The invention relates to an image recording apparatus for recording an image on a sheet being transported on a sheet transport path.
In electrophotographic image recording apparatus, a sheet is fed from a sheet feeding tray to an image recording section where an image is formed on the sheet. Then the sheet is output to a sheet output tray. A sheet may become jammed on its way on a sheet transport path.
A sheet jam is likely to occur particularly in the image recording section. This is because a sheet tends to be curled while undergoing various processes in the image recording section such as: a developer-image transfer process performed by a transfer device; or a fusing process performed by a fusing device.
A sheet jam is also likely to occur in a reversing transport path on which, in duplex image formation (an image is formed on both sides of a sheet), a sheet with an image formed on a first side is reversed and transported back to the image recording section. This is because the duplex image formation involves a sheet passing through many bifurcations of the sheet transport path.
In the event of a sheet jam, image recording apparatus suspend an image forming process until all sheets present on the sheet transport path are removed. JP H09-134050A discloses that a sheet jammed in the image recording section is removed by pulling forward the image recording section out of the image recording apparatus and by opening a side wall, or the like, of the section to expose the sheet transport path.
The configuration as disclosed by the prior art apparatus, however, involves a small level of exposure of a portion of the sheet transport path located in the image recoding section, even with the image recording section pulled out and the side wall opened. Thus, this configuration renders it hard for a user to remove a jammed sheet. In particular, recent image recording apparatus with high functionality have a complex configuration that renders it hard to provide a large space for removing a jammed sheet.
In consecutive image formation that involves a plurality of sheets present on the sheet transport path, a user is necessitated, if only a small level of exposure of sheet transport path is available, to open side walls or the like of different portions of the image recording section in order to check if all the sheets are removed from the sheet transport path.
In light of the foregoing, a feature of the invention is to provide an image recording apparatus having a simplified configuration that provides a large space for removing a sheet from the sheet transport path in the event of trouble such as a sheet jam.
An image recording apparatus includes a sheet transport path, a first unit, and a second unit. The sheet transport path guides a sheet from a sheet feeding section, through an image recording section, to a sheet output section. The sheet transport path includes a first path and a second path. The first unit is mounted detachably in a housing. The first unit is detached from the housing by being moved in a first direction toward the front of the housing. The first path is positioned in the first unit. The second unit is mounted detachably in the first unit. The second unit is detached from the first unit by being moved in a second direction perpendicular to the first direction with the first unit detached from the housing. The second path is positioned in the second unit.
Image recording apparatus according to preferred embodiments of the invention will be described below with reference to the accompanying drawings.
The unit 200 has an automatic document feeder (ADF) 201, a first document platen 202, a second document platen 203, a first mirror base 204, a second mirror base 205, a lens 206, and a charge coupled device (CCD) 207.
The ADF 201 feeds an original document, sheet by sheet, from a document tray 211 through the second document platen 203 to a first output tray 212. The ADF 201 is mounted so as to be pivotable about a rear-end pivot between an open position and a closed position. In the closed position, the ADF 201 covers the platen 202. The ADF 201 is pivoted upward to the open position to expose the platen 202, so that a user can place an original document manually on the platen 202.
Each of the platens 202 and 203 includes a hard glass plate.
The bases 204 and 205 are provided below the platens 202 and 203 so as to be movable horizontally. The base 205 moves half as fast as the base 204. On the base 204, a light source and a first mirror are mounted. On the base 205, a second mirror and a third mirror are mounted.
In reading an image of original document that is being transported by the ADF 201, the base 204 is held still below the platen 203. While passing on the platen 203, an original document is irradiated with light from the light source. The reflected light is in turn reflected from the first mirror to the base 205.
In reading an image of original document placed on the platen 202, the bases 204 and 205 are moved horizontally below the platen 202. An original document placed on the platen 202 is irradiated with light from the light source. The reflected light is in turn reflected from the first mirror to the base 205.
Regardless of whether an original document is fed by the ADF 201 or placed on the platen 202, thus, the reflected light from the original document is in turn reflected from the second and third mirrors, and then strikes the CCD 207 through the lens 206.
