1. Field of the Invention
This invention relates to an image-recognition method and a system using the same and, more particularly, to an image-recognition method adapted for an open frame and a system using the same.
2. Description of the Related Art
Nowadays, an image-recognition system only can recognize the image of specific fields such as a handwritten-character recognition system, a human face recognition system, a license-number recognition system, a fingerprint recognition system, and so on.
A conventional image-recognition system utilizes closed frames, that is, it only records finite graphic data of a specific field. When an image is to be recognized, the conventional image-recognition system obtains characteristics of the image. Then, it determines similarity between the characteristics and the finite graphic data, and selects the graphic data which is most similar to the characteristics as a recognition result. Thus, the image recognition is completed.
The field of the conventional image-recognition system is limited. The reason is that for establishing an image-recognition system of an unspecific limited field, an algorithm of an open frame should be established first. That is, if an image of an unspecific field is to be recognized, infinite graphic data for comparison should be established first in the image recognition system. However, it will be unpractical because of the divergence of the graphic data of the image-recognition system. Therefore, no image-recognition system for the open frame can be practically used nowadays.
One objective of the invention is to provide an image-recognition method and a system using the same by which the image can be recognized according to the logic of lingual vocabularies.
Another objective of the invention is to provide an image-recognition method and a system using the same by which the image of the open frame can be recognized according to the logic of visual vocabularies.
The other objective of the invention is to provide an image-recognition method and a system using the same by which the number of the compared objects can be rapidly decreased according to the comparison logic of visual lingual characteristics.
To achieve the above objectives, the embodiment of the invention provides an image-recognition method. A database which records a plurality of objects, at least one visual lingual characteristic corresponding to the objects and at least one graphic sample corresponding to the objects is used in the method. The method includes following steps: receiving an image to be recognized; determining at least one visual lingual characteristic of the image; selecting at least one object corresponding to at least one graphic sample from the database according to the visual lingual characteristics, and at least one graphic sample corresponding to the object; and comparing the image with the selected graphic sample. In the embodiment of the invention, the visual lingual characteristic can be the visual vocabulary of human beings for describing the visual characteristics of images, appearance or spatial location relationships, and the visual lingual characteristic can also be a noun, adjective, or a corresponding comparative degree.
To achieve the above objectives, the embodiment of the invention also provides an image-recognition system. A database is used in the system. The database records a plurality of objects, at least one visual lingual characteristic and at least one graphic sample. The system includes an image scanning unit for scanning an image to be recognized, a storage unit for storing a database, and a central process unit for executing a computer program to determine at least one visual lingual characteristic of an image to be recognized. In the database, at least one object and at least one graphic sample corresponding to the objects are selected according to the visual lingual characteristics, and the graphic sample will be compared with the image to be recognized.
To achieve the above objectives, the embodiment of the invention further provides a computer readable storage medium with a computer program. The computer program is used for an image-recognition database recording a plurality of objects, at least one visual lingual characteristic corresponding to the objects, and at least one graphic sample corresponding to the objects. Wherein, the above computer program mainly includes codes for determining at least one visual lingual characteristic of an image to be recognized, codes for selecting at least one object from the database according to the visual lingual characteristics and at least one graphic sample corresponding to the object, and codes for comparing the graphic sample with the image to be recognized.
In the embodiment of this invention, the visual vocabulary can be “dimension”, “size”, “shape”, “color”, or “brightness”.
In the embodiment of this invention, the steps for comparing the image to be recognized with the graphic sample can include extracting at least one graphic characteristic of the image to be recognized and comparing the graphic characteristic of the image to be recognized with that of the graphic sample.
Please refer to
The database 1 is stored in a storage unit 73 of the image-recognition system 7, and records objects 11 and 12, visual lingual characteristics 111˜120 and 121˜129, and graphic samples 51 and 52 (shown in
In this embodiment, the visual lingual characteristics 111˜120 and 121˜129 corresponding to the objects 11 and 12 in the database 1 belong to the visual vocabularies 21˜27 of the character and language for describing visual characteristics of images or spatial location relationships of human beings. The visual lingual characteristics 111˜120, 121˜129 can be noun, adjective, or a corresponding comparative degree.
The visual vocabularies 23, 24, 25, 26, 27 of the database 1 of the embodiment can include “dimension”, “size”, “shape”, “color”, “brightness”, “material”, and “characteristic”. The visual lingual characteristics 111˜120, 121˜129 of the objects corresponding to above visual vocabulary 21, 22, 23, 24, 25, 26, 27 are recorded in the database 1.
For example, when the visual vocabulary is “dimension”, it includes the visual lingual characteristics such as “1D”, “2D”, “3D”, and/or “unfixed”, and so on. The object stored in the database has visual lingual characteristics corresponding to the visual vocabulary “dimension”. When the visual vocabulary is “size”, it includes the visual lingual characteristics such as “larger than one hand can hold”, “smaller than two hands can hold”, “smaller than a person's body”, “a bit bigger than a person's body”, “much bigger than a person's body”, and/or “unfixed”, and so on.
Similarly, if the visual vocabulary is “shape”, the visual language nature can include “circle”, “triangle”, “square”, “unfixed”, and so on. When the visual vocabulary is “color”, the visual lingual characteristics can include “white”, “black”, “red”, “multicolor”, “unfixed”, and so on. When the visual vocabulary is “brightness”, the visual lingual characteristics can include “shininess”, “reflection”, “nonshininess”, “nonreflection”, “unfixed”, and so on. When the visual vocabulary is “material”, the visual lingual characteristics can include “metal”, “plastics”, “nonmetal”, “nonplastics”, “unfixed”, and so on. When the visual vocabulary is “characteristic”, the visual language nature can include “sharp angle”, “depression”, “none”, and so on.
