The present application claims priority from Japanese Patent Application No. 2008-329595, filed on Dec. 25, 2008, the disclosure of which is incorporated herein by reference in its entirely.
1. Technical Field
The present invention is related generally to an image recording apparatus which feeds a plurality of recording medium continuously.
2. Related Art
In the image recording apparatus in the related art, a sheet feeding operation is performed while securing an adequate distance between a preceding sheet and a following sheet when feeding sheets from a sheet feed tray having a plurality of sheets stacked thereon to a sheet conveying path separately one by one. In the case of the image recording apparatus as described above, if no image data is present for the following sheet to be recorded, the following sheet remains in the sheet conveying path after having executed the image recording on the preceding sheet. As an example of a countermeasure against the remaining sheet, an image recording apparatus is known which is configured to return the remaining sheet to the sheet feed tray by rotating a sheet feed roller merely in a reverse direction opposite to a conveying direction when the image data for the following sheet is not present.
However, when small sized sheets (post cards or the like) are printed, or when a sheet remaining in the sheet conveying path is positioned further downstream, the sheet is not pressed by the sheet feed roller. Therefore, there is a probability that the sheet cannot be returned to the sheet feed tray, and remains in the sheet conveying path. Even when the remaining sheet is pressed by the sheet feed roller, when returning the remaining sheet, damage of the remaining sheet or a sheet on the sheet feed tray might be resulted due to, for example, a frictional force between the remaining sheet and the sheet on the sheet feed tray in a specific environment or in the case of a specific sheet type. The longer the distance of returning the remaining sheet, the higher the probability of occurrence of damage may become.
A need has arisen to provide an image recording apparatus which is capable of returning a sheet remaining in a sheet conveying path more stably back to a sheet feed tray.
According to one embodiment of the present invention, an image recording apparatus comprises a sheet feed tray configured to store a plurality of stacked recording medium and a sheet feed roller configured to feed the plurality of recording medium, one by one, from the sheet feed tray. The image recording apparatus further comprises an image recording unit configured to record an image on the recording medium fed by the sheet feed roller and an output unit configured to output the recording medium recorded by the image recording unit. The image recording apparatus still further comprises a first conveying unit configured to convey the recording medium from the sheet feed tray to the output unit via the image recording unit and a second conveying unit configured to return the recording medium, which has conveyed via the image recording unit, to the sheet feed tray. Moreover, the image recording apparatus comprises an image memory configured to store image data to be recorded by the image recording unit and a controller configured to control the sheet feed roller, the image recording unit, the first conveying unit, and the second conveying unit to record the image on the recording medium. The controller is configured to control the sheet feed roller to start feeding a following recording medium subsequent to a preceding recording medium fed by the sheet feed roller irrespective of whether or not the image data for the following recording medium is stored in the image memory. The controller is further configured to determine whether or not the image data for the following recording medium is stored in the image memory after having started the sheet feeding of the following recording medium and to, when it is determined that there is no image data stored in the memory, return the following recording medium to the sheet feed tray via the image recording unit and via the second conveying unit.
For a more complete understanding of the present invention, the needs satisfied thereby, and the features and advantages thereof, reference now is made to the following descriptions taken in connection with the accompanying drawings wherein:
Embodiments of the invention and their features and advantages may be understood by referring to
<Appearance Configurations>
In the description given below, a front side of an image recording apparatus 1 shown in
An operation panel 4 is arranged on the top front of the main body case 2. The operation panel 4 includes various buttons such as numeric buttons, a start button, functional operation buttons provided thereon. By these buttons being pressed downward, various operations are performed. The operation panel 4 also includes a liquid crystal display (LCD) 5, which displays settings of the image recording apparatus 1, various messages, and the like. For example, the size of the printing paper is set by a user by operating the operation panel 4.
Arranged in the upper case 3 on the rear side of the operation panel 4 is a scanner unit 6, where an image of a document is scanned. For example, the scanner unit 6 scans a facsimile document to be sent to a destination facsimile apparatus when the facsimile function is in use, or an image of a document to be copied when the copying function is in use.
