-up device unit which picks-up the subject image formed by the image pick-up optical system 7 and outputs an image signal; an A/D converter 9 which converts an analog signal outputted from the CCD 8 into a digital signal; a memory 11 which temporarily stores the subject spectroscopic image outputted from the A/D converter 9 and transmitted via a bus 10, as will be described later, and which is used as a working area of a CPU 18 as will be described later; an operating switch 14 serving as a photographing operating unit, including various operating switches and operating buttons for inputting a starting instruction of the spectroscopic image photographing operation and inputting a starting or ending instruction of the moving image photographing operation; a camera control I/F 12 which transmits the instructing input from the operating switch 14 to the CPU 18, as will be described later, issues a command for the control of light emission of the first to sixth LEDs 6a to 6f based on the instruction from the CPU 18, and controls the image pick-up operation of the photographing apparatus 1; an LED driver 13 which controls the light emission of a light-emission starting timing and a light-emission ending timing of the first to sixth LEDs 6a to 6f based on the instruction from the camera control I/F 12; a monitor I/F 15 which controls the operation for displaying, on an LCD monitor 16 which will be described later, the subject spectroscopic images (still images) stored in the memory 11 or the moving image picked-up by the CCD 8; the LCD monitor 16 which displays the image outputted form the monitor I/F 15; an external I/F 17 which outputs, to the processing apparatus 2, the subject spectroscopic images stored in the memory 11 and control data from the processing apparatus 2 or inputs communication data from the processing apparatus 2; and the CPU 18 serving as a control unit which systematically controls the photographing apparatus 1 including the A/D converter 9, the memory 11, the camera control I/F 12, the monitor I/F 15, the external I/F 17, the CPU 18 which will be described later, and the above-mentioned circuits.
The processing apparatus 2 comprises: a calculating device 21 which comprises, e.g., a personal computer or the like, receives the subject spectroscopic image outputted from the external I/F 17, calculates three XYZ excitation values by using an input profile as will be described later, and generates a display signal for obtaining, from a display 22 that will be described later, substantially the same three XYZ excitation values as the three XYZ excitation values presumed to be given by the subject with a display profile based on the calculated three XYZ excitation values; and the display 22 which displays the image on which the colors are reproduced at the high fidelity level by using the display signal outputted from the calculating device 21. Although not shown, the processing apparatus 2 comprises a network interface for connecting to the network 3 and the like.
Incidentally, the photographing apparatus 1 and the processing apparatus 2 may be connected by wiring. Alternatively, the photographing apparatus 1 and the processing apparatus 2 may be connected by radio frequency using Bluetooth or radio LAN or may be integrally configured.
Referring to
In the shown example, the light-emitting spectrums of the first to sixth LEDs 6a to 6f are completely separated without overlaying each other. However, the light-emitting spectrums of the first to sixth LEDs 6a to 6f may be partly overlaid. Further, the number of types of LEDs is not limited to six and an arbitrary number of types of LEDs may be properly combined.
The spectrums of the illuminating light of the LEDs may be arrayed at an equal wavelength interval (at which peaks, for example, are aligned at an equal interval in the wavelength direction), at an equal wavelength ratio interval (at which the peaks or the like are aligned at a predetermined ratio interval in the wavelength direction), at a specific array for specific purpose (by which the peaks or the like are specifically aligned in the wavelength direction for the specific purpose), by the setting to be sequentially multiplying a specific wavelength-color (by which the peaks or the like are aligned at the position for sequentially multiplying the wavelength by using the specific wavelength as a basic wavelength), by the arrangement of a specific polarizing color (by which the blight expressed by the peaks aligned in the wavelength direction is polarized in the specific direction), or by the arrangement of light extended to outside the visible light area (by which the light expressed by the peaks aligned in the wavelength direction reaches an area outside the visible light area). The spectrum alignment matching the using purpose may be selected.
The light-emitting device uses the LED serving as a semiconductor light-emitting device with high luminance that is light in weight, compact in size, and is easily obtained because of its relatively inexpensive price. However, the light-emitting device is not limited to this and may be a semiconductor laser such as an LD (laser diode) or another light-emitting device.
According to the first embodiment, the CCD 8 is a monochrome-type one. As shown by a curve fS in
Referring to
Referring to
Referring to
Referring to
The arrangement of the LEDs is not limited to the examples shown in
Next, a description is given of two image capturing modes in the photographing apparatus 1.
As mentioned above, the photographing apparatus 1 picks-up the moving image as the normal RGB images and the still image as the subject spectroscopic images of the six primary colors for reproducing the color at the high fidelity level. In a capturing mode of a monitoring image, the moving image is picked-up. In a capturing mode of a spectroscopic image, the still image is picked-up.
The two modes are switched by pressing a photographing button 14a (refer to
That is, the capturing mode of the monitoring image is automatically set by switching-on a power switch, and the subject image is displayed on the LED monitor 16 as the moving image. In this state, the portion in the subject for photographing the spectroscopic image is searched and the photographing apparatus 1 is positioned. Thus, the portion in the subject to be photographed is within the image pick-up range and the photographing apparatus 1 is positioned. By pressing the photographing button 14a (refer to
After capturing the subject spectroscopic image, the mode is returned to the capturing mode of the monitoring image and the portion in the subject for next capturing spectroscopic image is searched.
Although not shown, a result of analyzing the spectroscopic image or the color reproduction using the captured spectroscopic image is displayed on the LCD monitor 16 or the display 22 by another setting just after capturing the spectroscopic image.
Next, a description is given of the operation of the capturing mode of the spectroscopic image in the image processing system with reference to
By pressing the photographing button 14a (refer to
Next, one is set to a variable n (step S2) and the n-th LED is lit-on (step S3). Since n is set to 1, the first LED 6a is lit-on. The illumination light using the first LED 6a is irradiated to the subject via the projecting port 5a of the casing 5. In this case, since the abutting portion 4 is softly abutted to the subject surface so as to prevent the flow-in of the ambient light, the only the illumination light from the first LED 6a is projected to the subject. The reflecting light from the subject is formed onto the CCD 8 by using the image pick-up optical system 7.
After starting the light-on operation of the first LED 6a, the image pick-up operation of the CCD 8, specifically, the storaging of charges starts (refer to
After ending the image pick-up operation using the CCD 8, then, the first LED 6a is lit-off (step S5). The image data is read from the CCD 8, is converted into digital data by the A/D converter 9, and is stored in a predetermined storage area (n-th memory, here, first memory) in the memory 11 (step S6). When the 6-band spectroscopic images are picked-up, the memory 11 has the storage areas serving as the first to sixth memories, and the spectroscopic images are sequentially stored in the storage areas.
Then, the variable n is incremented (step S7). Herein, the variable n is incremented from one to two.
