The present application claims priority from Japanese Patent Application No. 2007-83580, which was filed on Mar. 28, 2007, the disclosure of which is herein incorporated by reference in its entirety.
1. Field of the Invention
The present invention relates to an image recording apparatus having a configuration that a record medium having an image recorded thereon in an image recording section is conveyed by a conveyor belt and then separated from the conveyor belt in a separating section.
2. Description of Related Art
Japanese Unexamined Patent Application Publication No. 2006-256790 discloses an inkjet recording apparatus including an endless conveyor belt that adsorbs a record medium on the external surface thereof by electrostatic action, and a recording head that records an image by ejecting ink droplets on the record medium adsorbed to the external surface of the conveyor belt. In this inkjet recording apparatus, a plurality of conveyor belts are looped around a drive roller and a driven roller in a direction perpendicular to the conveyance direction of a record medium with a predetermined space therebetween. This inkjet recording apparatus includes a separation guide having a body plate and a plurality of teeth extended from the body plate toward the upstream in the conveyance direction. The body plate is disposed further downstream from the drive roller positioned downstream form the recording head. Each of the teeth extended from the body plate is positioned between two of the conveyor belts adjacent to each other. The plurality of teeth of the separation guide contact the lower face of a record medium conveyed by the plurality of conveyor belts, thereby separating the record medium from the conveyor belts, to forward the record medium to the body plate. That is, peeled from the plurality of conveyor belts by the plurality of teeth of the separation guide, the record medium is separated from the plurality of conveyor belts, irrespective of the radius of curvature of the conveyor belts. Therefore, separation of a record medium from the plurality of conveyor belts can be ensured without a need of consuming power, while allowing the plurality of conveyor belts to last longer.
However, in the inkjet recording apparatus of the above publication, the body plate of the separation guide is positioned downstream from the conveyor belts, and a feed roller and a spur roller are paired and are positioned further downstream from the body plate. This results in a long length of the inkjet recording apparatus in the conveyance direction of a record medium, which is against recent demands for downsizing an inkjet recording apparatus.
It is an object of the present invention to provide a small image recording apparatus whose length in a conveyance direction is shortened as much as possible and which is being capable of surely peeling a record medium from the external surface of a conveyor belt.
According to an aspect of the present invention, provided is an image recording apparatus including: a recording head that records an image on a record medium; a first and second rollers whose respective rotation shafts are parallel to each other; and an endless conveyor belts each of which is looped around the first and second rollers, and has an external surface for conveying thereon a record medium in a conveyance direction from the first roller toward the second roller while supporting the record medium. The second roller has, on a circumferential surface thereof, an abutting region abutting an internal surface of the conveyor belt, and a larger diameter region which does not abut the internal surface of the conveyor belt and has a radius surpassing a sum of a thickness of the conveyor belt and a radius of the abutting region.
Since the present invention does not adopt a member which is positioned downstream from the conveyor belt as is the case of the separation guide in Japanese Unexamined Patent Application Publication No. 2006-256790, it is possible to shorten the length of the image recording apparatus in the conveyance direction. In addition, providing the larger diameter region on the circumferential surface of the second roller ensures that a record medium is peeled from the conveyor belt. This increases the adsorptivity to hold a record medium on the conveyor belt, thereby preventing separation of record medium from the conveyor belt. Furthermore, the larger diameter region prevents the conveyor belt from shifting in the axial direction of the second roller.
Other and further objects, features and advantages of the invention will appear more fully from the following description taken in connection with the accompanying drawings in which:
As shown in
The inkjet printer 101 includes therein a sheet conveyor path where the sheet P is conveyed in a conveyance direction from the sheet feed unit 11 toward the discharge tray 12 (a direction from the right toward the left in
The four inkjet heads 1 serving as recording heads respectively eject ink droplets of four different colors including Yellow, Cyan, Magenta, and Black. Thus, the inkjet printer 101 is a color inkjet printer. The inkjet printer 101 is a line-type printer in which the heads 1 are fixed so that the longitudinal direction of the four inkjet heads 1 is perpendicular to the conveyance direction. At lower parts of the four inkjet heads 1, head main bodies 2 are fixed, respectively. The head main bodies 2 have an elongated rectangular parallelepiped shape with its length in a direction perpendicular to the conveyance direction. The under surfaces of the head main bodies 2 are ejection faces 2a having a plurality of ejection openings for ejecting ink droplets.