An opening 2a is provided the front side of the main body case 2. A sheet feed tray 7 and a sheet output tray 8 are provided inside the opening 2a above and below. A plurality of printing papers P (recording medium) are stored substantially horizontally in a stacked manner on a bottom of the sheet feed tray 7. Acceptable sizes of the printing paper P are, for example, A4 size and A5 size and, in addition, the sheets of A4 size may be stored with a longitudinal direction thereof oriented horizontally (laterally).
As shown in
<Internal Configurations>
Referring now to
Referring first to
Accordingly, when the sheet feed roller 11 rotates, a topmost printing paper is fed toward the separation inclined plate 7a by a frictional force generated between the sheet feed roller 11 and the printing paper P. When the leading edge of the printing paper P comes into abutment with the separation inclined plate 7a, the printing paper P is guided upward, and is fed to a conveying path 15 along a direction indicated by an arrow B. When the topmost printing paper P is fed by the sheet feed roller 11, a printing paper P immediately below may be fed together by the action of friction or static electricity. However, the printing paper P is arrested by an abutment with the separation inclined plate 7a.
The conveying path 15 is sectionalized and defined by an outer guide surface and an inner guide surface except for a position where the recording mechanism 30, described later, is disposed. For example, a curved portion of the conveying path 15 on the rear side of a multifunction peripheral is made up of an outer guide member 17 and an inner guide member 18 fixed to a main body frame 2b. In this case, the outer guide member 17 constitutes the outer guide surface, and the inner guide member 18 constitutes the inner guide surface. The outer guide member 17 and the inner guide member 18 are so arranged as to be opposed to each other at a predetermined distance.
As shown in
A sheet feed encoder 16 is provided at an end of the sheet feed motor 14. The sheet feed encoder 16 is, for example, a rotary encoder, and includes a sheet feed rotary slit panel 16a having slits formed at predetermined intervals along the circumference thereof and a sheet feed optical sensor 16b. The sheet feed optical sensor 16b transforms light passing through the slits formed on the sheet feed rotary slit panel 16a into electric signals and outputs the same. Therefore, the slits of the sheet feed encoder 16 are detected by the electric signals from the sheet feed optical sensor 16b.
The sheet feed rotary slit panel 16a is configured to rotate coaxially with the sheet feed motor 14, and the rotation of the sheet feed motor 14 is transmitted to the sheet feed roller 11. Therefore, the amount of rotation of the sheet feed roller 11 is computed by counting the number of the detected slits on the sheet feed encoder 16. Accordingly, the position of the printing paper with respect to the sheet feed tray 7 is obtained.
For example, a DC motor may be used as the sheet feed motor 14, and a pulse motor may also be used. In this case, computation of the amount of rotation of the sheet feed roller 11 is achieved by counting the number of pulse outputs to the pulse motor.
Referring now to
A sheet output roller 22a and spur rollers 22b configured to brings the printing paper P after recording into press contact with the sheet output roller 22a are disposed downstream of the printing paper P being conveyed on the surface of the platen 31. The sheet output roller 22a and the spur rollers 22b nip the printing paper P after recording and convey the same from the conveying path 15 further downstream (toward the sheet output tray 8). In the embodiment, the conveying roller 21a and the sheet output roller 22a are driven by a conveying motor 23 shown in
A rotary encoder 24 shown in
An intermediate roller 25a configured to convey the printing paper P and a driven roller 25b configured to bring the printing paper P into press contact with the intermediate roller 25a are disposed upstream from the position where the conveying roller 21a of the conveying path 15 is arranged. The intermediate roller 25a and the driven roller 25b nip the printing paper P being conveyed in the conveying path 15 and convey the same to the conveying roller 21. In the embodiment, the intermediate roller 25a, not shown in
A sheet sensor 28 is arranged in the conveying path 15 upstream from a position where the intermediate roller 25a is arranged. The sheet sensor 28 is turned ON when the printing paper P is detected, and is turned OFF when the printing paper P is not detected. Therefore, when a printing paper P is fed through the conveying path 15 toward the intermediate roller 25a, the leading edge and the trailing edge of the printing paper P are able to be detected.
