The present application claims priority from a Japanese Patent Application No. 2009-005839 filed on Jan. 14, 2009, the contents of which are incorporated herein by reference.
1. Technical Field
The present invention relates to an image processing system, an image processing method, and a computer readable medium for adjusting the image quality of a low image-quality motion image.
2. Description of the Related Art
Japanese Patent Application Publication No. H07-250804 (Patent Document No. 1) discloses a technique of detecting the motion vector of a fluorescent light image, to perform motion compensation to the fluorescent light image.
Patent Document No. 1 uses a fluorescent light motion image to detect the motion vector. However, a fluorescent light image generally has a long exposure time and a low frame rate, which would generate a large amount of blurring and prevent detection of accurate motion vectors. As a result, the technology cannot improve the image quality of the fluorescent light motion image to a satisfactory level.
According to a first aspect of the innovations herein, provided is an image processing system including: an image obtaining section that obtains a high image-quality motion image and a low image-quality motion image in which a same subject is captured simultaneously; a motion calculating section that calculates a motion of the subject in the high image-quality motion image, from the high image-quality motion image; and an image adjusting section that generates a motion image resulting from adjusting an image quality of the low image-quality motion image, based on the motion calculated by the motion calculating section.
The image obtaining section may obtain the low image-quality motion image generated by receiving fluorescent light from the subject irradiated with excitation light, and the high image-quality motion image generated by receiving reflected light from the subject.
The image processing system includes: an irradiating section that sequentially irradiates the subject with the excitation light and visible light, by switching between the excitation light and the visible light; and an image capturing section that sequentially captures images of fluorescent light from the subject irradiated with the excitation light and images of reflected light from the subject irradiated with the visible light, where the image obtaining section obtains a motion image of the fluorescent light and a motion image of the reflected light that have been captured by the image capturing section.
The image processing system includes: an irradiating section that irradiates the subject with the excitation light; a first image capturing section that captures images of fluorescent light from the subject irradiated with the excitation light; and a second image capturing section that captures images of reflected light from the subject irradiated with the excitation light, where the image obtaining section obtains a motion image of the fluorescent light captured by the first image capturing section and a motion image of the reflected light captured by the second image capturing section.
The image obtaining section may obtain the high image-quality motion image whose exposure time is shorter than an exposure time in which the low image-quality motion image is exposed, and the image adjusting section may generate motion image constituting images by correcting blurring in motion image constituting images included in the low image-quality motion image, based on the motion calculated by the motion calculating section.
The image obtaining section may obtain the high image-quality motion image whose frame rate is higher than a frame rate of the low image-quality motion image, and the image adjusting section may generate a interpolation image for interpolating motion image constituting images included in the low image-quality motion image, based on the motion calculated by the motion calculating section.
The image obtaining section may obtain the high image-quality motion image whose resolution is higher than a resolution of the low image-quality motion image, and the image adjusting section may render, in a high resolution, motion image constituting images included in the low image-quality motion image, using the motion calculated by the motion calculating section.
According to a second aspect of the innovations herein, provided is an image processing method for processing an image by means of a computer, including: obtaining a high image-quality motion image and a low image-quality motion image in which a same subject is captured simultaneously; calculating a motion of the subject in the high image-quality motion image, from the high image-quality motion image; and adjusting an image quality of the low image-quality motion image, using the calculated motion.
According to a third aspect of the innovations herein, provided is a computer readable medium for storing a program, the program causing a computer to function as: an image obtaining section that obtains a high image-quality motion image and a low image-quality motion image in which a same subject is captured simultaneously; a motion calculating section that calculates a motion of the subject in the high image-quality motion image, from the high image-quality motion image; and an image adjusting section that adjusts an image quality of the low image-quality motion image, using the motion calculated by the motion calculating section.
The summary of the invention does not necessarily describe all necessary features of the present invention. The present invention may also be a sub-combination of the features described above.
The invention will now be described based on the preferred embodiments, which do not intend to limit the scope of the present invention, but exemplify the invention. All of the features and the combinations thereof described in the embodiment are not necessarily essential to the invention.