The sheet feed unit 11 includes a sheet tray 11a, a sheet stocker 11b, a plurality of coil springs 11c, a pick-up roller 11d, and a pair of positioning plates 11e. On the sheet tray 11a, a stack of sheets P is placed. The sheet tray 11a is disposed within the sheet stocker 11b, and the sheet stocker 11b having an opening at the top thereof is capable of stocking the plurality of sheets P stacked on the sheet tray 11a. The plurality of coil springs 11c holds the sheet tray 11a upward. With the elastic force of the coil springs 11c, the pick-up roller 11d always abuts the sheet P laid at the top of the plurality of sheets P stocked in the sheet stocker 11b. Each of the positioning plates 11e has almost the same height as that of the sheet stocker 11b, and is positioned in the vicinity of a downstream end of the sheet stocker 11b, slightly apart from a side wall of the sheet stocker 11b in a direction towards inside the sheet stocker 11b. The inner surfaces of the positioning plates 11e abut the ends, of the sheets P, which are extended in the conveyance direction. As described later, the positioning plates 11e are positioned so that the both ends of the sheet P are positioned on different conveyor belts 8, respectively.
In accordance with an instruction from the not-shown controller, the pick-up roller 11d cooperates with a not-shown separation mechanism to send out at a predetermined timing a sheet P at the top of the stack to the left, i.e. to the inkjet heads 1. At the left of the sheet feed unit 11, a pair of feed rollers 5a, 5b are disposed. The pair of feed rollers 5a, 5b send out the sheet P from the sheet feed unit 11 to the further left. The sheet P sent to the left by the pair of feed rollers 5a, 5b passes between a pair of guide plates 10. The guide plates 10 are disposed apart from each other in an up/down direction so as to face each other and let pass the sheet P therebetween. The sheet P having passed through the guide plates 10 then reaches the belt conveying mechanism 13. Note that it is possible to provide a pair of separation rollers 5a, 5b in the separation mechanism, in which case the separation roller 5a rotates in a direction of conveying a sheet P to the inkjet heads 1, while the separation roller 5b serves as a retard roller rotating in a direction of conveying the sheet P to the sheet feed unit 11.
The belt conveying mechanism 13 includes: two belt rollers 6, 7 respectively having rotation shafts 6a, 7a parallel to each other; four endless conveyor belts 8 looped around the both rollers 6, 7; a platen 15; and a motor 9.
The belt roller 6 as a second roller is positioned downstream from the belt roller 7 serving as a first roller, interposing the four inkjet heads 1 therebetween. Each of the conveyor belts 8 includes an adhesive layer capable of having the sheet P adhered thereto, and therefore the external surface of the conveyor belt 8 is adhesive. The four conveyor belts 8 are arranged parallel to each other so that adjacent belts are apart from each other by an equal distance, in the axial direction of the belt rollers 6, 7 (a direction perpendicular to the conveyance direction).
Above the belt roller 7, a nip roller 4 is disposed. The nip roller 4 presses down the sheet P, which has been sent by the feed rollers 5a, 5b and interposed between the nip roller 4 and the belt roller 7, on to the adhesive external surface of the four conveyor belts 8.