It is determined whether or not the variable n is seven or more (step S8). Since the variable n is 2 yet here, the processing returns to step S3 whereupon the second LED 6b is lit-on. After that, the operation in steps S3 to S7 is performed.
After the sixth LED 6f is lit-on when the variable n is 6 and the operation to step S6 ends, the 6-band spectroscopic image is captured as shown in
Although not shown, the image capturing timings by the LEDs and the CCD are not limited to the foregoing. Identically, the LEDs are lit-on after starting capturing the image by the image pick-up device and the image capturing by the image pick-up device ends after the LEDs are lit-off
Next, a description is given of the operation in the capturing mode of the monitoring image in the image processing system with reference to
In the capturing mode of the monitoring image, in the illuminating light of the six primary colors from the first to sixth LEDs 6a to 6f, the first LED 6a and the second LED 6b emit the light corresponding to the range of blue (B), the third LED 6c and the fourth LED 6d emit the light corresponding to the range of green (G), and the fifth LED 6e and the sixth LED 6f emit the light corresponding to the range of red (R), thereby capturing the RGB images serving as the moving image by the surface sequential method.
Herein, the primary colors of the light emission are selected for using on general RGB images. However, the present invention is not limited to this and another primary color of the light emission may be selected for using on specific application.
The capturing mode of the monitoring image is set by switching-on the power switch or the mode is returned to the capturing mode of the monitoring image by ending the capturing mode of the spectroscopic image. Then, the start of the image pick-up operation of the monitoring image is waited (step S11).
Herein, the image pick-up operation promptly starts and the variable n is set to one (step S12). The n-th LED and the (n+1)-th LED are lit-on (step S13). Since the variable n is set to one, the first LED 6a and the second LED 6b are lit-on.
After starting the light-on operation of the first LED 6a and the second LED 6b, the image pick-up operation by the CCD 8 starts (refer to
After ending the image pick-up operation by the CCD 8, the first LED 6a and the second LED 6b are lit-off (step S15). The image data is read from the CCD 8, is converted into the digital data by the A/D converter 9, and is stored in a predetermined storage area (n-th memory, here, first memory) in the memory 11 via the bus 10 (step S16).
Then, the variable n is increased by two (step S17). The variable n is increased from 1 to 3.
It is determined whether or not the variable n is 7 or more (step S18). Here, since the variable n is 3 yet, the processing returns to step S13 whereupon the third LED 6c and the fourth LED 6d are lit-on. The operation in steps S13 to S17 is performed.
Thus, the variable n is 5 and further the processing returns to step S13 whereupon the fifth LED 6e and the sixth LED 6f are lit-on. The operation to step S16 ends. The RGB images with the band characteristics shown in
After capturing the RGB images, the processing returns to step S11 whereupon it is determined whether or not the next RGB images are captured. When the capturing mode of the monitoring image is sequentially set, the next RGB images are captured. This operation is repeated, thereby capturing the RGB moving images.
Although not shown, the image capturing timings of the LEDs and CCD are not limited to this. Identically, the LEDs are lit-on after starting capturing the image by the image pick-up device and the operation for capturing the image by the image pick-up device ends after lighting-off the LEDs.
The above-mentioned image data stored in the memory 11 is then read, is converted into the image signal for display on the monitor, and is outputted and displayed on the LCD monitor 16 via the monitor I/F 15. Further, the setting of the image processing system is changed, thereby displaying the image data on the display 22 of the processing apparatus 2.
In order to ensure the illuminance, the LEDs for the six primary colors are divided into three groups including the two LEDs, namely, R devices, G devices, and B devices. However, the present invention is not limited to this. For example, the LED for one primary color may be emitted for the light, specifically, the first LED 6a may be emitted with respect to the light B (blue), the third LED 6c may emit the light G (green), and the fifth LED 6e may be emitted with respect to the light R (red). In this case, the LED may be selected such that the spectroscopic characteristics of the LEDs match the RGB light emission.
Only the LED for one primary color or the LEDs for a plurality of primary colors may be lit-on, thereby capturing a monochrome monitoring image. Consequently, the image can be displayed at a high speed on the monitor.
The light-emitting mode includes a case of lighting-on all the LEDs, a case of lighting-on one LED for one primary color, a case of lighting-on the three LEDs for one primary color, a case of lighting-on the LEDs for six primary colors one by one, a case of lighting-on the six LEDs of blue (B) in the eighteen LEDs for six primary colors, a case of lighting-on the six LEDs of green (G) in the eighteen LEDs for six primary colors, a case of lighting-on the six LEDs of red (R) in the eighteen LEDs for six primary colors, a case of lighting-on the three LEDs of blue (B) in the eighteen LEDs for six primary colors, a case of lighting-on the three LEDs of green (G) in the eighteen LEDs for six primary colors, or a case of lighting-on the three LEDs of red (R) in the eighteen LEDs for six primary colors. As mentioned above, the devices for each color simultaneously emit the light and the devices collected at each position simultaneously emit the light.
The photographing apparatus 1 according to the first embodiment picks-up the image of the subject either on contact or on noncontact with the subject. However, in order to accurately reproduce the image, it is necessary to prevent the influence from the light generated by devices other than the photographing apparatus 1.
Therefore, in the case of picking-up the subject image in the noncontact state, the illumination of the exterior lighting needs to be lit-off.
In the case of the subject image which is photographed in the contact state, such as the image of the painting surface, skin surface, or close image, the abutting portion 4 that is cylindrically shaped is softly abutted to the subject (refer to
Since the abutting portion 4 is used in the image pick-up operation in the contact state, referring to
The abutting portion 4 contains a heat insulator when the subject is at the high temperature or low temperature, an electric insulator when the subject is electrostatic or conductive, a solution-proof material when the subject is dipped in the solution, or a glass window for projecting the illuminating light and receiving the reflecting light. Since the abutting portion 4 is a single detachable part, the abutting portion 4 is easily formed, including the various above-mentioned materials. Further, an observing window that is opened and is closed to the abutting portion 4 is easily arranged to observe the subject surface by the naked eyes.
According to the first embodiment, one specific primary color or a plurality of primary colors are used from among the plurality of primary colors whose light is emitted by the LEDs, thereby enabling the use for the examination or determination for specific application.
A description is given of the color reproduction in the processing apparatus 2.