The CCD 207 outputs electric signals according to an amount of the reflected light from the original document. The electric signals are input to the image forming unit 300 as image data.
The unit 300 is provided with an image recording section 30. The section 30 includes a photoreceptor drum 31, a charging device 32, an exposure device 33, a developing device 34, a transfer belt 35, a cleaner 36, and a fusing device 37.
The drum 31, which has an outer photoreceptive surface, is rotatable in a direction indicated by an arrow. The charging device 32 applies, to the surface of the drum 31, such a voltage as to allow the surface to have a uniform electric potential. The device 32 may be either a noncontact charger, or a contact charger of roller or brush type.
The exposure device 33 irradiates the surface of the drum 31 with light modulated according to image data, so that an electrostatic latent image is formed on the surface. The device 33 has a polygon mirror through which to scan the drum 31 axially with a laser light modulated according to image data. Alternatively, an exposure device provided with an array of light emitting elements such as ELs or LEDs may be used as the device 33.
The developing device 34 supplies toner to the surface of the drum 31 and develops the electrostatic latent image into a toner image.
Under the drum 31, the transfer belt 35 is looped over a plurality of rollers. The belt 35 has a resistance of 1*109 Ω·cm to 1*1013 Ω·cm. Inside the loop of the belt 35, a transfer roller 35A is provided so as to be pressed against the drum 31 through the belt 35. A predetermined amount of transfer voltage is applied to the roller 35A, so that a toner image is transferred from the drum 31 to a sheet that passes between the belt 35 and the drum 31. The belt 35 and the roller 35A are elements of a transfer device of the invention.
The cleaner 36 removes residual toner that remains on the drum 31 after a toner image is transferred from the drum 31 to a sheet.
The fusing device 37 has a heat roller 37A and a pressure roller 37B. The roller 37A is heated, by an internal heater, to a sufficient temperature to melt toner. The roller 37B is pressed against the roller 37A at a predetermined pressure. The device 37 heats and pressurizes a sheet passing between the rollers 37A and 37B, thereby firmly fixing a toner image to the sheet. After passing through the device 37, a sheet is output to a second output tray 38 mounted on a side surface of the apparatus 100. The tray 38 corresponds to the sheet output section of the invention.
The sheet feeding unit 400 has sheet cassettes 401, 402, 403, and 404, and a manual sheet feeding tray 405. Each of the cassettes 401 to 404 holds a plurality of sheets of the same size. The tray 405 is provided for holding sheets of sizes and types that are used infrequently.
The unit 400 feeds sheets, one by one, from any one of the cassettes 401 to 404 and the tray 405. A sheet fed by the unit 400 is transported to the image recording section 30 along a sheet transport path 10 to be described below.
The first path 11 leads from the unit 400 to the tray 38, through a first confluence 21, the section 30, a first bifurcation 24, and a second confluence 22 in that order. Arranged along the path 11 are transport rollers 61, 62, and 63, a registration roller 51, and an output roller 52. The transport rollers 61 to 63, the registration roller 51, and the output roller 52 are driven by a first motor (not shown).
A portion of the path 11 located in the section 30 is in an approximately horizontal position. In the portion, the belt 35 is arranged for stable transfer of toner image from the drum 31 to a sheet and for stable transport of a sheet with an pre-fusion toner image electrostatically attracted thereto.
The first bifurcation 24 is located between the section 30 and the tray 38. The second path 12 leads from the bifurcation 24 to a switchback section 12A, through a second bifurcation 25 and a third bifurcation 26 in that order. The section 12A is located below and parallel to the portion of the path 11 located in the section 30. The section 12A transports a sheet forwards and backwards therealong. Along the path 12, there are provided reversing rollers 53 and 58. The rollers 53 and 58 are selectively driven in a frontward direction or a backward direction through a first clutch (not shown) by a second motor (also not shown).
The third path 13 leads from the third bifurcation 26 to the first confluence 21 through a third confluence 23. The path 13 is located between the section 12A and the portion of the path 11 located in the section 30. Along the path 13, transport rollers 54, 55, 56, and 57 are arranged. The rollers 54 to 57 are selectively driven in a frontward direction or a backward direction through a second clutch (not shown) by a third motor (also not shown).