The motor 9 drives a rotation shaft 6a of the belt roller 6 via an endless transmission belt 16 looped around an output shaft of the motor and a transmission roller 19 concentric with the belt roller 6. As a result, the belt roller 6 serving as a drive roller rotates counterclockwise around the rotation shaft 6a. This rotation of the belt roller 6 rotates the belt roller 7 serving as a driven roller in the counterclockwise direction around a rotation shaft 7a. With the counterclockwise rotation of the belt rollers 6 and 7, the sheet P pressed down by the nip roller 4 onto the external surfaced of the four conveyor belts 8 is conveyed in a direction from the belt roller 7 to the belt roller 6 on the left, while being supported on supporting surfaces which are upper planes of the external surfaces of the conveyor belts 8, extended parallel to the ejection faces 2a. In this embodiment, the belt roller 6 which is located downstream from the belt rollers 7 is used as a drive roller. This creates stable tension on the supporting surfaces of the conveyor belts 8, thereby restraining formation of creases on the supporting surfaces.
In the illustration of
The platen 15 is disposed within a region surrounded by the internal surfaces of the four conveyor belts 8, and has an upper plane opposed to the ejection faces 2a of the inkjet heads 1. The upper plane of the platen 15 supports the four conveyor belts 8 so as to prevent the conveyor belts 8 from warping downward in the region where the supporting surfaces of the four conveyor belts 8 face the ejection faces 2a.
When a sheet P conveyed by the four conveyor belts 8 passes below the four head main bodies 2 sequentially, ink droplets of different colors are selectively ejected from the ink ejection faces 2a toward an upper face of the sheet P, i.e. a record face of the sheet P, according to image data to be recorded. As a result, an intended image is formed on the record face of the sheet P.
On the circumferential surfaces of the belt roller 6, annular protrusions 63 each serving as a belt stopper are formed so that each of the annular protrusions 63 is apart from the endmost one of the larger diameter regions 62 by the width of each transfer belt 8. A protruding amount of the protrusions 63 from the abutting regions 61 is smaller than that of the larger diameter regions 62.
Returning to
In this embodiment, the sheets P are positioned by the positioning plates 11e so that the both ends of a sheet P having the largest size among all the predetermined-sizes supported by the inkjet printer 101, which ends are extended in the conveyance direction, are positioned on two endmost conveyor belts 8 closest to the both ends of the belt roller 6. Furthermore, this embodiment adopts four conveyor belts 8. However, it is preferable to determine the number of the conveyor belts 8 and to position the sheet P with the positioning plate 11e so that, even when a smaller predetermined-size sheet than the largest one is conveyed, the both ends of the smaller sheet P in the conveyance direction are respectively positioned on two conveyor belts 8. This is because the both ends of the sheet P in the conveyance direction are hardly lifted from the supporting surfaces, and therefore stable image recording is possible, when the both ends are respectively positioned on two conveyor belts 8. Note that a predetermined-size sheet P in this embodiment has a rectangular shape which complies with a standard (A4 size, B5 size, postcard size, or the like), as is already mentioned.
When a sheet P conveyed on the supporting surfaces of the four conveyor belts 8 reaches the larger diameter regions 62, the sheet P runs onto the diameter regions 62 successively from the leading end of the sheet P to the trailing end, with the rotation of the belt rollers 6, 7. This gradually peels the sheet P from the external surface of the conveyor belts 8. As described above, the belt roller 6 of this embodiment is provided with the larger diameter regions 62 which ensure that the sheet P is peeled from the external surface of the conveyor belts 8 at the downstream end of the supporting surfaces. This allows increase in the adhesion of the external surface of the conveyor belts 8, thereby preventing separation of the sheet P from the conveyor belts 8. In addition, this embodiment does not employ a member positioned downstream from the conveyor belts 8, as is the case of the separation guide in Japanese Unexamined Patent Application Publication No. 2006-256790. It is therefore possible to shorten the length of the inkjet printer 101 in the conveyance direction; i.e., a the length in a direction of an arrow indicated in
On the belt roller 6, the abutting regions 61 and the larger diameter regions 62 are alternately arranged along the axial direction thereof, and therefore a conveyance force and a peel force are evenly applied to the left and right of a sheet P. This prevents tilting of the sheet P, while it is conveyed on the supporting surfaces.