The subject spectroscopic image is recorded to the memory 11 by the image pick-up operation of the photographing apparatus 1, is sent to the processing apparatus 2 via the external I/F 17, and is recorded to an image memory unit 32 (refer to
The processing apparatus 2 comprises: an image distributing unit 31 which distributes the storage areas in the image memory unit 32 depending on which of the first to sixth LEDs 6a to 6f illuminates the subject spectroscopic images inputted from the photographing apparatus 1; the image memory unit 32 having first to sixth memories 32a to 32f serving as the storage memories for storing the subject spectroscopic images distributed by the image distributing unit 31; and a color reproduction calculating unit 33 which reads the subject spectroscopic image stored in the image memory unit 32 and calculates and outputs display image data for displaying the image that is color-reproduced at the high fidelity level on the display 22. The components 31 to 33 are included in the calculating device 21 shown in
The color reproduction calculating unit 33 comprises: an input profile storing portion 33b which stores a profile on the photographing apparatus 1; an XYZ estimating and calculating portion 33a which reads the subject spectroscopic images stored in the first to sixth memories 32a to 32f in the image memory unit 32 and creates the image data having three XYZ excitation values by the estimation and calculation using the input profile stored in the input profile storing portion 33b and a predetermined equal-color function set therein; a display profile storing portion 33d which stores a profile on the display 22; and a display value converting portion 33c which creates the display image data for being outputted on the display 22 by the calculation using the image data of the three XYZ excitation values estimated by the XYZ estimating and calculating portion 33a and the display profile stored in the display profile storing portion 33d.
The input profile stored in the input profile storing portion 33b is as disclosed in, e.g., Japanese Unexamined Patent Application Publication No. 2000-341499. The input profile is calculated based on the characteristics and setting of the photographing apparatus 1 including the spectroscopic sensitivity of the CCD 8 used for the image pick-up operation (image input device), spectrum data of the illuminating light upon photographing the subject (information on the illuminating light for photographing), spectrum data of the illuminating light at the installing position of the display 22 for observing the created subject image (information on the illuminating light for observation), information such as static characteristics of the spectroscopic reflectance of the photographed subject (information on the subject characteristics).
Referring to
The data obtained by the photographing apparatus 1 includes illumination light spectrum data, camera characteristic data, subject characteristic data, and the like.
The illumination spectrum data is spectrum data on the illumination upon picking-up the image of the subject, for example, and becomes spectrum data of the first to sixth LEDs 6a to 6f included in the photographing apparatus 1 in the contact state. In the non-contact state, the illumination spectrum data includes spectrum data of the external illumination upon photographing the subject.
The camera characteristic data includes characteristics of the image pick-up optical system 7 including a focusing level, image pick-up characteristics of the CCD 8, shutter speed, stop value, and various characteristics.
The subject characteristics include spectroscopic statistic data and the like when the subject is the tooth, skin, or painting material, for example. The operating switch 14 may include in this case a subject designation operating portion to create the input profile with high precision and thus a subject designating signal for designating the subject may be inputted.
Referring to
With the above-mentioned configuration, the color can be adaptively reproduced at the high fidelity level even when the photographing apparatus 1 connected to the processing apparatus is changed to the different individual one or different type of device (e.g., the image pick-up optical system 7 is changed) and even when the environment illumination for photographing is changed or the subject serving as the photographing target is variously changed.
The display profile stored in the display profile storing portion 33d is calculated, based on information such as a chromaticity value of a display primary-color value of the display 22 (e.g., RGB primary color values when the display 22 is an RGB monitor) and the tone curve of the display 22. The display may be a multi-primary-color reproducing system disclosed in Japanese Unexamined Patent Application Publication No. 2000-338950.
The subject spectroscopic image stored in the first to sixth LEDs 32a to 32f in the image memory unit 32 is read and is determined on the subject image by an image determining and calculating unit 34. The determining result is outputted and is displayed on the display 22. The image may be determined and may be calculated via a network and the result may be displayed on the LCD monitor 16.
The image determining and calculating unit 34 comprises: a determining function storing portion 34b which stores a determining function for various classification/determination/diagnosis/analysis on the subject; and a determining and calculating portion 34a which calculates, by using the determining function, all the six subject spectroscopic images stored in the first to sixth memories 32a to 32f in the image memory unit 32 or at least one subject spectroscopic image selected from the six ones, thus brings out the determining result, and creates image data for displaying the determining result on the display 22.
The determining function can be variously replaced depending on for which application the image processing system is used. If the image processing system is limited to the use for dentistry, the determining function is replaced with the determination of tooth whitening level and the determination of tooth tone. If the image processing system is limited to the use for dermatology, the determining function is replaced with the correlation and the entropy analysis between the crista cutis and the sulcus cutis on the skin surface. Therefore, the determining function storing portion 34b may comprise a rewritable or write-once storage medium which can rewrite and add the determining function used depending on the application. An example of the above-mentioned determining function is a function disclosed in Japanese Unexamined Patent Application Publication No. 7-120324.
The image determining and calculating unit 34 shown in
Next,
Referring to
The LCD monitor 16 has the function of the finder upon selecting the photographed portion and the function of the monitor upon displaying the color-reproduced result and the result of classification/determination/diagnosis/analysis.
In many cases, the display 22 of the processing apparatus 2 has a wider area and higher definition, as compared with those of the LCD monitor 16 arranged to the handy photographing apparatus 1. Therefore, the display 22 may display the activation, condition setting, GUI for inputting information such as subject ID, patient career, subject information such as previous information, and the processing result, of processing software executed depending on the purpose in the processing apparatus 2.
An external database is connected to the network 3, for example. The subject information may be obtained to the processing apparatus 2 from the external database, or the processing result in the processing apparatus 2 may be stored into the external database. In this case, in order to ensure the security, the identification can be mutually performed upon connecting the processing apparatus 2 and the external system via the network 3 or the identification can be performed in accordance with the security level which is added to the subject data.
The photographing apparatus 1 is compact in size and light in weight. For example, the photographing apparatus 1 performs the image pick-up operation by abutting the front end side of the casing 5 having the image pick-up system to a photographing target portion of the subject by gripping the grip portion 5b with one hand.
As mentioned above, the abutting portion 4 is a detachable and disposable member, and shields the external light which irradiates the photographing target portion of the subject.
A photographing button 14a included in the operating switch 14 is arranged on the top of the grip portion 5b, e.g., the position operable with the forefinger. The portion to be photographed is specified on the LCD monitor 16 and then the photographing button 14a is pressed down, thereby shifting the capturing mode of the monitoring image to the capturing mode of the spectroscopic image to perform the image pick-up operation of the spectroscopic image.
The captured spectroscopic images are subjected to data processing in the processing apparatus 2 and is displayed on the display 22. As mentioned above, the processing result of the processing apparatus 2 may be displayed on the LCD monitor 16 in the photographing apparatus 1 by the setting and the like if necessary.
In the example shown in
According to the first embodiment, the photographing apparatus in the image processing system comprises six LEDs having different spectroscopic distributions in the visible light area. The subject spectroscopic image is picked-up by emitting the light of the six LEDs while shading the ambient light. In this case, the photographing apparatus is reduced in size because the compact light semiconductor light-emitting device such as the LED is used as the light source, and the photographing apparatus may be a handy one.