The fourth path 14 leads from the bifurcation 25 to the confluence 23. The fifth path 15 leads from the bifurcation 25 to the confluence 22.
Guides 42 and 43 are provided at the bifurcation 25. With no external force acting thereon, the guide 42 is located in a position, indicated by a solid line, to guide a sheet into the path 15 as the sheet is transported upward along the path 12 or the path 14. The guide 42 prevents a sheet from being guided into the path 12 as the sheet is transported upward along the path 12 or the path 13.
The guide 43 is pivoted between two respective positions indicated by a solid line and a chain double-dashed line by activating and deactivating a second solenoid (not shown), to allow, in the bifurcation 25, passage of a sheet from the path 14 to the path 15 or from the path 12 to the path 15.
The guide 42 is pivoted to a position indicated by a chain double-dashed line, by contact with a sheet that is transported downward from the bifurcation 24 along the path 12.
A guide 44 is provided at the bifurcation 26. A sheet reversed in the section 12A is never delivered to the tray 38 through the paths 12 and 15. Thus, the roller 58 is rotatable in one direction only, and the guide 44 is urged to a position indicated by a solid line by an elastic member. The elastic member exerts such an elastic force on the guide 44 as to allow the guide 44 to be pivoted to a position indicated by a chain double-dashed line by contact with a sheet that is transported to the portion 12A through the paths 11 and 12. In the bifurcation 26, accordingly, the guide 44 selectively allows passage of a sheet from the path 12 to the path 13, or through the path 12.
The section 82 has a plurality of sensors arranged in the sheet transport path 10. Each of the sensors detects presence of a sheet at different locations in the path 10 and inputs a detection signal to the CPU 71.
According to the signal input by the section 82, the CPU 71 executes a program prewritten in the ROM 72 and outputs a driving signal to each of the motor drivers 74, 75, and 76, the solenoid drivers 77 and 78, and the clutch drivers 80 and 81.
To the drivers 74, 75, and 76 connected are a first motor 83, a second motor 84, and a third motor 85, respectively. The drivers 74, 75, and 76 drive the motors 83, 84, and 85, respectively, according to a driving signal from the CPU 71.
To the drivers 77 and 78 connected are a first solenoid 86 and a second solenoid 87, respectively. The drivers 77 and 78 activate the solenoids 86 and 87, respectively, according to a driving signal from the CPU 71.
In a deactivated state, the solenoid 86 puts the guide 41 in the position indicated by the solid line as shown in
It is to be noted that either of the respective positions indicated by the solid line and the chain double-dashed line as in
In a deactivated state, the solenoid 87 puts the guide 43 in the position indicated by the solid line as shown in
To the clutch drivers 80 and 81 connected are a first clutch 89 and a second clutch 90, respectively. The drivers 80 and 81 activate the clutches 89 and 90, respectively, according to a driving signal from the CPU 71.
In a deactivated state, the clutch 89 directly transmits rotation of the second motor 84 to the reversing rollers 53 and 58. In an activated state, the clutch 89 transmits, to the rollers 53 and 58, rotation in an opposite direction to a rotational direction of the motor 84. More specifically, the rollers 53 and 58 are rotated in a forward direction to guide a sheet into the switchback section 12A, with the clutch 89 deactivated. Meanwhile, the rollers 53 and 58 are rotated in a reverse direction to guide a sheet from the section 12A to the bifurcation 25, with the clutch 89 activated.
In a deactivated state, the clutch 90 directly transmits rotation of the third motor 85 to the reversing rollers 55, 56, and 57. In an activated state, the clutch 90 transmits, the rollers 55 to 57, rotation in an opposite direction to a rotational direction of the motor 84. More specifically, the rollers 55 to 57 are rotated in a forward direction to guide a sheet from the bifurcation 25 into the path 13, with the clutch 90 deactivated. Meanwhile, the rollers 55 to 57 are rotated in a reverse direction to guide a sheet from the path 13 to the bifurcation 25, with the clutch 90 activated.
