The following relates to the imaging arts, medical imaging arts, image processing arts, medical image processing arts, and related arts.
Blur due to finite detector resolution is present in imaging modalities such as single photon emission computed tomography (SPECT) imaging, positron emission tomography (PET) imaging, transmission computed tomography (CT) imaging, and other imaging modalities. Using SPECT imaging as an illustrative example, if an ideal point radiation emission source is imaged by a gamma camera, the image is blurred due to finite collimation openings of the radiation collimator. For fan-beam or cone-beam collimators, the blurring is spatially dependent both on distance from the collimator/detector assembly and on lateral location across the face of the collimator/detector assembly. In PET, similar blurring results due to finite spatial accuracy (that is, non-zero area or volume localization) of 511 keV gamma ray detection events in the scintillator crystal. Finite spatial accuracy is also extant in CT imaging.
Blurring can be addressed on the hardware side by improved imaging system design. For example, in SPECT longer collimator openings can improve the collimation to reduce blurring, albeit at the expense of reduced count rate. In PET, Anger logic is sometimes used to enhance this spatial accuracy, but some blurring remains. In CT imaging a higher x-ray beam strength can be used, but this increases the radiation exposure of the subject. Similarly, increasing the administered dosage of radiopharmaceutical can be helpful in SPECT and PET. However, for imaging of human subjects, safety considerations and jurisdictional government regulations typically limit the allowable x-ray exposure or radiopharmaceutical dosage.
Blurring can also be mathematically compensated during the image reconstruction process. Some existing blur compensation techniques for fan-beam SPECT imaging are shift-invariant, meaning that they account for the distance dependence of the blurring but assume that the blurring is not dependent on the lateral location across the face of the collimator/detector assembly.
The following provides new and improved apparatuses and methods which overcome the above-referenced problems and others.
In accordance with one disclosed aspect, an apparatus comprises: a ray tracing module comprising a digital processor configured to perform a projection operation for a detector having shift-variant blurring by (i) computing ray increments between planes parallel with a detector face, (ii) computing stationary incremental blurring kernels corresponding to the ray increments, (iii) incrementally summing the ray increments convolved with the corresponding stationary incremental blurring kernels to generate a projection, and (iv) adjusting the projection for shift-variant blurring; and an iterative image reconstruction module comprising a digital processor configured to generate a reconstructed image from projection data using iterative reconstruction including projection operations performed by the ray tracing module.
In accordance with another disclosed aspect, an apparatus as set forth in the immediately preceding paragraph is disclosed, wherein the projection operation performed by the ray tracing module includes performing the adjusting (iv) by convolving with a nonstationary blurring kernel at a plane proximate to the detector face to generate the projection incorporating shift-variant blurring.
In accordance with another disclosed aspect, an image reconstruction method comprises: reconstructing an image using an iterative reconstruction method; and computing a projection used in the reconstructing by (i) computing ray increments between neighboring planes parallel with a detector face of a detector having shift-variant blurring, (ii) computing stationary incremental blurring kernels between neighboring planes parallel with the detector face based on a distance between the neighboring parallel planes, (iii) incrementally summing the ray increments convolved with corresponding stationary incremental blurring kernels to compute the projection, and (iv) adjusting the projection for shift-variant blurring.
In accordance with another disclosed aspect, an image reconstruction method as set forth in the immediately preceding paragraph is disclosed, wherein the adjusting (iv) comprises convolving with a non-stationary blurring kernel at a selected one of the neighboring planes.
In accordance with another disclosed aspect, an image reconstruction method comprises: reconstructing an image using an iterative reconstruction method; and computing a projection used in the reconstructing by (i) summing ray increments between neighboring planes parallel with a detector face of a detector having shift-variant blurring with stationary incremental blurring associated with each ray increment computed based on a distance between the neighboring parallel planes and (ii) incorporating shift variant blurring in at least one direction parallel with the neighboring parallel planes.
In accordance with another disclosed aspect, an image reconstruction method as set forth in the immediately preceding paragraph is disclosed, wherein the operation (ii) includes convolving with a nonstationary blurring kernel at a plane proximate to the detector face to incorporate shift variant blurring in at least one direction parallel with the neighboring parallel planes.