Referring now to
Ink is supplied from an ink tank (not shown) via an ink tube (not shown) to the printhead 32. The ink may be many color inks and may be a monochrome ink.
Recording is started by causing the ink from the nozzles of the printhead 32 to be output onto the printing paper P moving forward intermittently by the conveying roller 21a while causing the carriage 33 to reciprocate in the primary scanning direction. When the recording with respect to one piece of printing paper P is terminated, the printing paper P after the recording is conveyed downstream (toward the sheet output tray 8) via the conveying path 15 by the sheet output roller 22a.
Referring now to
As described later, when image data for a printing paper P2 following a printing paper P1 output after the image recording does not exist, the following printing paper P2 remaining in the conveying path 15 reaches a press-contact position of the sheet feed roller 11 on the sheet feed tray 7 via the returning section 40 from the trailing edge thereof. Therefore, the following printing paper P2 remaining in the conveying path 15 is returned onto the sheet feed tray 7 via the returning section 40 without being output onto the sheet output tray 8.
As shown in
As described later, the first switching roller 51 and the second switching rollers 52 nip the printing paper P fed from the sheet output roller 22a and the spur rollers 22b. The first switching roller 51 and the second switching rollers 52 are configured to be able to convey the printing paper P further downstream (toward the sheet output tray 8) along the conveying path 15, and also to be able to convey the printing paper P to the returning section 40.
The second switching rollers 52 and the auxiliary rollers 53 are mounted on a frame 54. The frame 54 extends in the lateral direction of the image recording apparatus 1. However, the cross-sectional shape of the frame 54 is formed into a substantially L-shape as shown in
As shown in
As shown in
The first switching roller 51 is rotated by the conveying motor 23 as a drive source. Although not shown in the drawings, the first switching roller 51 is connected to the conveying motor 23 via a required drive transmission mechanism. As shown in
The second switching rollers 52 are placed on the first switching roller 51. The first switching roller 51 may be formed into a single elongated column shape, and may be made up of eight rollers arranged so as to oppose the respective second switching rollers 52. The first switching roller 51 is brought into a normal rotation or a reverse rotation by the conveying motor 23. The printing paper P conveyed along the conveying path 15 is nipped between the first switching roller 51 and the second switching rollers 52. When the first switching roller 51 is brought into the normal rotation, the printing paper P is conveyed downstream while being nipped between the first switching roller 51 and the second switching rollers 52, and is output onto the sheet output tray 8. In the embodiment, the outer diameter of the first switching roller 51 is set to be slightly larger than the outer diameter of the sheet output roller 22a. In other words, when the both members are driven at the same speed of rotation, the peripheral velocity of the first switching roller 51 is larger than the peripheral velocity of the sheet output roller 22a. Therefore, when the printing paper P is conveyed by both of the sheet output roller 22a and the first switching roller 51, the printing paper P is constantly pulled in the direction of conveyance.
As shown in
As shown in
The drive gear 57 is rotatably supported by a supporting shaft 64. The supporting shaft 64 is provided on the main body frame 2b. The drive gear 57 includes a second tooth portion 65 and an arm 66, and the pin 58 is formed on the arm 66 so as to project therefrom. The second tooth portion 65 is configured as an involute gear having the supporting shaft 64 at the center, and engages the first tooth portion 62. The first tooth portion 62 rotates in association with the rotation of the second tooth portion 65 and, consequently, the frame 54, the sub frame 55, the second switching rollers 52, and the auxiliary rollers 53 rotate integrally about the center axis 51a.
Referring next to
As shown in
When the cam 59 rotates counterclockwise (in the direction indicated by an arrow F) in
At this time, the frame 54, the sub frame 55, the second switching rollers 52, and the auxiliary rollers 53 rotate about the center axis 51a. Therefore, as shown in
Referring now to
The guide portion 70 comes into contact with an upper surface of the printing paper P when the first switching roller 51 and the second switching rollers 52 rotate in the reverse direction and hence the printing paper P is fed to the returning section 40. The guide portion 70 does not come into contact with the printing paper P when the first switching roller 51 and the second switching rollers 52 rotate in the normal direction and hence the printing paper P is fed toward the sheet output tray. The guide portion 70 is provided at a position avoiding contact with an imaginary line connecting a contact point between the first switching roller 51 and the second switching rollers 52 in the first position, and a contact point between the sheet output roller 22a and the spur rollers 22b.
