This application relates to the following applications filed on even date herewith and each incorporated herein by these references in their entirety, including Multiprocessor Discrete Wavelet Transform by John K. Gee et al. (Ser. No. 12/572,600), Custom Efficient Optical Distortion Reduction System and Method by David W. Jensen, Richard D. Tompkins and Susan Robbins (Ser. No. 12/572,669), Multiple Aperture Video Imaging System by David W. Jensen and Steven E. Koenck (Ser. No. 12/572,492).
The present invention relates to improved systems and methods of image processing and more particularly to improved systems and method of image processing using modified image data to produce enhanced data, such as enhanced images.
Current forms of data enhancement are computationally complex and therefore slow. This is particularly problematic in the area of image and video processing where slow computation leads to jumpy or otherwise unacceptable video play back rates. Several methods have been suggested to speed up the processing; however, each is high cost or otherwise does not provide a sufficient increase in speed to justify the increased cost.
One area that adds to the complexity in current data enhancement systems and related methods is due to the fact that multiple processes are applied to the data, often introducing performance delay and latencies unacceptable for many of real time applications.
The present invention overcomes one or more of these problems and has application across multiple domains, including persistent surveillance, medical imaging, astronomy, commercial avionics and soldier vision systems.
The present invention includes an image processing system with several data enhancement processing units, such as image processors, connected together with a communication bus or network. Each data enhancement processing unit includes the ability to apply two or more processing techniques, including one frequency-based technique, to transform the one or more wavelet coefficients into a set of modified wavelet coefficients representing an enhanced data set such as one representing an enhanced image and a memory that stores the one or more wavelet coefficients. In one embodiment an image processor includes a wavelet transform processing unit that decomposes data from an image into one or more sets of wavelet coefficients using a discrete wavelet transform, a processor that applies two or more processing techniques, including one frequency-based technique, to transform the one or more sets of wavelet coefficients into a set of modified wavelet coefficients representing an enhanced image. A processor that transforms the set of modified wavelet coefficients into the enhanced image.
Another embodiment adds an address computation processing unit and a shared register file so that the wavelet transform processing unit decomposes data from one or more segments of an image into wavelets using a discrete wavelet transform. The shared register stores the intermediate wavelet coefficient computations. The address computation processing unit identifies addresses of wavelets to be decomposed by subsequent operation of the wavelet transform processing unit. The system also includes storage where the resultant wavelet coefficients from each segment may be stored.
The present invention also includes methods of data enhancement using one or more processors decomposing an data using a discrete wavelet transform on a wavelet transform processing unit to form one or more sets of wavelet coefficients, applying two or more processing techniques, including one frequency-based technique, to create an enhanced representative image by transforming one or more sets of wavelet coefficients into a set of modified wavelet coefficients representing the enhanced image, and transforming the set of modified wavelet coefficients into the enhanced image.
In the drawings:
The present invention includes systems and methods for enhancing data sets, such as those that represent images that greatly reduce power and time costs while also providing high performance. In one embodiment of the present invention, the present invention provides a system and related methods that enhance resultant images using less power by limiting very time consuming due to the per-pixel nature of most computations. The present invention is also suitable for other types of data as will be evident below. In the present invention an image processing system and related method uses a discrete wavelet transform (DWT) to reduce the computational complexity while maintaining, or even improving, the resulting output.
The present invention results in an efficient method that provides performance benefits when there is a desire to use one or more (multiple) image processing algorithms. The present invention is well suited to a variety of applications. Since this system can efficiently accomplish the desired results by only performing the transformation once and then using the transformed data with multiple image enhancement algorithms, it has opened the door to an enhanced method that can use a transformation, to convert an image to a frequency and spatial representation. Following the application of multiple enhancement algorithms that are applied to the wavelet coefficients, a single transformation converts the data back to a normal image. Performing the enhancement algorithms on the wavelet coefficients improves the performance and reduces latency for the system. This approach can be extremely valuable for real-time applications.
As seen in
The processing unit may be a single general purpose processing unit that runs software to carry out the data enhancement algorithm discussed below. As would be well understood by one skilled the art, the processing unit is not limited to a single general purpose processor, but could alternately also be a multicore processor, or even handled by a hardware implementation independently or in combination.
In the alternative, the processing unit may be a purpose built processing unit that carries out the data enhancement algorithm discussed below. Purpose built is used to mean that data enhancement algorithm can be implemented in hardware or microcoded software on the processing unit. For example, an application specific integrated circuit (ASIC) could be a purpose build processing unit.