The apparatus 100 selectively performs a face-up transport operation, a face-down transport operation, and a reversing transport operation. In the face-up transport operation, a sheet with an image recorded on a single side is output to the tray 38, with the image-carrying side facing upward. In the face-down transport operation, a sheet with an image recorded on a single side is output face-down to the tray 38, with the image-carrying side facing downward. The reversing transport operation is performed when an image is to be recorded on both sides of a sheet.
The CPU 71 outputs a driving signal to each of the motor drivers 74 to 76, the solenoid drivers 77 and 78, and the clutch drivers 80 and 81, to activate the first motor 83, the second motor 84, the third motor 85, the first solenoid 86, the second solenoid 87, the first clutch 89, and the second clutch 90, so that a sheet is transported on the path 10 through an appropriate route for either one of the face-up, face-down, and reversing transport operations.
In a situation such as when an operator is to copy an original document on paper, the operator is near the apparatus 100 and ready to check the copied paper. In such a situation, the face-up transport operation is performed.
In the face-up transport operation, the CPU 71 drives the motor 83 through the driver 74. A sheet fed from the sheet feeding unit 400 is transported along the path 11 by rotation of each of the transport rollers 61 to 63, the registration roller 51, and the output roller 52. During passage of the sheet through the image recording section 30, a toner image is transferred and fused on an upper side of the sheet. The sheet is output to the tray 38 with the image-carrying side facing upward.
The CPU 71 starts to transmit rotation of the motor 83 to the roller 51, through a clutch (not shown in the figure), at such a timing that a leading end of the sheet meets a leading end of the toner image formed on the drum 31 in a contact area between the roller 35A and the drum 31.
In the face-down transport operation, the CPU 71 drives the motor 83 through the driver 74 to transport, to the section 30, a sheet fed from the unit 400. The CPU 71 activates the first solenoid 86 and the second solenoid 87 through the solenoid drivers 77 and 78 before a leading end of the sheet reaches the first bifurcation 24. Thus, the guides 41, 43, and 44 are put in the respective positions indicated by the chain double-dashed lines as in
The CPU 71 drives the second motor 84 through the motor driver 75 by the time the leading end of the sheet passes through the second bifurcation 25. At the time, the first clutch 89 is not activated. Thus, the reversing rollers 53 and 58 are rotated in the forward directions.
Consequently, the sheet is transported along the path 12 toward the switchback section 12A. It is to be noted that the guide 42 is pivoted to the position indicated by the chain double-dashed line by contact with the leading end of the sheet as the sheet is transported downward through the bifurcation 25, thereby allowing passage of the sheet through the path 12.
As the sheet is transported downward through the third bifurcation26, a tail end of the sheet becomes nipped by the reversing roller 53. It is when the CPU 71 activates the clutch 89 through the clutch driver 80. Thus, the rollers 53 and 58 are rotated in the reverse directions. With the tail end leading, the sheet is transported upward from the section 12A along the path 12, and is guided into the path 15 at the bifurcation 25. Then, the sheet is guided into the path 11 at the second confluence 22, and is output to the tray 38, with the image-carrying side facing downward, by the roller 52.
At the time, the second solenoid 87 is not activated. Thus, the guides 43 and 44 are put in the respective positions indicated by the solid lines as in
The CPU 71 drives the third solenoid 85 through the motor driver 76 by the time the leading end of the sheet passes through the bifurcation 25. At the time, the clutch 89 is not activated. Thus, the reversing rollers 54, 55, 56, and 57 are rotated in the forward directions, so that the sheet is guided from the path 14 into the path 13.
As the sheet is transported downward along the path 14, a tail end of the sheet becomes nipped by the roller 54. It is when the CPU 71 activates the second clutch 90 through the clutch driver 81. Thus, the reversing rollers 54, 55, 56, and 57 are rotated in the reverse directions. With the tail end leading, the sheet is transported, upward from the path 13, along the path 14 and is guided into the path 15 at the bifurcation 25. Then, the sheet is guided into the path 11 at the second confluence 22, and is output to the tray 38, with the image-carrying side facing downward, by the roller 52.