The endoscope 101 includes a clamp port 111, an image capturing section 112, and a light guide 113. The tip 109 of the endoscope 101 has, on its end surface 130, a lens 131 as a part of the image capturing section 112. The tip 109 also has an outlet 132 as a part of the light guide 113 at its end surface 130. A clamp 106 is inserted to the clamp port 111. The clamp port 111 guides the clamp 106 towards the tip 109. Note that the form of the tip of the clamp 106 may be varied. Moreover, a various type of devices, other than the clamp 106, may be inserted to the clamp port 111, for treating a living body. A nozzle 133 delivers water or air to outside.
The irradiating section 105 irradiates a subject with light. The irradiating section 105 irradiates a subject with excitation light. The irradiating section 105 also irradiates a subject with white light. The white light is an example of visible light. The irradiating section 105 may sequentially irradiate a subject with excitation light and white light by switching therebetween. The irradiating section 105 includes a light source 107 and a rotation filter 108. The light source 107 emits white light. The light source 107 may be an electric bulb or an LED. The rotation filter 108 includes a first filter transmitting white light and a second filter transmitting excitation light. The irradiating section 105 switches between the white light and the excitation light by rotating the rotation filter 108, thereby irradiating the subject with the white light and the excitation light. An arrangement is possible in which the tip 109 of the endoscope 101 be provided with the irradiating section 105. For example, the tip 109 of the endoscope 101 may be provided with an LED emitting the white light and an LED emitting the excitation light.
The light guide 113 is made up of optical fibers, for example. The light guide 113 guides light emitted from the irradiating section 105 towards the tip 109 of the endoscope 101. The light emitted from the irradiating section 105 is guided through the light guide 113 to be outputted from the outlet 132 on the end surface 130 to irradiate the subject.
The image capturing section 112 simultaneously captures a low image-quality motion image and a high image-quality motion image of a same subject. The image capturing section 112 captures returned light from a subject being an observation target irradiated by the irradiating section 105. The image capturing section 112 captures an image of fluorescent light from a subject irradiated with excitation light. In addition, the image capturing section 112 may capture an image of reflected light from a subject irradiated with white light. The image capturing section 112 may also capture an image of reflected light from a subject irradiated with excitation light. In addition, the image capturing section 112 may sequentially and alternately capture the image of the fluorescent light from the subject irradiated with the excitation light and the image of the reflected light from the subject. Since fluorescent light is weak, the image capturing section 112 may capture an image of fluorescent light in a longer exposure time than when capturing an image of reflected light. Moreover, the image capturing section 112 may capture a motion image of fluorescent light at a lower frame rate than a frame rate at which a motion image of reflected light is taken. Also because of weakness of fluorescent light, the image capturing section 112 may capture an image of fluorescent light with higher sensitivity than for an image of reflected light. When a motion image of fluorescent light is captured in a longer exposure time than in capturing a motion image of reflected light, the subject in the captured image will fluctuate much. When a motion image of fluorescent light is captured at a lower frame rate than for a motion image of reflected light, the motion of the subject in the captured image is not reproduced in detail. For having better sensitivity for the fluorescent light motion image than the reflected light motion image, it is necessary to add the accumulated pixel charge when reading it, or to enlarge the size of the pixel itself. Therefore, the fluorescent light motion image has lower resolution, to result in low image quality for the fluorescent light motion image and high image quality for the reflected light motion image.
The image processing section 102 obtains a motion image captured by the image capturing section 112. The image processing section 102 obtains a low image-quality motion image and a high image-quality motion image of a same subject that have been simultaneously captured by the image capturing section 112. The image processing section 102 obtains a fluorescent light motion image and a reflected light motion image captured by the image capturing section 112. The image processing section 102 may obtain a low image-quality motion image generated by receiving fluorescent light from a subject irradiated with excitation light, and a high image-quality motion image generated by receiving reflected light from the subject. In addition, the image processing section 102 performs image processing to a low image-quality motion image, based on the obtained high image-quality motion image. In addition, the image processing section 102 may be realized by an information processing apparatus such as a CPU, or by electronic circuitry or electric circuitry.
The image recording section 103 records a low image-quality motion image having undergone image processing in the image processing section 102. The image recording section 103 also records a high image-quality motion image obtained by the image processing section 102. The image recording section 103 may also record a low image-quality motion image obtained by the image processing section 102. The image recording section 103 may include a recording medium such as a flash memory, and a recording control section for recording an image to the recording medium. The recording control section may be realized by an information processing apparatus such as a CPU.