As described later, the printing paper P is changed in direction of conveyance, and is fed to the returning section 40. A portion of the printing paper P downstream from the first switching roller 51 and the second switching rollers 52 comes into abutment with an upper surface of the guide roller 73 and sags. Accordingly, the printing paper P is wound around the first switching roller 51 and the second switching rollers 52, and hence a stable conveying force is obtained, whereby the printing paper P is reliably fed to the returning section 40.
<Electric Configuration>
Subsequently, an electric configuration of the image recording apparatus 1 will be described with reference to
The control portion 80 controls an entire operation of the image recording apparatus 1. The control portion 80 is made up of a main substrate and is arranged at a predetermined position in the main body frame 2b. A configuration relating to control of the scanner unit 6 is not a principal configuration of the invention, and detailed description will be omitted.
The control portion 80 is made up of a microcomputer mainly including a CPU 81, a ROM 82, a RAM 83, and an EEPROM 84. The control portion 80 is connected to an ASIC 86 via a bus 85.
The CPU 81 controls various functions of the image recording apparatus 1 and controls respective members connected to the ASIC 86 according to predetermined values or programs stored in the ROM 82 or the RAM 83, or respective signals sent and received via an NCU 87.
The ROM 82 stores programs or the like for controlling various operations performed by the image recording apparatus 1. For example, various control programs including a program for executing processes shown by flowcharts in
The RAM 83 is used as a storage area where various data are stored temporarily when the CPU 81 executes the various programs, or as a work area. The image data to be recorded is stored in the RAM 83 temporarily and, when the recording is terminated, the image data is erased. The RAM 83 also stores data of feed pulse counter 83a and data of sheet size memory 83b.
The feed pulse counter 83a is a counter for counting the detected number of slits of the sheet feed encoder 16. The value of the feed pulse counter 83a is set to “0” when the leading edge of the printing paper P is sensed by the sheet sensor 28 and is incremented by “1” every time when a new slit of the sheet feed encoder 16 is detected in a recording process (
The sheet size memory 83b is configured to store a sheet size when the sheet size of the printing paper P for recording the image is specified by an external apparatus (not shown) or by an operation of the operation panel 4 by the user.
The EEPROM 84 stores settings and flags which are to be held after the power is turned OFF.
The NCU (Network Control Unit) 87 is connected to the ASIC 86. The NCU 87 is configured to receive an input of a communication signal from a public line. A MODEM 88 is configured to demodulate the input of the communication signal and then input the same to the ASIC 86. When the ASIC 86 sends the image data to the outside via facsimile transmission or the like, the MODEM 88 demodulates the image data into the communication signal, and outputs the same to the pubic line via the NCU 87.
The ASIC 86 generates mutually-exciting signal or the like to excite the sheet feed motor 14 according to a command from the CPU 81. A drive circuit 89 excites the sheet feed motor 14 according to the mutually-exciting signal and drives the sheet feed motor 14 to rotate. The drive circuit 89 rotates the sheet feed motor 14 in the normal direction or in the reverse direction by switching the exciting phase of the sheet feed motor 14. The rotating force of the sheet feed motor 14 is transmitted to the sheet feed roller 11.
The ASIC 86 generates mutually-exciting signal or the like to excite the conveying motor 23 according to a command from the CPU 81. A drive circuit 90 excites the conveying motor 23 according to the mutually-exciting signal and drives the conveying motor 23 to rotate. The drive circuit 90 rotates the conveying motor 23 in the normal direction or in the reverse direction by switching the exciting phase of the conveying motor 23. The rotating force of the conveying motor 23 is transmitted to the conveying roller 21a, the sheet output roller 22a, and the first switching roller 51. In this manner, in the image recording apparatus 1 according to the embodiment, the conveying motor 23 serves as a drive source for conveying the printing paper P located on the platen 31 or outputting the printing paper P after the recording onto the sheet output tray 8.