The processing of the processing apparatus enables the display to display the image with the color reproduced at the high fidelity level.
The designation of the LED for emitting the light and the light-emitting sequence of the LEDs enables to pick-up images of not only the normal RGB moving images but also images used for various purposes.
Further, the use of the monochrome CCD slightly reduces the costs. The image data of colors is captured one screen by one screen without causing a lacking of pixel. Therefore, the interpolation is omitted.
According to the second embodiment, the same components as those according to the first embodiment are designated by the same reference numerals and are not described. Mainly, only different portions are described.
The second embodiment uses the basic configuration according to the first embodiment. Further, according to the second embodiment, it is possible to adjust an image reading speed from a color CCD having a color filter array (CFA) 19 in front of the image processing system.
The image reading speed corresponds to a display speed, and the display speed cannot be faster than the image reading speed.
Generally, in the case of monitoring the image, preferably, the display interval is 30 images/sec or more. As a number N of primary colors increases, the display interval becomes long in proportion to the increase, and a flickering state and the large image positional shift due to difference of time to capture a primary color image are caused.
Therefore, according to the second embodiment, referring to
A description is given of the operation for setting the photographing mode with reference to
An operation for selecting the photographing mode is inputted from the operating switch 14 (step S21) and the CPU 18 detects the input and then records the set photographing mode and the information thereon to a part of recording area in the memory 11 (step S22). Further, the CPU 18 issues a control command for changing the photographing mode to the camera control I/F 12A (step S23).
The camera control I/F 12A receives the instruction, controls the driving operation of the CCD 8A, and changes the photographing mode. In this case, the camera control I/F 12A controls the LED driver 13 intrelockingly to the operation of the CCD 8A, thereby adjusting the amount of light emission of the first to sixth LEDs 6a to 6f together.
The photographing mode set by the photographing apparatus 1 is as follows, for example.
Referring to
As compared with the normal mode shown in
The “2/4 line double-speed mode” is a mode for reducing, to the half, the time for reading one frame by scanning only two lines every four lines. Although the resolution in the vertical direction is half, the image in the entire effective area is obtained.
The “2/8 line four-time-speed mode” is a mode for reducing, to ¼ time of the normal mode, the time for reading one frame by scanning only 2 lines every eight lines.
The “2/16 line eight-time-speed mode” is a mode for reducing, to ⅛ time of the normal mode, the time for reading one frame by scanning only 2 lines every 16 lines.
Referring to
Referring to
Similarly, the “third center-portion scanning mode” is a mode for reducing, to ⅛ speed, the time for reading one frame by scanning only a portion of the S/8 line in the center within the effective area.
Similarly, the “fourth center-portion scanning mode” is a mode for reducing, to 1/16 speed, the time for reading one frame by scanning only a portion of the S/16 line in the center within the effective area.
Referring to
Referring to
The present invention is not limited to those and another means can scan the lines at the high speed. The photographing mode is summarized as follows, including the foregoing.
First, simply, the scanning speed is made fast. This is achieved by adjusting the timing of a trigger timing for instructing the reading start. For example, when the display time of one frame is 1/30 sec, the increase in speed is accomplished by setting the timing of the trigger signal so that the reading time of the prima colors (here, N primary colors) is 1/30/N.
Secondly, the scanning speed is made fast by thinning-out operation. The above first speed increasing means causes the limitation on the fast speed due to the image pick-up device. On the contrary, in the case of thinning out the lines, although the image quality is deteriorated, the speed can be made increased by stable scanning operation. Therefore, the degradation of a frame rate is prevented and the flickering state on the display is prevented. As the thinning-out example, the lines are thinned-out based on a pixel unit in addition to the thinning-out operation for a predetermined period or a predetermined range based on a line unit. When the image pick-up device is an XY address type one, only a desired pixel is precisely read.
Thirdly, the speed is made increased by varying the frame rate depending on the primary color. In CCDs including a standard RGB color filter or the like, in many cases, the green (G) pixels close to a luminance signal are arranged double number of red (R) or blue (B) pixels. In consideration thereof, it is possible to read the frame having the pixels close to the green (G) ones in the six primary colors, corresponding to the double number of frames of the color other than the green, i.e., the red and blue. The present invention is not limited to this and many frames of the specific primary color may be read or a reading rate may be varied step by step in accordance with the necessity.
According to the second embodiment, the same advantages as those according to the first embodiment are obtained. Further, the constant display speed is ensured by changing the reading speed. In the case of the color reproduction at the high fidelity level, the moving image with natural motion is displayed.
The third embodiment uses the basic configuration according to the first embodiment. Further, according to the third embodiment, a 3-band color filter array is arranged onto the image pick-up surface of the CCD.
Referring to
With respect to the light-emitting spectrums of the 6-primary-color LEDs shown by the curves fL1 to fL6 as shown according to the first embodiment, curves fSB, fSG, and fSR shown in
Among the curves fSB, fSG, and fSR, the curve fSB indicating a spectroscopic band area corresponding to a blue color filter includes the two curves fL1 and fL2, and receives the light emitted by the first LED 6a and the second LED 6b. The curve fSG indicating a spectroscopic band area corresponding to a green color filter includes the two curves fL3 and fL4, and receives the third LED 6c and the fourth LED 6d. The curve fSR indicating a spectroscopic band area corresponding to a red color filter includes the two curves fL5 and fL6, and receives the fifth LED 6e and the sixth LED 6f.
The total spectroscopic sensitivity characteristics are not necessarily independently separated and may be partly overlaid at the peripheral portion. Further, similarly to the first embodiment, the light-emitting spectrums of the first to sixth LEDs 6a to 6f may be partly overlaid. Of course, the number of LED types is not limited to six and a proper number of LEDs may be combined.
Next, the operation for capturing the image will be described.
Similarly to the first embodiment, in the image processing system the capturing mode of the monitoring image and the capturing mode of the spectroscopic image are switched to capture the image.
The operation of the capturing mode of the spectroscopic image will be described with reference to
As mentioned above according to the first embodiment, the photographing button 14a is pressed, thereby switching the mode to the capturing mode of the spectroscopic image. Then, it is determined whether or not the image pick-up operation of the spectroscopic image starts (step S31).
The image pick-up operation of the spectroscopic image starts, then, the image of the frame N is captured, and the image of a frame (N+1) is thereafter captured.
The capturing operation of the image of the frame N starts and then the first LED 6a, the third LED 6c, and the fifth LED 6e are simultaneously lit-on (refer to
After the image pick-up operation of the CCD 8 ends, the image data is read from the CCD 8, is converted into the digital data by the A/D converter 9, and is stored in a predetermined storage area (frame memory) in the memory 11 via the bus 10 (step S34).