For example, as shown in
According to the image-recognition method of the embodiment, after the image scanning unit 71 scans an image to be recognized, the image will be transmitted into a central process unit (CPU) 72. After a computer program is executed to receive the image to be recognized in the CPU 72 (step S100), the visual lingual characteristics of the image to be recognized will be determined. (step S110)
Therefore, as for the above visual lingual characteristics and visual vocabularies corresponding them, if the image to be recognized, for example, is a piece of white paper, “2D” is selected to be the visual lingual characteristic corresponding to the “dimension” of the image to be recognized; “smaller than a person's body” is selected to be the visual lingual characteristic corresponding to the “size” of the image to be recognized; “square” and “unfixed” are selected to be visual lingual characteristics corresponding to the “shape” of the image to be recognized; “white” is selected to be the visual lingual characteristic corresponding to the “color” of the image to be recognized; “nonshininess” and “nonreflection” are selected to be the visual lingual characteristic corresponding to the “brightness” of the image to be recognized; “nonmetal” and “nonplastics” are selected to be the visual lingual characteristic corresponding to the “material” of the image to be recognized; “none” is selected to be the visual lingual characteristic corresponding to the “characteristic” of the image to be recognized.
After that, the computer program will be executed in the CPU 72 to select objects 11, 12 according to the above visual lingual characteristics in the database 1 and at least one graphic sample corresponding to the object (step S120). In the embodiment, object 11, 12 will be selected by the logical algorithm so that the number of the objects to be compared will be rapidly decreased in the database 1. The visual lingual characteristics 111˜120, 121˜129 corresponding to the objects 11, 12 are identical to visual lingual characteristics of the image to be recognized.
If the image to be recognized is a piece of white paper, take the above database 1 as example, the selection performs in the database 1 by the logical algorithm as the following. Sequentially compare the visual lingual characteristics of the image to be recognized determined by the visual vocabularies with the visual lingual characteristics of objects in the database 1. In the comparison, if one of the visual lingual characteristics 111˜120, 121˜129 of the objects 11, 12 is different from the visual lingual characteristic of the image to be recognized, for example, the visual lingual characteristic 121 “3D” of the object 12 is different from “2D” which is the visual lingual characteristic determined by the corresponding “dimension” of the image to be recognized, then the logical algorithm will not compare according to the visual lingual characteristics “size” 121˜129 of the object 12. That is, when compared sequentially in the database 1, the visual lingual characteristic “small than a personal body” determined according to corresponding “size” of the image to be recognized will not be compared to the visual lingual characteristics 122, 123 of the corresponding “size” 22 of the object 12. Compare sequentially and similarly until all the visual lingual characteristics of the image are used to compare, and the object 11 whose visual lingual characteristics 111˜120 is identical to the visual lingual characteristics of the image to be recognized is selected from the database. After that, the image to be recognized should be compared with the graphic sample. In the embodiment, graphic characteristics of the image to be recognized should be extracted (step S130). Please refer to
In the embodiment, the graphic characteristic 31 belongs a part or a characteristic point of an image 41 to be recognized, and it can be the distribution of color, the change of shape or grain, and so on. In this embodiment, the image to be recognized 41 should be binarization first, and then the graphic characteristic 31 will be obtained by the image process methods such as segmentation, edge detection, thinning, skeletionizing, and so on. However, the graphic characteristic 31 can also be obtained by other image process methods in other embodiments.
Please refer to
As shown in the
If take the object 11 shown in
In this embodiment, the similarities between the graphic samples 51, 52 and the graphic characteristic 31 are calculated by a fuzzy logic or a artificial neural network, respectively, so that a graphic sample 41 with the highest similarity is selected. Moreover, before the above steps, at least one of the graphic template 61, 62 (shown in
Moreover, the above executing steps or the computer program of this invention can be written by computer language for convenient performance. The written computer program can be stored in any record media recognized and read by microprocessor unit, or any article or device containing the record media. There is not limited for the article which can be hard disk, diskette, laser disc, ZIP disk, magneto-optical (MO) disk, integrated circuit (IC) chips, random access memory (RAM), or the articles containing the record media used by persons having ordinary skill in the art. Since the automatic refreshing method of the multimedia file of the invention has been disclose completely above, and any person familiar with the computer language will know how to write the computer program after reading the specification, more detailed description about the computer program is omitted here.
Therefore, as stated above, an image-recognition method of this invention includes the following steps: comparing visual lingual characteristics determined by a lingual vocabulary logic according to the image to be recognized to decrease the number of the objects to be compared rapidly, and selecting at least one object; after that, comparing the similarity between the graphic characteristic of the image to be recognized with at least one graphic sample which is a closed frame corresponding to the selected object, and selecting at least one graphic sample so that the image recognition of the open frame is achieved.
The above embodiments are the examples for explaining convenient. The disclosure is not for limiting the scope of the invention. Therefore, the scope of the appended claims should not be limited to the description of the preferred embodiments described above.
Number | Date | Country | Kind |
---|---|---|---|
095137915 | Oct 2006 | TW | national |