The ASIC 86 generates mutually-exciting signal or the like to excite an intermediate roller 27 according to a command from the CPU 81. A drive circuit 96 excites the intermediate roller 27 according to the mutually-exciting signal and drives the intermediate roller 27 to rotate. The drive circuit 96 rotates the intermediate roller 27 in the normal direction or in the reverse direction by switching the exciting phase of the intermediate roller 27. The rotating force of the intermediate roller 27 is transmitted to the intermediate roller 25a.
The ASIC 86 generates mutually-exciting signal or the like to excite the CR motor 34 according to a command from the CPU 81. A drive circuit 91 excites the CR motor 34 according to the mutually-exciting signal and drives the CR motor 34 to rotate. The drive circuit 91 rotates the CR motor 34 in the normal direction or in the reverse direction by switching the exciting phase of the CR motor 34. The rotating force of the CR motor 34 is transmitted to the carriage 33 via a required drive mechanism, whereby the carriage 33 is reciprocated.
The ASIC 86 generates excitation control signal or the like to excite the printhead 32 according to a command from the CPU 81. A drive circuit 92 excites the printhead 32 according to the excitation control signal and drives the printhead 32. The drive circuit 92 excites the printhead 32 and causes the printhead 32 to selectively output ink at predetermined timings.
A panel interface 93 having a keyboard 4a of the operation panel 4 for sending and receiving operations and the liquid crystal display (LCD) 5, a parallel interface 94 and a UBS interface 95 for sending and receiving data with respect to an external apparatus such as a personal computer via a parallel cable or a USB cable are connected to the ASIC 86. As described above, when the size of the printing paper P is specified by the operation panel 4 or a printer driver built in the external apparatus (for example, personal computer), the data is stored once in the sheet size memory 83b, and is used for calculating the position of the printing papers P2 and P3, described later in Step S21 described later.
The sheet sensor 28 configured to detect the position of the leading edge and the position of the trailing edge of the printing paper P, the sheet feed encoder 16 configured to detect the amount of rotation of the sheet feed roller 11, the rotary encoder 24 configured to detect the amount of rotation of the conveying roller 21a, the linear encoder 35 for detecting the amount of movement and the position of movement (current position) of the carriage 33 in the primary scanning direction and the like are connected to the ASIC 86.
<Operation in the Embodiment>
Subsequently, the operation of the image recording apparatus 1 according to the embodiment will be described with reference to
First of all, a recording process executed by the CPU 81 of the image recording apparatus 1 will be described with reference to
Feeding of the printing paper P from the sheet feed tray 7 is started in step S1. In order to feed the printing paper P from the sheet feed tray 7, the sheet feed motor 14 is rotated in the normal direction in step S1 to rotate the sheet feed roller 11 in the normal direction (counterclockwise in
Whether or not the sheet sensor 28 senses the leading edge of the printing paper P1 is determined (S2). This process is repeated until the leading edge of the printing paper P1 is sensed (S2:No) and, when it is determined that the leading edge of the printing paper P1 is sensed as shown in
It is also possible to reset the value of the feed pulse counter 83a to “0” again when the trailing edge of the printing paper P1 whose leading edge is sensed by the sheet sensor 28 has left the sheet sensor 28. In this configuration, when the sheet sensor 28 senses the leading edge of the following printing paper P2, the counting is started again. In this case, the printing paper P2 corresponds to the preceding printing paper, and the sheet sensor 28 computes the amount of rotation of the sheet feed roller 11 from a position where the sheet sensor 28 senses the leading edge of the printing paper P2, so that the position of the printing paper P2 and the position of the printing paper P3 following the printing paper P2 are computed.
When the printing paper P1 is conveyed by the intermediate roller 25a, and the leading edge of the printing paper P1 reaches the conveying roller 21a, the printing paper P1 is nipped by a nip portion between the conveying roller 21a and the nip roller 21b and is conveyed onto the platen 31 as shown in
Even when the single printing paper P is nipped by a nip portion between the intermediate roller 25a and the driven roller 25b and is also nipped at a position of the sheet feed roller 11, a nipping force at the nip portion between the intermediate roller 25a and the driven roller 25b is set to a value larger than the force of conveying the printing paper P on the sheet feed tray 7 by the sheet feed roller 11, and the peripheral velocity of the intermediate roller 25a is set to be larger than the peripheral velocity of the sheet feed roller 11, so that the printing paper P nipped at the nip portion between the intermediate roller 25a and the driven roller 25b is reliably conveyed by the conveying roller 21a.