The image display section 104 displays a motion image recorded by the image recording section 103. The image display section 104 displays a recorded high image-quality motion image. The image display section 104 also displays a recorded low image-quality motion image. The image display section 104 may include a display such as a liquid crystal display, an organic EL display, and a plasma display, and a display control section controlling the display. The display control section may be realized by an information processing apparatus such as a CPU.
The motion calculating section 124 calculates the motion of the subject in the high image-quality motion image obtained by the high image-quality motion image obtaining section 122. That is, the motion calculating section 124 calculates the motion vector of the subject in the high image-quality motion image obtained by the high image-quality motion image obtaining section 122, by block matching and so on. The motion calculating section 124 outputs the calculated motion of the subject to the image adjusting section 125. The image adjusting section 125 adjusts the image quality of the low image-quality motion image obtained by the low image-quality motion image obtaining section 123, using the motion calculated by the motion calculating section 124.
When a high image-quality motion image is exposed in a shorter exposure time than a low image-quality motion image, the image adjusting section 125 may correct the blurring in the motion image constituting images making up the low image-quality motion image, using the calculated motion. Specifically, when the exposure time gets long, the image is more prone to cause blurring. Therefore, the blurring is corrected to either eliminate or reduce the blurring. The motion image constituting images are images making up a motion image, and include a frame image, a field image, etc. When the frame rate is higher for the high image-quality motion image than for the low image-quality motion image, the image adjusting section 125 may generate an interpolation image for interpolating the motion image constituting images included in the low image-quality motion image, using the calculated motion. That is, the frame rate of the low image-quality motion image is increased by generating the interpolation images for interpolating the motion image constituting images among the frames of the low image-quality motion image. In addition, when the high image-quality motion image has a resolution higher than the low image-quality motion image, the image adjusting section 125 may raise the resolution of the motion image constituting images in the low image-quality motion image, thereby raising the resolution of the low image-quality motion image. The image adjusting section 125 outputs the adjusted low image-quality motion image to the image recording section 103.
When the irradiating section 105 is emitting excitation light, the image capturing section 112 locates the excitation light cutting filter on the optical path. When the irradiating section 105 is emitting white light, the image capturing section 112 arranges the aperture on the optical path. By doing so, the image capturing element 153 is able to capture a fluorescent light image when the irradiating section 105 emits excitation light. That is, when the excitation light is emitted, reflected light of the excitation light and fluorescent light, which are from the subject, are incident to the image capturing section 112. However, since the excitation light cutting filter cuts off the excitation light, the image capturing element 153 can capture the fluorescent light image. When the irradiating section 105 is emitting white light, the image capturing element 153 is able to capture a color image. Note that the exposure time, the frame rate, etc. of the image capturing element 153 are controlled by an information processing apparatus such as a CPU. The rotation of the rotation filter 151 is controlled by an information processing apparatus. Note that the image capturing section 112 includes an image capturing element driver for driving the image capturing element 153. This image capturing element driver is controlled by an information processing apparatus such as a CPU. The information processing apparatus may be provided in the image capturing section 112, or in the image processing system 100.
The following explains the operation of the image processing system 100. The irradiating section 105 switches between the white light and the excitation light by rotating the rotation filter 108, thereby irradiating the subject with the white light and the excitation light. The image capturing section 112 rotates the rotation filter 151. Accordingly, the image capturing section 112 can concurrently capture the fluorescent light motion image and the reflected light motion image. Here, since fluorescent light is weak, the image capturing section 112 receives fluorescent light in an exposure time longer than an exposure time in which reflected light is received. Accordingly, the irradiating section 105 irradiates excitation light in a longer time than a time in which white light is irradiated. That is, the irradiating section 105 emits white light and fluorescent light by switching therebetween, in synchronization with the timings at which the image capturing section 112 starts receiving reflected light and fluorescent light.
To be specific, the image capturing section 112 rotates the rotation filter 151, to arrange the aperture 161 on the optical path between the lens 131 and the image capturing element 153 while the reflected light is captured. While the fluorescent light is captured, the excitation light cutting filter 162 is arranged on the optical path. In synchronization with this, the irradiating section 105 rotates the rotation filter 108, to arrange the first filter 141 on the optical path of the light source 107 while reflected light is captured, and to arrange the second filter on the optical path of the light source 107 while the fluorescent light is captured. As a result, by emitting white light, a color image of a subject can be captured, and by emitting excitation light, a fluorescent light can be captured. By alternately repeating the period for capturing a reflected light image and the period for capturing a fluorescent light image, the image capturing section 112 can alternately capture a reflected light motion image and a fluorescent light motion image, and can capture a color motion image and a fluorescent light motion image simultaneously. Here, the term “simultaneous(ly)” mean that the motion image constituting images making up a reflected light motion image and the motion image constituting images making up a fluorescent light motion image are captured simultaneously as a motion image, but does not mean that these motion image constituting images are captured at the same time of day.