The image data stored in the frame memory is classified every primary color, and is stored in the predetermined storage area (first, third, and fifth memories) in the memory 11 (step S35).
Then, the first LED 6a, third LED 6c, and fifth LED 6e are lit-off (step S36) and thus the capturing operation of the images of the frame N ends.
The capturing operation of the image of the next frame (N+1) is basically similar to the capturing operation of the image of the frame N, only different in the lit-on LED and the memory area in which the picked-up image data is transferred.
That is, the second LED 6b, the fourth LED 6d, and the sixth LED 6f are simultaneously lit-on (refer to
After the image pick-up operation of the CCD 8 ends, the image data is read from the CCD 8, is converted into the digital data by the A/D converter 9, and is stored in a predetermined storage area (frame memory) in the memory 11 via the bus 10 (step S39).
The image data stored in the frame memory is classified every primary color, and is stored in the predetermined storage area (second, fourth, and sixth memories) in the memory 11 (step S40).
Then, the second LED 6b, fourth LED 6d, and sixth LED 6f are lit-off (step S41) and thus the capturing operation of the images of the frame (N+1) ends.
Although not shown, the image capturing timing of the LEDs and the CCD is not limited to this and, identically, the LEDs may be lit-on after starting capturing the image by the image pick-up device and the operation for capturing the image by the image pick-up device may end after the light-off operation of the LED.
The images of the primary colors stored in the first to sixth memories in steps S35 to S40 are subjected to the interpolation in the photographing apparatus 1 or the processing apparatus 2 if necessary because of the lack of a pixel in accordance with the alignment of the primary colors in the color filter array 19.
The 6-band subject spectroscopic images stored in the memory 11 are sent to the processing apparatus 2 and are subjected to the color reproduction and image processing by a processing program. The processing result is displayed on the display 22 by another processing program or is transferred to the photographing apparatus 1 and is displayed on the LCD monitor 16.
Next, a description is given of the operation of the capturing mode of the monitoring image with reference to
Similarly to the first and second embodiments, according to the third embodiment, the general RGB images are assumed and the primary colors for light emission are selected so that the first LED 6a and the second LED 6b correspond to the blue (B), the third LED 6c and the fourth LED 6d correspond to the green (G), and the fifth LED 6e and the sixth LED 6f correspond to the red (R).
The power switch is turned on, thereby setting the capturing mode of the monitoring image. Alternatively, the capturing mode of the spectroscopic image ends, thereby returning the mode to the capturing mode of the monitoring image. Thus, the start for picking-up the monitoring image is waited (step S51).
Promptly, the image pick-up operation starts and all the first to sixth LEDs 6a to 6f are lit-on (refer to
After ending the image pick-up operation by the CCD 8, then, all the first to sixth LEDs 6a to 6f are lit-off (step S54). The image data is read from the CCD 8, is converted into the digital data by the A/D converter 9, and is stored in the predetermined storage areas (first, third, and fifth memories) in the memory 11 via the bus 10 (step S55).
During setting the capturing mode of the monitoring image, the processing returns to step S51, the above-mentioned operations are repeated, and thus the moving image is captured.
The thus-obtained image is converted into the monitoring image data, and is displayed on the LCD monitor 16 via the monitor I/F 15. In this case, the monitoring image is displayed on the display 22 in the processing apparatus 2.
In the timing chart shown in
Although not shown, the image capturing timing of the LEDs and the CCD is not limited to this and, identically, the LEDs may be lit-on after starting capturing the image by the image pick-up device and the operation for capturing the image by the image pick-up device may end after the light-off operation of the LEDs.
According to another method for capturing the monitoring image, the continuous capturing mode of the 6-band spectroscopic images enables the creation of the monitoring image by addition of memories of the first and second bands of the 6-band spectroscopic images, addition of memories of the third and fourth bands, and addition of memories of the fifth and sixth bands. In this case, the monitoring image is created only by addition of memories without changing the algorithm of the photographing portion. This is advantageous as a monitoring method upon measuring the continuous spectroscopic images.
Next,
According to one modification of the third embodiment, the LED is arranged with the light-emitting spectroscopic characteristics between the RGB bands detected by the CCD 8 via the color filter array 19. Thus, although the LEDs only emit the light of the six primary colors (6 bands), it is detected that the 8 band signals are outputted.
Referring to
The curve fSB indicating the spectroscopic band area corresponding to the blue color filter includes the two curves fL1′ and fL2′, and further includes a part of the curve fL3′.
The curve fSG indicating the spectroscopic band area corresponding to the green color filter includes the curve fL4′, and further includes a part of the curve fL3′ and a part of the fL5′.
The curve fSR indicating the spectroscopic band area corresponding to the red color filter includes the curve fL6′ and further includes a part of the curve fL5′.
As a consequence, the spectroscopic characteristics (curve fL3′) of the light emission from the third LED 6c exist between the band through the blue color filter and the band through the green color filter. The spectroscopic characteristics (curve fL5′) of the light emission from the fifth LED 6e exist between the band through the green color filter and the band through the red color filter.
With the above-mentioned configuration, referring to
Next, the operation for capturing the 8-band spectroscopic image will be described with reference to FIGS. 31 to 33.
According to another modification of the third embodiment, the storage areas including first to eighth memories are arranged in the photographing apparatus 1 to pick-up the 8-band spectroscopic images.
The photographing button 14a is pressed and thus the mode is switched to the capturing mode of the spectroscopic image. Then, it is determined whether or not the image pick-up operation of the spectroscopic image starts (step S61).
The image pick-up operation of the spectroscopic image starts. Then, referring to
After the image pick-up operation of the CCD 8 ends, the first LED 6a and fourth LED 6d are lit-off (step S64). The image data is read from the CCD 8, is converted into the digital data by the A/D converter 9, and is stored in predetermined storage areas (first and second memories) in the memory 11 via the bus 10 (step S65). Thus, the operation for capturing the image of the frame N ends (operation for capturing the image of the 2-band subject spectroscopic images ends).
Next, referring to
After the image pick-up operation of the CCD 8 ends, the second LED 6b and fifth LED 6e are lit-off (step S68). The image data is read from the CCD 8, and is stored in predetermined storage areas (third, fourth, and fifth memories) in the memory 11 (step S69). Thus, the operation for capturing the image of the frame (N+1) ends (operation for capturing the image of the 3-band subject spectroscopic images ends).
Further, referring to
After the image pick-up operation of the CCD 8 ends, the third LED 6c and sixth LED 6f are lit-off (step S72). The image data is read from the CCD 8, and is stored in predetermined storage areas (sixth, seventh, and eighth memories) in the memory 11 (step S73). Thus, the operation for capturing the image of the frame (N+2) ends (operation for capturing the image of the 3-band subject spectroscopic images ends).