Subsequently, whether or not the image recording of the preceding printing paper P1 is terminated is determined (S5). After having repeated the process until the image recording on the preceding printing paper P1 is terminated (S5: No), when it is determined that the image recording on the preceding printing paper P1 is terminated (S5: YES), an attempt is made to receive the image data for the next page (following printing paper P2), and whether or not the image data is stored in the RAM 83 is determined (S6). When it is determined that the image data is stored in the RAM 83 (S6: YES) by making an attempt to receive the image data for the next page (following printing paper P2), the conveying motor 23 is rotated continuously in the normal direction to rotate the conveying roller 21a, the sheet output roller 22a and the first switching roller 51 in the normal direction as shown in
In contrast, when the image data for the next page is not received and hence it is determined that the image data is not stored in the RAM 83 (S6: No) in Step S6, as shown in
Subsequently, a next printing paper process shown in
Referring now to
In the next printing paper process, the positions of the following printing papers P2 and P3 are calculated from the amount of rotation of the sheet feed roller 11 from a position where the leading edge of the printing paper P1 is sensed by the sheet sensor 28, that is, the value of the feed pulse counter 83a and the sheet size of the printing paper P stored in the sheet size memory 83b (S21). From the result of the calculation in Step S21, whether or not the trailing edge of the following printing paper P2 is positioned downstream from the sheet feed roller 11 is determined (S22).
Here, a case where the trailing edge of the following printing paper P2 is not located downstream from the sheet feed roller 11 (S22: No) will be described. For example, the case where the amount of rotation of the sheet feed roller 11 calculated in Step S21 is “24 cm” is exemplified. In this case, since the length of the printing paper P1 is “21 cm”, and the length from the sheet feed roller 11 to the sheet sensor 28 is “15 cm”, when the printing paper P1 is fed by “6 cm” from the position where the leading edge of the printing paper P1 has passed the sheet sensor 28, the trailing edge leaves the sheet feed roller 11, and the printing paper P2 is fed. Then, the printing paper P2 is stopped when the printing paper P2 is fed by “18 cm”. Since the length of the printing paper P2 is “21 cm”, it is understood that the trailing edge of the printing paper P2 is located upstream from the sheet feed roller 11 by “3 cm”.
Therefore, when it is determined that the trailing edge of the following printing paper P2 is not located downstream from the sheet feed roller 11 (S22: No), the sheet feed motor 14 is rotated in the reverse direction as shown in
The amount of reverse rotation of the sheet feed roller 11 required for returning the printing paper P2 to the sheet feed tray 7 is calculated from the position of the printing paper P2, and whether or not the sheet feed roller 11 has rotated by the amount of reverse rotation is determined (S24). At this time, as shown in
When it is determined that the trailing edge of the following printing paper P2 is located downstream from the sheet feed roller 11 in Step S22 (S22: Yes), whether or not the printing paper P3 following after the following printing paper P2 is fed by the sheet feed roller 11 is determined (S26).
Here, a case where the trailing edge of the following printing paper P2 is located downstream from the sheet feed roller 11 (S22: Yes), and the printing paper P3 following after the following printing paper P2 is not fed by the sheet feed roller 11 (S26: No) will be described. For example, the case where the amount of rotation of the sheet feed roller 11 calculated in Step S21 is “27 cm” is exemplified. In this case, since the length of the printing paper P1 is “21 cm”, and the length from the sheet feed roller 11 to the sheet sensor 28 is “15 cm”, when the printing paper P1 is fed by “6 cm” from the position where the leading edge of the printing paper P1 has passed the sheet sensor 28, the trailing edge leaves the sheet feed roller 11, and the printing paper P2 is fed. Then, the printing paper P2 is stopped when the printing paper P2 is fed by “21 cm”. Since the length of the printing paper P2 is “21 cm”, the trailing edge of the printing paper P2 is detected when it is positioned at a press-contact position of the sheet feed roller 11. However, in the embodiment, when the trailing edge of the printing paper P2 is located at the press-contact position of the sheet feed roller 11, the trailing edge thereof is determined to be downstream. It is because that the amount of the trailing edge of the printing paper P2 being in press contact with the sheet feed roller is a slight amount, there may arise a case where the printing paper P2 cannot be returned to the sheet feed tray 7 by the reverse rotation of the sheet feed roller 11. At this time, it is understood that the printing paper P3 following the printing paper P2 is not fed by the sheet feed roller 11.