In the reverse transport operation, the CPU 71 drives the motor 83 through the driver 74 to transport, to the section 30, a sheet fed from the unit 400. The CPU 71 activates the first solenoid 86 and the second solenoid 87 through the solenoid drivers 77 and 78 before a leading end of the sheet reaches the bifurcation 24. Thus, the guides 41, 43, and 44 are put in the respective positions indicated by the chain double-dashed lines as in
The CPU 71 drives the second motor 84 through the motor driver 75 by the time the leading end of the sheet passes through the bifurcation 25. At the time, the first clutch 89 is not activated. Thus, the reversing rollers 53 and 58 are rotated in the forward directions.
Consequently, the sheet is transported along the path 12 toward the switchback section 12A. It is to be noted that the guide 42 is pivoted to the position indicated by the chain double-dashed line by contact with the leading end of the sheet as the sheet is transported downward through the bifurcation 25, thereby allowing passage of the sheet through the path 12.
As the sheet is transported downward through the bifurcation 26, a tail end of the sheet becomes nipped by the reversing roller 53. It is when the CPU 71 activates the clutch 89 through the clutch driver 80 and, at the same time, deactivates the solenoid 87. Further, the CPU 71 drives the motor 85 through the driver 76. At the time, the clutch 90 is not activated. Thus, the rollers 53 and 58 are rotated in the reverse directions, while the guide 44 is put in the position indicated by the solid line as in
With the tail end leading, the sheet is transported, upward from the section 12A, along the path 12 and is guided into the path 13 at the bifurcation 26. Next, the sheet is transported along the path 13 toward the first confluence 21. Then, the sheet is guided into the path 11 at the confluence 21, and is transported along the path 11 to the section 30 with a second side facing the drum 31.
By the time the leading end of the sheet with the second side facing upward passes through the section 30, the CPU 71 deactivates the solenoid 86. Thus, the guide 41 is put in the position indicated by the solid line as in
It is to be noted that the path leading from the bifurcation 24 to the confluence 21 through the paths 12 and 13 in the reverse transport operation corresponds to the second path of the invention as the reversing transport path.
In the unit 1, referring to
Referring to
The unit 2 has an upper movable plate 5 and a side movable plate 6. With the unit 2 detached from the unit 1, referring to
A sheet jam is relatively more likely Lo occur in the first bifurcation 24, the second bifurcation 25, and the third bifurcation 26, which are arranged in the order along the portion of the path 12. The plate 6 is pivoted to the open position to expose all of the points 24 to 26 to the outside and provide access to the points 24 to 26. This facilitates removal of a sheet present in the paths 12 and 13 in the event of a sheet jam.
Thus, this configuration improves accessibility to portions of the sheet transport path where a sheet jam is more likely to occur, thereby lightening the workload for a user.
Also, with the unit 2 detached from the unit 1, the upper and side surfaces of the unit 2 are rendered openable. This configuration allows the upper and side surfaces to be opened more widely, and therefore enables a portion of the sheet transport path 10 to have a greater exposed area, than a conventional configuration where the unit 1 and the unit 2 are integrated in a single unit.
This configuration improves workability in removing a sheet from the path 10. This configuration also allows a smaller number of portions of the unit 2 of which upper surfaces are to be opened to check if any sheet is present on the path 10. Thus, this configuration lightens the workload for a user.
Furthermore, the unit 2 is moved out of the unit 1 along the direction of arrow Z, instead of along the direction of arrow Y. This configuration eliminates the need for provision of additional space for moving the unit 2 out of the unit 1 along the direction of arrow Y. It is not necessary to provide a dedicated space for moving the unit 2 out of the unit 1 along the direction of arrow Z, since space for a user to remove a printed sheet also serves as the space for moving the unit 2 out of the unit 1. This simple configuration contributes to minimizing space for the apparatus 100 to be placed.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2005-244157 | Aug 2005 | JP | national |
This Nonprovisional application claims priority under 35 U.S.C. § 119(a) on Patent Application No. 2005-244157 filed in Japan on Aug. 25, 2005, the entire contents of which are hereby incorporated by reference.