Upon continuously capturing the spectroscopic images like the moving image, the operation from the frame N to the frame (N+2) is repeated.
Although not shown, the image capturing timings of the LEDs and the CCD are not limited to the foregoing. Identically, the LEDs are lit-on after starting capturing the image by the image pick-up device and the image capturing by the image pick-up device ends after the light-off operation of the LEDs.
The 6-band subject spectroscopic images stored in the memory 11 are sent to the processing apparatus 2 and are subjected to the color reproduction and image processing by a processing program. The processing result is displayed on the display 22 by another processing program or is transferred to the photographing apparatus 1 and is displayed on the LCD monitor 16.
Next, a description is given of the operation of the capturing mode of the monitoring image with reference to
The power switch is turned on, thereby setting the capturing mode of the monitoring image. Alternatively, the capturing mode of the spectroscopic image ends, thereby returning the mode to the capturing mode of the monitoring image. Thus, the start for picking-up the monitoring image is waited (step S81).
Promptly, the image pick-up operation starts and all the first to sixth LEDs 6a to 6f are lit-on (refer to
After ending the image pick-up operation by the CCD 8, then, all the first to sixth LEDs 6a to 6f are lit-off (step S84). The image data is read from the CCD 8, is converted into the digital data by the A/D converter 9, and is stored in a predetermined storage area in the memory 11 via the bus 10 (step S85).
Herein, the first to sixth LEDs 6a to 6f are lit-on and are lit-off every image pick-up operation by the CCD 8, thereby reducing the power consumption. However, similarly to the description with reference to
Although not shown, the image capturing timings of the LEDs and the CCD are not limited to the foregoing. Identically, the LEDs are lit-on after starting capturing the image by the image pick-up device and the image capturing by the image pick-up device ends after the light-off operation of the LEDs.
Until resetting the capturing mode of the monitoring image, the processing returns to step S81, then the above-mentioned operation is repeated, and the image data for moving image is continuously captured.
The captured images are converted into the monitoring image data, and are displayed on the LCD monitor 16 via the monitor I/F 15. In this case, by the setting, the monitoring image is displayed on the display 22 of the processing apparatus 2.
As mentioned above using an example, the image pick-up device is a simple-plate image pick-up device which is formed by the combination with the 3-band color filter array. However, the present invention is not limited to this and may be a three-plate 3-band image pick-up device comprising a spectroscopic unit, such as a spectroscopic mirror or spectroscopic prism, which performs the spectroscopy of the incident light into a plurality of wavelengths, and a plurality of image pick-up devices which pick-up the image of the light of the plurality of wavelength bands which are divided by the spectroscopic unit. Alternatively, the image pick-up devices may be a two-plate image pick-up device. Further, the color filter is not limited to a primary color system filter of three RGB bands and may be a complementary color system filter.
The 8-band subject spectroscopic image data is captured from the LEDs of the 6-band light-emitting spectrums. However, the present invention is not limited to this. Arbitrary subject spectroscopic image data may be captured by the combination. For example, the light source may be only the third LED and the fifth LED, namely, 2-band light source. In the case of the light source having the 2 bands, as shown by the curves fSL3′, fSL4′, fSL6′ and fSL7′, the 4-band subject spectroscopic images are captured. In addition, the light source may be used by various combination.
According to the third embodiment, the same advantages as those first and second embodiments are obtained. Further, the use of the color image pick-up device reduces the number of image pick-up times necessary for capturing the subject spectroscopic image, and the moving image is easily color-reproduced at the high fidelity level.
Further, the light-emitting spectrums of the LEDs exist over the spectroscopic sensitivity distributions of the light received by the color image pick-up device. Thus, the 8-band subject spectroscopic image data is captured by using the LEDs of the 6-band light-emitting spectrum.
The fourth embodiment uses the basic configuration according to the third embodiment. Further, according to the fourth embodiment, the image processing system comprises a spectrum sensor.
Referring to
The spectrum sensor 41 senses only the spectrum, not capturing the light as the image, different from the configuration for capturing the 6-band spectroscopic image by the CCD 8 with the first to sixth LEDs 6a to 6f.
The spectrum sensor 41 covers the entire range of the visible light serving as the light sensing range (380 nm to 800 nm), sensors the spectrum by a grating method with a resolution of 5 nm. Thus, the specific spectrum data can be captured. Although the grating-method spectrum sensor is used as an example, the spectrum sensor 41 may be another.
The probe 42 uses a flexible optical fiber (or optical fiber bundle). However, the probe 42 is not limited to this and any probe for guiding the sensed light can be widely used.
With the above-mentioned configuration, the optical spectrum can be sensed by sensing the light from the subject. In the meantime, a standard white board is used in place of the subject, thereby measuring the spectrum characteristic of the illuminating light.
Specifically, external illuminating light is shielded by using the abutting portion 4 or the like and the spectrum is sensed by sequentially emitting the light of the first to sixth LEDs 6a to 6f. Thus, the spectrum characteristics of the first to sixth LEDs 6a to 6f are estimated. The degradation of the light-emitting device and the change in spectrum characteristics due to the environmental change of the temperature are sensed. Further, since the profile of the illuminating spectrum which reflects the characteristic change, the color is accurately reproduced at the high fidelity level.
Further, the ambient illuminating light is sensed and the spectrum characteristics of the exterior lighting are measured.
Next,
Referring to
The first spectrum sensor 47 is arranged to sense the spectroscopic spectrum of the subject portion, and the tip of an optical fiber 49 serving as a probe is arranged at the incident position of the subject light via the projecting port 5a of the casing 5, near the first to sixth LEDs 6a to 6f.
As mentioned above, the first spectrum sensor 47 has the standard white board arranged, in place of the subject, thereby being used to sense the illuminating spectrums of the first to sixth LEDs 6a to 6f. Further, the tip of the first spectrum sensor 47 has a lens or the like as will be described later, thereby directly capturing spectroscopic reflecting spectrums of a spot (specific portion) of the subject.
Thus, the spectrum data such as the painting color of a vehicle, painting color of the building, spectroscopic characteristics of food, or dyeing of the cloths is directly obtained and is used as data for examination and confirmation.
The second spectrum sensor 46 is arranged to sense the illuminating light spectrum of the environment under which the subject is placed. The tip of an optical fiber 48 as a probe is exposed to the outer surface of the casing 5. Further, an integrating sphere 48c which is white and semi-transparent covers the tip of the optical fiber 48. The use of the second spectrum sensor 46 enables the capturing of the illuminating spectrums upon photographing the subject apart from the photographing apparatus 1 only with sunlight or room light. Thus, simultaneously with the photographing operation of the subject image, the profile of the illuminating spectrum of the ambient illuminating light in this case can be created. Therefore, if the ambient illuminating light changes, in accordance therewith, the color is automatically reproduced at the high fidelity level in real time.