Since fluorescent light is weak, the image capturing section 112 may read the pixel charge of the image capturing element 153 having received fluorescent light by adding the charge together. The image capturing section 112 may capture a reflected light motion image at a frame rate shorter than a frame rate for a fluorescent light motion image. In this case, the number of times at which the reflected light is captured is set larger than the number of times at which the fluorescent light is captured, instead of alternately capturing the reflected light and the fluorescent light.
The high image-quality motion image obtaining section 122 sequentially obtains color images captured by the image capturing section 112. As a result, the high image-quality motion image obtaining section 122 can obtain a reflected light motion image. The low image-quality motion image obtaining section 123 sequentially obtains fluorescent light images captured by the image capturing section 112. As a result, the low image-quality motion image obtaining section 123 can obtain a fluorescent light motion image captured by the image capturing section 112. The motion calculating section 124 calculates the motion of a subject from the reflected light motion image obtained by the high image-quality motion image obtaining section 122. The image adjusting section 125 adjusts the image quality of the fluorescent light motion image obtained by the low image-quality motion image obtaining section 123, using the motion calculated by the motion calculating section 124. The image adjusting section 125 adjusts the blurring in the motion image constituting images included in the fluorescent light motion image, using the motion calculated by the motion calculating section 124, when the exposure time is shorter for the reflected light motion image than for the fluorescent light motion image. That is, the motion can be obtained more accurately from an image having a shorter exposure time since it has a small amount of blurring, which helps adjust the image quality of the low image-quality motion image. When the frame rate is higher for the reflected light motion image than for the fluorescent light motion image, the image adjusting section 125 interpolates the motion image constituting images included in the fluorescent light motion image, using the motion calculated by the motion calculating section 124. That is, the motion of a subject is reproduced with more details for a motion image having a higher frame rate, and so the motion can be obtained more accurately from such a motion image, which helps adjust the image quality of the low image-quality motion image. When the resolution is higher for the reflected light motion image than for the fluorescent light motion image, the image adjusting section 125 may render the fluorescent light motion image in a higher resolution, using the motion calculated by the motion calculating section 124. In other words, the motion of a subject is reproduced with more details for a motion image having a higher resolution, and so the motion can be obtained more accurately from such a motion image, which helps adjust the image quality of the low image-quality motion image.
The image recording section 103 records the reflected light motion image obtained by the high image-quality motion image obtaining section 122 and the fluorescent light motion image adjusted by the image adjusting section 125. The image display section 104 displays the reflected light motion image and the fluorescent light motion image recorded by the image recording section 103. The image display section 104 may display the reflected light motion image and the fluorescent light motion image simultaneously. Specifically, the first display region may display the reflected light motion image, and the second display region may display the fluorescent light motion image. In addition, the image display section 104 may display one of the reflected light motion image and the fluorescent light motion image. For example, display of the reflected light motion image and the fluorescent light motion image can be switched in response to a switching instruction from a user.
The first image capturing section 171 includes an excitation light cutting filter 162 and a first image capturing element 175. The excitation light cutting filter 162 cuts the light of the wavelength band of the excitation light, from the light having been transmitted through the half mirror 173, and transmits the other wavelength bands. The first image capturing element 175 receives the light having been transmitted through the half mirror 173 from which the wavelength band of the excitation light is cut. Accordingly, when a subject is irradiated with excitation light, the first image capturing element 175 can receive fluorescent light. The second image capturing section 172 includes a color filter 152 and a second image capturing element 176. The second image capturing element 176 receives the light having been transmitted through the color filter 152 after reflected at the half mirror 173. When the irradiating section 105 irradiates a subject with white light, the second image capturing element 176 is able to capture a color image of the subject, and when the subject is irradiated with excitation light, the second image capturing element 176 can capture a background image. In addition, since the first image capturing element 175 receives fluorescent light that is weak light, the pixels thereof may have a pixel area larger than the pixels of the second image capturing element 176. When the effective pixel area is the same between the first image capturing element 175 and the second image capturing element 176, the resolution will be lower for the first image capturing element 175 than for the second image capturing element 176.