In accordance with another disclosed aspect, an image reconstruction processor is programmed to perform an image reconstruction method as set forth in any one of the four immediately preceding paragraphs. In accordance with another disclosed aspect, a storage medium stores instructions executable by a digital processor to perform an image reconstruction method as set forth in any one of the four immediately preceding paragraphs.
One advantage resides in providing computationally efficient shift-variant blur compensation.
Another advantage resides in providing improved image quality.
Further advantages will be apparent to those of ordinary skill in the art upon reading and understand the following detailed description.
With reference to
The imaging device can generate projection data of another imaging modality besides SPECT, such as a positron emisson tomography (PET) scanner generating PET projection data, or a transmission computed tomography (CT) scanner generating CT projection data, or so forth. In the case of SPECT and CT, collimators are employed to spatially define the projections, whereas PET projections are defined by the simultaneous detection (or substantially simultaneous detection, in the case of time-of-flight PET) of two oppositely directed 511 keV gamma particles emitted by an electron-positron annihilation event.
In the case of SPECT and PET, a radiopharmaceutical containing a radioisotope is administered to the subject, the radiopharmaceutical preferentially collects in an organ or tissue of interest, and radiation detectors 12, 14 detect radioemissions from the radioisotope. Hence, in SPECT and PET the projection data are representative of the distribution of radiopharmaceutical in the subject. In the case of CT, an x-ray tube generates an x-ray beam that is transmitted through the subject and received by a radiation detector array after transmission through the subject. Hence, in CT the projection data are representative of x-ray absorption by the subject.
The imaging device 10 operates under the control of a controller 24, which for the illustrated robotic gamma camera 10 embodies a robotic arms controller and other control electronics. The controller 24 controls the gamma camera 10 to acquire SPECT projection data with the radiation detectors 12, 14 positioned at various points around the subject in order to acquire 180°, 360°, or another desired angular span of projection data. The projection data acquisition is typically controlled by a radiologist or other human user through the intermediary of a suitable user interface such as an illustrated computer 26. The acquired SPECT projection data are stored in a SPECT data memory 28. In the case of a PET scanner, a stationary ring of radiation detectors is typically employed. In the case of CT, a ring of detectors can be used in conjunction with an x-ray tube that revolves around the subject, or an assembly of an x-ray tube and opposingly positioned radiation detector array can be rotated such that the x-ray tube and radiation detector array rotate in concert around the subject. Other configurations of stationary or movable radiation detectors and radiation sources internal or external of the subject are also contemplated. The acquired projection data are reconstructed by an iterative image reconstruction module 30 to generate a reconstructed image that is stored in a reconstructed images memory 32, displayed on a display 34 of the illustrated computer 26 or on another display device, printed using a marking engine, transmitted via the Internet or a hospital data network, stored in a picture archiving and communication system (PACS), or otherwise utilized.
With continuing reference to
The iterative image reconstruction module 30 employs an iterative reconstruction algorithm. In iterative reconstruction, an initial image is adjusted in iterative fashion until it substantially comports with the acquired projection data. In some such algorithms, the initial image may be simply a uniform distribution in the image space. To improve convergence, a priori knowledge may optionally be used to provide an initial image that is closer to the expected final image. For example, a known contour of the subject or of a portion thereof expected to be represented by the reconstructed image may be used as the initial image. In order to compare the initial image with the acquired projection data, the iterative image reconstruction module employs a ray tracing module 44 that projects the image so as to generate projection data that may be directly compared with the acquired projection data. Through the process of backprojection the initial image is adjusted based on the comparison of the projected initial image and acquired projection data to generate an improved image. The improved image is again projected by the ray tracing module 44 and compared with the acquired projection data, further image adjustment is made, and so forth in iterative fashion until the iteratively improved image when projected by the ray tracing module 44 is sufficiently close to the acquired projection data, as measured by a suitable stopping criterion.