Therefore, when it is determined that the printing paper P3 is not fed by the sheet feed roller 11 (S26: No), only the printing paper P2 remains in the conveying path 15. In addition, since the printing paper P2 is not in press contact with the sheet feed roller 11, it cannot be returned to the sheet feed tray 7 by the sheet feed roller 11. Therefore, as shown in
It is determined whether the intermediate roller 25a, the conveying roller 21a, the sheet output roller 22a, and the first switching roller 51 are rotated in the normal rotation by a predetermined amount from a position where the trailing edge of the printing paper P2 has passed the sheet sensor 28 (S28). The term “predetermined amount” here means the amount of rotation required for the trailing edge of the printing paper P2 reaching the auxiliary rollers 53. At this time, as shown in
The position of the trailing edge of the printing paper P2 is grasped by the control portion 80 from an output value from the rotary encoder 24 with reference to a time point when the ON/OFF of the sheet sensor 28 is switched by the passage of the trailing edge of the printing paper P2.
Subsequently, as shown in
Here, a case where the trailing edge of the following printing paper P2 is located downstream from the sheet feed roller 11 (S22: Yes), and the printing paper P3 following after the following printing paper P2 is fed by the sheet feed roller 11 (S26: Yes) will be described. For example, the case where the amount of rotation of the sheet feed roller 11 calculated in Step S21 is “30 cm” is exemplified. In this case, since the length of the printing paper P1 is “21 cm”, and the length from the sheet feed roller 11 to the sheet sensor 28 is “15 cm”, when the printing paper P1 is fed by “6 cm” from the position where the leading edge of the printing paper P1 has passed the sheet sensor 28, the trailing edge leaves the sheet feed roller 11, and the printing paper P2 is fed. When the printing paper P2 is fed by the “21 cm”, the trailing edge leaves from the sheet feed roller 11, and the printing paper P3 is fed. Then, the printing paper P3 is stopped when the printing paper P3 is fed by “3 cm”. The length of the printing paper P2 is “21 cm”, and the printing paper P2 is conveyed downstream by the intermediate roller 25a by an amount of rotation of “3 cm” of the sheet feed roller 11 from the position where the trailing edge has left the sheet feed roller 11. Since the length from the sheet feed roller 11 to the conveying roller 21a is “30 cm”, the leading edge of the printing paper P2 is located at a position not reaching the conveying roller 21a. It is understood that the leading edge of the printing paper P3 is located downstream from the sheet feed roller 11 by “3 cm”.