Further, the spectrum of ambient light of the photographing apparatus 1 is sensed and is compared with the spectrums of the LEDs included in the photographing apparatus 1. Thus, the ambient light and the LED light are adaptively switched for the image pick-up operation. For example, the ambient light is used upon picking-up the moving images of RGB. In this case, the power consumption is reduced by not emitting the light of the LED in the photographing apparatus 1.
In the probe 42, the light is incident on an incident end 42a, and the light is outputted from an output end 42b.
The spectrum sensor 41 comprises: a box 41a; an incident-light slit 41b which is arranged as an opening at one end of the box 41a and on which the light is outputted from the output end 42b of the probe 42 serving as slit light; a grating 41c which is arranged in the box 41a, performs the stereoscopy of the slit light incident from the incident-light slit 41b in accordance with the wavelength, and reflects in the different directions and collects the light; and a photodiode array 41d which is attached to the box 41a, receives the light collected at positions varied depending on the wavelengths by the grating 41c, and outputs a signal in accordance with the strength of the received light.
Thus, the photodiode array 41d photoelectrically converts the light with the wavelengths varied depending on the light receiving positions, and outputs the signal in accordance with the strength.
The sensor 43 comprises an A/D converter 43a which converts an analog signal outputted from the photodiode array 41d into a digital signal. The digital signal after the conversion is outputted to the CPU 18 or the like via the bus 10. The CPU 18 receives the digital signal as spectrum information indicating the strength of the wavelength, and analyzes the information.
The light from an angle range is incident on the incident end 49a of the optical fiber 49. In the example shown in
With the configuration shown in
Referring to
As mentioned above, the incident end 48a of the optical fiber 48 for input is exposed to the outer surface of the casing 5 and has the integrating sphere 48c which is white and is semi-transparent to surround the incident end 48a.
With the above-mentioned configuration, the ambient illuminating light is illuminated to the integrating sphere 48c, thus, the light is diffused and passed, and the light is incident on the incident end 48a of the optical fiber 48. The incident light is transmitted by the optical fiber 48 and the spectrums are measured by the second spectrum sensor 46.
According to the fourth embodiment, the same advantages as those according to the first to third embodiments are obtained. The spectrum sensor is arranged. Thus, the spectrum distribution of the subject light is obtained, the spectrum distribution of the LEDs is obtained, and the color is accurately reproduced in real time.
The use of the optical system for sensor enables the spectrum distribution of the specific portion of the subject to be obtained. As mentioned above, the optical system for sensor has the resolution of 5 nm. Therefore, it is possible to obtain the specific spectrum data of the specific portion of the subject and the detailed diagnosis or determination is performed by the obtained data.
Further, the profile of the illuminating spectrum of the ambient illuminating light is obtained in real time because the spectrum of the ambient illuminating light can be sensed.
The present invention is not limited to the above embodiments and can be variously modified without departing the essentials of the present invention.
According to the image processing system of the present invention, as mentioned above, the image processing system with the compact and mobile size and light weight reproduces the colors at the high fidelity level.
Number | Date | Country | Kind |
---|---|---|---|
2002-218863 | Jul 2002 | JP | national |
This is a Divisional Application of U.S. application Ser. No. 10/521,778, filed Jan. 21, 2005 now U.S. Pat. No. 7,773,802, which is a U.S. National Phase Application under 35 USC 371 of International Application PCT/JP03/09380, filed Jul. 24, 2003. The entire contents of U.S. application Ser. No. 10/521,778, filed Jan. 21, 2005 are incorporated herein by reference. The present application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2002-218863, filed Jul. 26, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3986777 | Roll | Oct 1976 | A |
4011571 | Okuzawa | Mar 1977 | A |
4300823 | Yamanaka et al. | Nov 1981 | A |
4688921 | Wakabayashi | Aug 1987 | A |
4845553 | Konomura et al. | Jul 1989 | A |
4959679 | Yamamoto et al. | Sep 1990 | A |
5051823 | Cooper et al. | Sep 1991 | A |
5381207 | Kazumi | Jan 1995 | A |
5408268 | Shipp | Apr 1995 | A |
5503559 | Vari | Apr 1996 | A |
5523786 | Parulski | Jun 1996 | A |
5654756 | Takahashi et al. | Aug 1997 | A |
5690486 | Zigelbaum | Nov 1997 | A |
5766006 | Murljacic | Jun 1998 | A |
5995763 | Posa et al. | Nov 1999 | A |
6006041 | Mizumaki et al. | Dec 1999 | A |
6038024 | Berner | Mar 2000 | A |
6055325 | Garini et al. | Apr 2000 | A |
6111650 | Rawicz et al. | Aug 2000 | A |
6144805 | Ogino | Nov 2000 | A |
6201880 | Elbaum et al. | Mar 2001 | B1 |
6264470 | Jung et al. | Jul 2001 | B1 |
6276933 | Melnyk et al. | Aug 2001 | B1 |
6306421 | Kunz et al. | Oct 2001 | B1 |
6307629 | Jung et al. | Oct 2001 | B1 |
6341957 | Momot et al. | Jan 2002 | B1 |
6358047 | Lehmann | Mar 2002 | B2 |