To provide a more accurate reconstruction, the ray tracing module 44 of
With continuing reference to
With continuing reference to
With continuing particular reference on
With continuing reference to
The non-incremental scheme for incorporating blurring has substantial disadvantages in terms of memory utilization (since the non-stationary blurring σx(x, y) must be computed and stored for every parallel plane P0, P1, P2, . . . and for every intersection point of a projection with the detector face 42). Accordingly, an incremental scheme for computing projections in context of a spatially varying detector (for example, a fan-beam detector, a cone-beam detector, or other spatially diverging detector) incorporating shift-invariant blurring is disclosed herein and is illustrated in
In the incremental scheme, the blurring σx(x, y) is assumed to be represented by a shift-variant blur model of the detector face 42 having the form (for the illustrative case of a one-dimensional fan-beam collimation along the x direction as illustrated in
σx(x, y)=bx0+bxyy+bxxx (1),
where x denotes the direction of shift variance parallel with the detector face 42, y denotes the direction normal to the detector face 42 and normal to the planes P0, P1, P2, . . . , PN parallel with the detector face 42, bxy, bx0, and bxx denote scalar blur coefficients, and σx(x, y) is indicative of blurring along the x direction at a spatial coordinate (x, y). The scalar blur coefficients can be determined empirically by the controller 24 causing the imaging device 10 to acquire calibration projection data using the radiation detector 14 defining the detector face 42. The controller 24 then generates the shift-variant blur model of the detector face 42 based on the acquired calibration projection data.
In a suitable approach, the detector response function (that is, the shift-variant blur model) of a fan-beam collimator is suitably measured using a plurality (e.g., 8) of linear radiation sources (such as 99mTc filled line-sources) positioned in front of the detector face 42 in two orientations: parallel to the camera rotation axis for measurement of blur in the fan or x direction, and parallel to the fan or x direction for measurement of blur in the direction transverse to both the x direction and the y direction (denoted herein as the z direction). In an illustrative example that was actually performed, to provide data for modeling distance-dependent resolution, the line-sources were 1.14 mm in inner diameter and were imaged at multiple distances from the collimator, ranging from 3 to 28 cm at 5 cm intervals. Each line source was fitted with a series of Gaussian functions perpendicular to the line, and the average CS of all Gaussians fitted to each line source was obtained. The number of lines in the field of view (FOV) in the fan-direction reduced with the distance from the detector face 42 such that only 3 lines were visible at the maximum y-distance. Thus, only 39 data points were used for estimating the blurring σx along the x-direction. This process was repeated for the horizontally-oriented line sources to estimate σz. The measured blurring were compared to those derived analytically including the effect of hole-elongation. Note that the measured detector response function includes the intrinsic resolution of the detector. A regression model for σx was determined as a function of lateral distance along the x-direction from the center of the detector face 42, and as a function of the distance away from the detector face 42 along the y-direction, to obtain fitted values for the scalar blur coefficients bxy, bx0, and bxx of Equation (1).
With brief reference to
With continuing reference to
IncSΩn=σincn→(n+1)=√{square root over (bxy2(Δy)2+2bxyσxn+1(Δy))}{square root over (bxy2(Δy)2+2bxyσxn+1(Δy))} (2).
Said another way, IncSΩn denotes the incremental blurring kernel applied to the projection increment IncAPn between planes n−1 and n.
With continuing reference to
Σ0=IncAP0*IncSΩ0 (3),
where the symbol “*” is used herein to denote the convolution operation. In other words, Σ0 represents the blurred version of the first projection increment IncAP0. More generally, in an operation 76 the stationary blurring kernel IncSΩn corresponding to the projection increment IncAPn is computed based on the shift-variant blur model of the detector face 42 (for example, as given in Equation (1) for the illustrative fan beam collimator), and the summation operation 66 is modified to incrementally sum the projection increments IncAPn convolved with the corresponding incremental blurring kernels IncSΩn up until the the projection increment from plane (N−3) to plane (N−2). In more mathematical terms, the incremental blurring scheme implemented as illustrated in
The last projection increment from plane (N−2) to plane (N−1) is handled slightly differently. Because the subject (or other element contributing to the projection) ends at plane N−1, there is no stationary incremental blurring component IncSΩN-1. Accordingly, in an operation 78 the last projection increment (reaching the detector) is added in as ΣN-1=(ΣN-2+IncAPN-1).
The projection at the detector element including shift-invariant blurring is the output of operation 80 but with a stationary blurring kernel corresponding to plane N−1 ΣN=(EN 1)*SΩN 1. In some embodiments, this is deemed sufficiently accurate and is taken as the final projection. In other words, in these embodiments the shift-variant blurring component of the detectors 12, 14 having shift-variant blurring is neglected, and the computed projection compensated for shift-invariant blurring is deemed to have acceptable accuracy.