Also as seen in
Each data enhancement processing unit includes the ability to apply two or more processing techniques, including one frequency-based technique, to transform the one or more sets of wavelet coefficients into a set of modified wavelet coefficients representing an enhanced data set such as one representing an enhanced image and a memory that stores the one or more wavelet coefficients. In one embodiment an image processor includes a wavelet transform processing unit that decomposes data from an image into one or more sets of wavelet coefficients using a discrete wavelet transform, a processor that applies two or more processing techniques, including one frequency-based technique, to transform the one or more sets of wavelet coefficients into a set of modified wavelet coefficients representing an enhanced image.
The processing unit, in one embodiment, does at least need the wavelet transform processing unit (WTPU) 110 and the memory 106 capable of applying two or more processing techniques, including one frequency-based technique using a frequency-based algorithm for example a noise related algorithm, to transform the one or more sets of wavelet coefficients into a set of modified wavelet coefficients representing an enhanced data set representing an enhanced image with noise corrections using the memory 106 that stores the one or more sets of wavelet coefficients. It can also include a shared register 108 and an address computation processing unit (ACPU) 112 if needed.
The memory may take any form suitable and may include such things as cache, RAM or other non-volatile storage. The WTPU 110 decomposes the image data into wavelet coefficients to be used in the each decomposition as shown in
The WTPU 110 decomposes the input data into wavelets using a discrete wavelet transform to form one or more wavelet coefficient and uses two or more processing techniques, including one frequency-based technique, to transform the one or more wavelet coefficients from an original image 120, for example as shown in
The present inventive method of data enhancement starts with decomposing data using a wavelet transform on a wavelet transform processing unit 110 to form one or more sets of wavelet coefficients. The wavelet transform can be a discrete wavelet transform or other wavelet transform such as a complex wavelet transform. Next the processor applies two or more processing techniques, including one frequency-based technique, to create an enhanced representative image, transforming one or more sets of wavelet coefficients into a set of modified wavelet coefficients representing the enhanced image. Finally the processor or processors transform the set of modified wavelet coefficients into the enhanced image.
In a preferred embodiment only one of each type of algorithm, in a multiple of applicable algorithms, are applied by the system. In one example the types of algorithms applied include, but are not limited to, one noise algorithm, a registration algorithm and one dynamic range compression algorithm.
In one embodiment the algorithms that will process image frames collected from sensors including but not limited to visible, low light, and infrared sensors. This embodiment could include various enhancements on the single image frame by applying one or more of algorithms such as but not limited to registration, distortion correction, feature recognition, noise reduction, contrast enhancement, multi-spectral fusion, multi-focus fusion (hands free focus), super-resolution, compression, and deblurring algorithm.
The method could include enhancements on a multiple image frames by applying one or more of algorithms such as but not limited to registration, distortion correction, feature recognition, noise reduction, contrast enhancement, multi-spectral fusion, multi-focus fusion (hands free focus), super-resolution, compression, and deblurring algorithm, and results in a single or multiple output frames. In another embodiment the method can be enhanced with a parallax-correcting registration step in conjunction to two or more input images by applying one or more registration algorithms to the low frequency data to obtain a coarse registration and using the high frequency coefficients to refine that coarse registration and then leveraging high frequency as a set of weights to select, register, and construct an output image.
In another embodiment the processing unit is multiple processors or hardware units that simultaneously perform the transforms on the sets of wavelet coefficients. The algorithms are used to process image frames collected from sensors including but not limited to visible, low light, and infrared sensors. The processing enhancements to a single image frame by applying one or more of algorithms such as but not limited to registration, distortion correction, feature recognition, noise reduction, contrast enhancement, multi-spectral fusion, multi-focus fusion (hands free focus), super-resolution, compression, and deblurring algorithm. The processing enhancements of multiple image frames by applying one or more of algorithms such as but not limited to registration, distortion correction, feature recognition, noise reduction, contrast enhancement, multi-spectral fusion, multi-focus fusion (hands free focus), super-resolution, compression, and deblurring algorithm; and results in a single or multiple output frames. The system can alternately further including a parallax-correcting registration step in conjunction to two or more input images by applying one or more registration algorithms to the low frequency data to obtain a coarse registration and using the high frequency coefficients to refine that coarse registration and then leveraging high frequency as a set of weights to select, register, and construct an output image.
In one preferred embodiment of the wavelet-based framework the enhancement method includes the steps of decomposing data from one or more images into one or more sets of wavelet coefficients using a discrete wavelet transform, storing the one or more sets of wavelet coefficients in memory, applying two or more processing techniques, including one frequency-based technique, to transform the one or more wavelet coefficients into a set of modified wavelet coefficients representing one or more enhanced images; and transforming the sets of modified wavelet coefficients into one or more enhanced images.