Note that the first image capturing section 171 includes a first image capturing element driver for driving the first image capturing element 175. The second image capturing section 172 includes a second image capturing element driver for driving the second image capturing element 176. The first image capturing element driver and the second image capturing element driver are controlled by an information processing apparatus such as a CPU. The information processing apparatus may be provided in the image capturing section 112, or in the image processing system 100.
The following explains the operation of the image processing system 100, when the image capturing section 112 is as shown in
The high image-quality motion image obtaining section 122 obtains the reflected light motion image captured by the second image capturing section 172. The low image-quality motion image obtaining section 123 captures the fluorescent light motion image captured by the first image capturing section 171. The motion calculating section 124 calculates the motion of a subject from the reflected light motion image obtained by the high image-quality motion image obtaining section 122. The image adjusting section 125 adjusts the image quality of the fluorescent light motion image obtained by the low image-quality motion image obtaining section 123, using the motion calculated by the motion calculating section 124. The image adjusting section 125 may correct the blurring in the motion image constituting images included in the fluorescent light motion image, using the motion calculated by the motion calculating section 124, when the exposure time is shorter for the reflected light motion image than for the fluorescent light motion image. When the frame rate is higher for the reflected light motion image than for the fluorescent light motion image, the image adjusting section 125 may interpolate the motion image constituting images included in the fluorescent light motion image, using the motion calculated by the motion calculating section 124. When the resolution is higher for the reflected light motion image than for the fluorescent light motion image, the image adjusting section 125 may render the fluorescent light motion image in a higher resolution, using the motion calculated by the motion calculating section 124.
The image recording section 103 records the reflected light motion image obtained by the high image-quality motion image obtaining section 122 and the fluorescent light motion image adjusted by the image adjusting section 125. The image display section 104 displays the reflected light motion image and the fluorescent light motion image recorded by the image recording section 103. The image display section 104 may display the reflected light motion image and the fluorescent light motion image simultaneously. Specifically, the first display region may display the reflected light motion image, and the second display region may display the fluorescent light motion image. In addition, the image display section 104 may display one of the reflected light motion image and the fluorescent light motion image. For example, display of the reflected light motion image and the fluorescent light motion image can be switched in response to a switching instruction from a user.
When the irradiating section 105 has switched between emitted excitation light and white light, the motion may be obtained from the motion image of the reflected light of the white light captured by the second image capturing section 172. The motion may also be obtained from the motion image of the reflected light of the excitation light captured by the second image capturing section 172. The motion may also be obtained form the motion image captured by the second image capturing section 172. In other words, the motion may be obtained from the motion images of the reflected light of the white light and of the reflected light of the excitation light captured by the second image capturing section 172.
In this way, the motion of a subject in a high image-quality motion image can be calculated from the high image-quality motion image for the purpose of adjusting the image quality of a low image-quality motion image. Therefore, the image quality of a low image-quality motion image can be adjusted with accuracy. Note that in the above-described embodiment, a reflected light motion image and a fluorescent light motion image are taken as an example of a high image-quality motion image and a low image-quality motion image. However, the high image-quality motion image and the low image-quality motion image are not limited to them. Moreover, it is possible to cause an information processing apparatus such as a CPU to function as an image processing system 100, by executing a predetermined program.
Although some aspects of the present invention have been described by way of exemplary embodiments, it should be understood that those skilled in the art might make many changes and substitutions without departing from the spirit and the scope of the present invention which is defined only by the appended claims.
The operations, the processes, the steps, or the like in the apparatus, the system, the program, and the method described in the claims, the specification, and the drawings are not necessarily performed in the described order. The operations, the processes, the steps, or the like can be performed in an arbitrary order, unless the output of the former-described processing is used in the later processing. Even when expressions such as “First,” or “Next,” or the like are used to explain the operational flow in the claims, the specification, or the drawings, they are intended to facilitate the understanding of the invention, and are never intended to show that the described order is mandatory.
Number | Date | Country | Kind |
---|---|---|---|
2009-005839 | Jan 2009 | JP | national |