Alternatively, the nonstationary blurring component of Equation (1) can also be taken into account in order to compensate for blurring including both the shift-invariant and the shift-variant blurring components. This is done taking into account the observation that for any single projection the bxxx term is constant from one parallel plane to the next neighboring parallel plane. As a result, the shift-variant component of the blurring can be accounted for by computing it for the last plane of the subject, that is, for the plane N−1. This is done in
Operation of the ray tracing module 44 to perform a backprojection operation operates in the inverse way. In the case of backprojection, the final projection (without blurring) is the starting point, and the ray tracing starts at the plane N−1 closest to the detector and works backward to the initial plane 0. The incremental blurring kernel is used to incrementally add in stationary blurring for each ray increment (that is, backprojection increment in the backprojection case). The final backprojection is the image content with shift invariant blurring. If it is desired to incorporate shift variant blurring, then the nonstationary kernel is first introduced by convolution at the plane N−1 closest to the detector, so that the final backprojection is the image content with shift variant blurring.
The illustrative example is readily modified to incorporate other blur models that model other types of detector faces. For example, the shift-variant blur model of the detector face may include shift variance in two nonparallel directions both parallel with the detector face. This is appropriate, for example, to model a detector face having cone-beam collimation. In this case, the shift variant blur model includes a term σα(α, β, y) indicative of blurring along the α direction at a spatial coordinate (α, β, y) of the form bα0+bαy+bααα where α denotes one of the two directions of shift variance parallel with the detector face, y denotes a direction normal to the detector face and normal to the planes parallel with the detector face, and bαy, bα0, and bαα denote scalar blur coefficients. The shift variant blur model further includes a term σβ(α, β, y) indicative of blurring along the β direction at a spatial coordinate (α, β, y) of the form bβ0+bβyy+bβββ where β denotes the other of the two directions of shift variance parallel with the detector face and bβy, bβ0, and bββ denote scalar blur coefficients. Again, the incremental blur between consecutive (that is, neighboring) parallel planes is the same for all ray increments going between the parallel planes for a given projection, as observed from the blur model where for any single ray increment the bααα and bβββ terms are each constant from one parallel plane to the next neighboring parallel plane. The stationary incremental blurring can then be written analogously to that shown in Equation (2), and the incremental summing Σn=(Σn−1+IncAPn)*IncSΩn applied as in the illustrated embodiment, optionally followed by a final incorporation of the nonstationary blurring component through the convolution operation ΣN=(ΣN-1)*NSΩN-1 of the operation 80 of
With reference to
The incremental blur scheme is more efficient in terms of computational speed and memory usage for implementation of shift-variant blur compensation. The computational speed is 1.5 times that of the non-incremental. The memory usage is only about 1% of that in non-incremental scheme.
With returning reference to
This application has described one or more preferred embodiments. Modifications and alterations may occur to others upon reading and understanding the preceding detailed description. It is intended that the application be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application claims the benefit of U.S. provisional application Ser. No. 61/225,237 filed Jul. 14, 2009, which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2010/052678 | 6/15/2010 | WO | 00 | 1/12/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/007270 | 1/20/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5909476 | Cheng et al. | Jun 1999 | A |
7583780 | Hsieh et al. | Sep 2009 | B2 |
20060098857 | Hawman | May 2006 | A1 |
20060101106 | Subbarao | May 2006 | A1 |
20080037846 | Avinash et al. | Feb 2008 | A1 |
20080166063 | Zeng | Jul 2008 | A1 |
20080199063 | O'Halloran et al. | Aug 2008 | A1 |
Entry |
---|
Avinash, G., et al.; Characterization of point spread function in linear digital tomosynthesis: A simulation study; 2006; Medical Imaging; vol. 6142; 8 pages. |
Israni, K., et al.; Point Spread Function based classification of regions for Linear Digital Tomosynthesis; 2007; Physics of Medical Imaging; vol. 6510, No. 29; 12 pages. |
Number | Date | Country | |
---|---|---|---|
20120114212 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61225237 | Jul 2009 | US |