6359680 | Rubbert | Mar 2002 | B1 |
6362888 | Jung et al. | Mar 2002 | B1 |
6381017 | Jung et al. | Apr 2002 | B2 |
6396873 | Goldstein et al. | May 2002 | B1 |
6413207 | Minami | Jul 2002 | B1 |
6414750 | Jung et al. | Jul 2002 | B2 |
6417917 | Jung et al. | Jul 2002 | B1 |
6431870 | Sachdeva | Aug 2002 | B1 |
6454437 | Kelly | Sep 2002 | B1 |
6540513 | Berner et al. | Apr 2003 | B2 |
6570654 | Jung et al. | May 2003 | B2 |
6600832 | Nakayama et al. | Jul 2003 | B1 |
6606514 | Grass et al. | Aug 2003 | B2 |
6650834 | Ume | Nov 2003 | B2 |
6672868 | Momot et al. | Jan 2004 | B1 |
6714657 | Jacobs et al. | Mar 2004 | B1 |
6721009 | Iizuka | Apr 2004 | B1 |
6749310 | Pohlert et al. | Jun 2004 | B2 |
6750971 | Overbeck et al. | Jun 2004 | B2 |
6776614 | Wiechmann et al. | Aug 2004 | B2 |
6807297 | Tankovich et al. | Oct 2004 | B1 |
6832913 | Lehmann | Dec 2004 | B2 |
6856354 | Ohsawa | Feb 2005 | B1 |
6870616 | Jung et al. | Mar 2005 | B2 |
6917429 | Imura et al. | Jul 2005 | B2 |
6940545 | Ray et al. | Sep 2005 | B1 |
6954227 | Yoda | Oct 2005 | B2 |
6964567 | Kerschbaumer et al. | Nov 2005 | B2 |
6967644 | Kobayashi | Nov 2005 | B1 |
7006126 | Kerschbaumer et al. | Feb 2006 | B2 |
7030986 | Overbeck et al. | Apr 2006 | B2 |
7033172 | Hansen et al. | Apr 2006 | B2 |
7058213 | Rubbert et al. | Jun 2006 | B2 |
7097450 | Jung et al. | Aug 2006 | B2 |
7106511 | Grot et al. | Sep 2006 | B2 |
7106958 | Kerschbaumer et al. | Sep 2006 | B2 |
7118374 | Culp | Oct 2006 | B2 |
7133154 | Sugiyama | Nov 2006 | B2 |
7136093 | Itoh et al. | Nov 2006 | B1 |
7142312 | Quadling et al. | Nov 2006 | B2 |
7144248 | Irwin | Dec 2006 | B2 |
7184150 | Quadling et al. | Feb 2007 | B2 |
7215803 | Marshall | May 2007 | B2 |
7255558 | Babayoff et al. | Aug 2007 | B2 |
7341450 | Pye et al. | Mar 2008 | B2 |
7342668 | Quadling et al. | Mar 2008 | B2 |
7355633 | Kurosawa et al. | Apr 2008 | B2 |
7355721 | Quadling et al. | Apr 2008 | B2 |
7393209 | Lehmann | Jul 2008 | B2 |
7490294 | Okada | Feb 2009 | B2 |
7538878 | Jung et al. | May 2009 | B2 |
7576845 | Asakura et al. | Aug 2009 | B2 |
7596253 | Wong et al. | Sep 2009 | B2 |
7682150 | Jung et al. | Mar 2010 | B2 |
7711252 | Konno et al. | May 2010 | B2 |
7756327 | Komiya et al. | Jul 2010 | B2 |
7773802 | Komiya et al. | Aug 2010 | B2 |
20020015933 | Berner et al. | Feb 2002 | A1 |
20020054208 | Goldstein et al. | May 2002 | A1 |
20020071124 | Schwarz | Jun 2002 | A1 |
20020080276 | Mori et al. | Jun 2002 | A1 |
20020099295 | Gil et al. | Jul 2002 | A1 |
20020102009 | Jones et al. | Aug 2002 | A1 |
20020114505 | Mahon et al. | Aug 2002 | A1 |
20020122119 | Takakura | Sep 2002 | A1 |
20020168784 | Sundrehagen et al. | Nov 2002 | A1 |
20020177751 | Ueno et al. | Nov 2002 | A1 |
20020191102 | Yuyama et al. | Dec 2002 | A1 |
20030011767 | Imura et al. | Jan 2003 | A1 |
20030107652 | Williams | Jun 2003 | A1 |
20030206279 | Kimura et al. | Nov 2003 | A1 |
20040076921 | Gofman et al. | Apr 2004 | A1 |
20040125996 | Eddowes et al. | Jul 2004 | A1 |
20040252303 | Giorgianni et al. | Dec 2004 | A1 |
20050026703 | Fukawa | Feb 2005 | A1 |
20050084144 | Feldman | Apr 2005 | A1 |
20050122518 | Overbeck et al. | Jun 2005 | A1 |
20050231592 | Cable et al. | Oct 2005 | A1 |
20050254704 | Komiya et al. | Nov 2005 | A1 |
20050256383 | Gandjbakhche et al. | Nov 2005 | A1 |
20060152586 | Komiya et al. | Jul 2006 | A1 |
20060251408 | Konno et al. | Nov 2006 | A1 |
20060280360 | Holub | Dec 2006 | A1 |
20070031029 | Sasaki | Feb 2007 | A1 |
20070064119 | Komiya et al. | Mar 2007 | A1 |
20070270652 | Morishita et al. | Nov 2007 | A1 |
20080192235 | Komiya et al. | Aug 2008 | A1 |
20080259336 | Konno et al. | Oct 2008 | A1 |
20080284902 | Konno et al. | Nov 2008 | A1 |
20080292295 | Konno et al. | Nov 2008 | A1 |
20090067695 | Komiya et al. | Mar 2009 | A1 |
20090092297 | Kitoh et al. | Apr 2009 | A1 |
20090102964 | Yuyama et al. | Apr 2009 | A1 |
20090185712 | Wong et al. | Jul 2009 | A1 |
20090322868 | Ikeda | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
199 62 779 | Jun 2001 | DE |
0 660 616 | Jun 1995 | EP |
1 072 884 | Jan 2001 | EP |
03-090123 | Apr 1991 | JP |
3-090128 | Apr 1991 | JP |
7-120324 | May 1995 | JP |
7-322103 | Dec 1995 | JP |
8-065690 | Mar 1996 | JP |
8-079770 | Mar 1996 | JP |
8-149352 | Jun 1996 | JP |
9-172649 | Jun 1997 | JP |
09-178564 | Jul 1997 | JP |
10-042302 | Feb 1998 | JP |
10-051796 | Feb 1998 | JP |
11-055444 | Feb 1999 | JP |
11-104061 | Apr 1999 | JP |
11-146265 | May 1999 | JP |
11-196301 | Jul 1999 | JP |
11-225953 | Aug 1999 | JP |
11-331493 | Nov 1999 | JP |
2000-152264 | May 2000 | JP |
2000-152269 | May 2000 | JP |
2000-296114 | Oct 2000 | JP |
2000-338950 | Dec 2000 | JP |
2000-341499 | Dec 2000 | JP |
2000-341681 | Dec 2000 | JP |
2001-024971 | Jan 2001 | JP |
2001-083009 | Mar 2001 | JP |
2002-009879 | Jan 2002 | JP |
2002-112960 | Apr 2002 | JP |
2002-158948 | May 2002 | JP |
2002-232769 | Aug 2002 | JP |
2003-021859 | Jan 2003 | JP |
2003-023643 | Jan 2003 | JP |
2003-043559 | Feb 2003 | JP |
2003-087806 | Mar 2003 | JP |
2003-114462 | Apr 2003 | JP |
2003-189068 | Jul 2003 | JP |
2003-309856 | Oct 2003 | JP |
2003-333608 | Nov 2003 | JP |
WO 0050927 | Aug 2000 | WO |
WO 0129542 | Apr 2001 | WO |
WO 0155956 | Aug 2001 | WO |
WO 0212847 | Feb 2002 | WO |
WO 2004012461 | Feb 2004 | WO |
WO 2004036162 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20100277570 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10521778 | US | |
Child | 12834133 | US |