In the above embodiment and in others a Le Gall 5/3 Discrete Wavelet Transform (DWT) can be used, but any reversible transform can be applied. The DWT reversible transformation converts the image to a low frequency and high frequency mapping. The low frequency map contains down-sampled version of the original image. Using the smaller image improves the execution speed performance of searching algorithms such as registration and feature recognition. The high frequency map improves the execution speed performance of algorithms that reduce noise and enhance details in images. It is only necessary to perform the transformation once when using the enhanced processing method since multiple image enhancement algorithms can execute on the frequency domain representations. After performing the enhancement algorithms, a single transformation 128b converts the data back to a normal image. Applicable enhancement algorithms include, but are not limited to, registration, feature recognition, noise reduction, contrast enhancement, multi-spectral fusion, multi-focus fusion (hands free focus), super-resolution, compression, and deblurring.
The enhanced data method has been successfully used by Rockwell Collins to perform Dynamic Range Compression (DRC) by modifying the coefficients as described above.
In another embodiment shown in
This process is especially useful when working to correct for parallax and image discontinuities which can be created when the two images are captured from different viewpoints. Registration is even more challenging and computationally demanding in this case. The parallax created by this change in viewpoint often produces undesirable artifacts in the constructed output image. The enhanced data processing method of the present invention provides an innovative approach to construct the registered images and appropriately account for the parallax and image discontinuities.
The low frequency spatial representations of the images are leveraged to provide a coarse registration. The high frequency coefficients are used to refine that coarse registration. The high frequency coefficients of the two images are also used as a weighting scheme for guide and select appropriate regions of coefficients to apply to the registered low frequency images. Each level of high frequency coefficients guides the construction of the registered image. The larger coefficients are specifically chosen from between the two converted images to ensure the more detailed image data is captured in the constructed image.
Another embodiment of the system and related method, sometimes referred to as enhanced data processing, can be also used to help preserve edge information, as shown in
This system and method is not limited to the visible portion of the spectrum. It can be applied to data across the spectrum including (but not limited to) that in the visible, low light, and IR.
Those skilled in the art may adapt and apply the invention in its numerous forms, as may be best suited to the requirements of a particular use. Accordingly, the specific embodiments of the present invention as set forth are not intended as being exhaustive or limiting of the invention. The scope of the invention should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5717791 | Labaere et al. | Feb 1998 | A |
6937773 | Nozawa | Aug 2005 | B1 |
7068851 | Berkner | Jun 2006 | B1 |
7206459 | Berkner et al. | Apr 2007 | B2 |
7239424 | Berkner et al. | Jul 2007 | B1 |
7277118 | Foote | Oct 2007 | B2 |
7545988 | Meeker | Jun 2009 | B2 |
7609297 | Master et al. | Oct 2009 | B2 |
7778367 | Stockmaster | Aug 2010 | B1 |
7778484 | Fu | Aug 2010 | B2 |
8116579 | Fenney et al. | Feb 2012 | B2 |
8170334 | Balster et al. | May 2012 | B2 |
8295632 | Fattal | Oct 2012 | B2 |
8406542 | Ikeda | Mar 2013 | B2 |
8503778 | Sim | Aug 2013 | B2 |
8792553 | Mallat | Jul 2014 | B2 |
8824833 | Dagher et al. | Sep 2014 | B2 |
8842940 | Gee et al. | Sep 2014 | B1 |
9196188 | Kimura | Nov 2015 | B2 |
20040156528 | Joo et al. | Aug 2004 | A1 |
20060056056 | Ahiska et al. | Mar 2006 | A1 |
20080247638 | Tanida | Oct 2008 | A1 |
20090116685 | Yoo et al. | May 2009 | A1 |
20090136083 | Picard et al. | May 2009 | A1 |
20090290779 | Knapp et al. | Nov 2009 | A1 |
20100142790 | Chang | Jun 2010 | A1 |
20100266188 | Burns et al. | Oct 2010 | A1 |
20110182495 | Sun et al. | Jul 2011 | A1 |
20120189206 | Iketani | Jul 2012 | A1 |
20120197594 | Orth et al. | Aug 2012 | A1 |
20120224027 | Takada | Sep 2012 | A1 |
20120281927 | Arai | Nov 2012 | A1 |
20120321151 | Zohrer et al. | Dec 2012 | A1 |
20130002816 | Hannuksela et al. | Jan 2013 | A1 |
20130169801 | Martin | Jul 2013 | A1 |
20130243296 | Nandi et al. | Sep 2013 | A1 |
20130322728 | Jacobs et al. | Dec 2013 | A1 |
20140334743 | Bernard et al. | Nov 2014 | A1 |