Furthermore, each of the larger diameter regions 62 is sandwiched by two of the abutting regions 61. This eliminates an unnecessary work of forming another larger diameter region 62 which never contacts a sheet P on further outward position of the abutting regions 61 contacting the conveyor belts 8 where the both ends of the sheet Pare positioned. Thus, it is possible to down size the inkjet printer 101 also in the lateral direction thereof; i.e., a direction perpendicular to a sheet face in
A shaft 21 above the belt roller 6, which extends parallel to the rotation shaft 6a of the roller, is provided with three spur rollers 17 fitted loosely and freely rotatable. Each of the spur rollers 17 has a plurality of radially extending protrusions arranged at an equal interval in the circumferential direction of the spur rollers 17. The spur rollers 17 are disposed opposite to the larger diameter regions 62 so that a sheet P is pinched between the spur rollers 17 and the larger diameter regions 62. The spur rollers 17 are urged by an urging member (e.g. a helical spring or leaf spring) so as to press down the larger diameter regions 62 while abutting the larger diameter regions 62. The movement of each of the spur rollers 17 in the axial direction is restricted by a not-shown positioning member so that the spur rollers 17 surely oppose to the larger diameter regions 62.
As described above, the spur rollers 17 are urged by the urging member onto the larger diameter regions 62 of the belt roller 6, and a sheet P conveyed on the supporting surfaces of the conveyor belts 8 is pinched between the spur rollers 17 and the belt roller 6. Therefore, a further conveyance force is applied to a sheet P, while it is being separated and j delivered from the belt conveying mechanism 13. Thus, the speed of the sheet P is not sharply reduced at the time of delivering the sheet P from the belt conveying mechanism 13. Accordingly in this embodiment, the discharge tray 12 tilted as shown in
Since the sheet P is interposed between each of the spur rollers 17 and each of the larger diameter regions 62 of the belt roller 6, the conveyor belts 8 are not damaged by the spur rollers 17.
Now further referring to
As shown in
It is supposed that X1 is the most upstream end of the spur roller 17 in the conveyance direction, i.e., a right end of the super roller 17 in
Further, the spur rollers 17 are positioned upstream from the most downstream end of the belt roller 6 in the conveyance direction. As such, no member exists downstream from the most A downstream end. Therefore, the entire inkjet printer 101 is downsized. Even in the case that a discharge tray is provided further downstream from the most downstream end of the belt roller 6, it is possible to flexibly design the position of the discharge tray. This improves the design flexibility.
The above embodiment deals with a case of adopting the conveyor belts 8 having adhesive external surface; however, air suction or electrification may be used for adsorbing a sheet P to the external surface of the conveyor belts. Furthermore, the above embodiment deals with a case where the respective numbers of conveyor belts, abutting regions, and larger diameter regions provided are two or more; however, the numbers of those members may be one.
Both ends of a record medium may be positioned on a single conveyor belt, or positioned over a gap between two adjacent conveyor belts. The abutting regions and the larger diameter regions are not necessarily alternated in the axial direction of the belt roller 6. Further, it may be a larger diameter region which is provided at each outermost end of the belt roller 6 in the axial direction.
The above embodiment deals with a case where the belt roller 6 is provided with the protrusions 63 serving as a belt L stopper. The belt roller 6 does not necessarily have to include the protrusions 63. Further, the drive roller may be the belt roller 7.
The spur rollers 17 may be arranged immediately above the rotation shaft 6a of the belt roller 6. In that case, it is preferable that the spur rollers 17 be controlled so as to be displaced up or down along with the conveyance of a sheet P. Further, a sheet P may be pinched between the spur rollers 17 and the external surface of the conveyor belts 8. Further, the spur rollers 17 do not necessarily have to be provided.
In the belt roller 6, a abutting region and a larger diameter region are not necessarily formed integrally. For example, a larger diameter region may be formed with the external surface of a ring press-fitted into a column-shaped belt roller 6.
While this invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the preferred embodiments of the invention as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2007-083580 | Mar 2007 | JP | national |