Therefore, in Step S26, when it is determined that the printing paper P3 is fed by the sheet feed roller 11 (S26: Yes), the printing papers P2 and P3 remain in the conveying path 15. At this time, since the printing paper P2 is not in press contact with the sheet feed roller 11, it cannot be returned to the sheet feed tray 7 by the sheet feed roller 11. Since the printing paper P3 is in press contact with the sheet feed roller 11, it can be returned to the sheet feed tray 7 by the sheet feed roller 11. Therefore, as shown in
From the printing papers P2 and P3 remaining in the conveying path 15, since the length of the printing paper P3 returned to the sheet feed tray 7 by the sheet feed roller 11 exposed in the conveying path 15 is shorter than the same of the printing paper P2 returned back to the sheet feed tray 7 by the conveying path switching mechanism 50, the printing paper P3 returns to the sheet feed tray 7 ahead. Therefore, first of all, the amount of reverse rotation of the sheet feed roller 11 required for returning the printing paper P3 to the sheet feed tray 7 is calculated from the result of calculation in step S21, and whether or not the sheet feed roller 11 has rotated by the amount of reverse rotation is determined (S35). The “amount of reverse rotation” here means the amount of rotation of the sheet feed roller 11 required when feeding the printing paper P3. In other words, in the example given above, since the printing paper P2 is stopped at a position fed by “3 cm” from the sheet feed roller 11, the amount of reverse rotation corresponds to an amount of rotation of “3 cm”. When the sheet feed roller 11 is rotated in the reverse direction until the sheet feed roller 11 rotates by the amount of reverse rotation (S35: No), and the sheet feed roller 11 is rotated by the amount of reverse rotation (S35: Yes), as shown in
Subsequently, it is determined that the intermediate roller 25a, the conveying roller 21a, the sheet output roller 22a, and the first switching roller 51 are rotated in the normal rotation by a predetermined amount from a position where the trailing edge of the printing paper P2 has passed the sheet sensor 28 (S37). The term “predetermined amount” here means the amount of rotation required for the trailing edge of the printing paper P2 reaching the auxiliary rollers 53. At this time, as shown in
As described above, the position of the trailing edge of the printing paper P2 is grasped by the control portion 80 from the output value from the rotary encoder 24 with reference to the time point when the ON/OFF of the sheet sensor 28 is switched.
Subsequently, as shown in
Since the printing paper P2 is returned to the sheet feed tray 7 later than the printing paper P3, the printing paper P2 is placed on the printing paper P3, so that the printing paper P2 is fed ahead by the sheet feed roller 11 when it is reused.
In a case where the re-feeding of the sheet is started, when the printing paper P2 leaves the nip position between the first switching roller and the second switching roller, the conveying motor 27 is rotated in the normal direction for conveying the re-fed printing paper P2 by the sheet feed roller 11, so that the conveying path switching mechanism 50 is returned from the second position to the first position.
First of all, whether or not a new slit of the sheet feed encoder 16 is detected is determined (S51). When the sheet feed encoder 16 detects the new slit (S51: Yes), the value of the sheet feed pulse counter 83a (See
In the embodiment, when the printing paper P is fed from the sheet feed tray 7 by the sheet feed roller 11, the sheet feed roller 11 is continuously rotated in the normal direction. Then, as shown in
Although the invention has been described on the basis of the embodiment, it is easily supposed that the invention is not limited to the embodiment described above, and various improvements and modifications may be made without departing the scope of the invention.
For example, in the embodiment, when the image data to the following printing paper P2 is not stored, the printing paper P2 is conveyed to the press-contact position of the sheet feed roller 11 on the sheet feed tray 7 via the returning section 40 by the conveying path switching mechanism 50 in order to return the following printing paper P2 reliably to the sheet feed tray 7, a configuration in which the conveying path switching mechanism 50 and the returning section 40 are used may be achieved also in a case where the image recording apparatus 1 has a duplex recording function. In this case, when the image is recorded on a first side of the printing paper P, the printing paper P may be conveyed in the same manner as in Steps S27 to S33 shown in
Here, the operation of the image recording apparatus 1 at the time of the duplex recording function according to the embodiment will be described with reference to
In the embodiment, the position of the printing paper P1 and the positions of the printing papers P2 and P3 conveyed subsequently are calculated by the amount of rotation of the sheet feed roller 11, and the mechanism for returning the printing papers P2 and P3 to the sheet feed tray 7 is controlled according to the result of calculation. However, the invention is not limited thereto, and the detection may be achieved by other configurations. For example, the position of the following printing paper P2 or P3 may be determined by whether or not the sensor 28 is turned ON. Alternatively, a configuration in which a plurality of sheet sensors are arranged at predetermined intervals in the conveying path 15 and the respective mechanisms are controlled so as to return the printing papers P2 and P3 to the sheet feed tray 7 according to the sensed result from the sheet sensors between ON and OFF is applicable.
In the embodiment, the sequence to return the printing paper P2 to the sheet feed tray is different depending on whether or not the trailing edge of the printing paper P2 is located downstream from the sheet feed roller 11. However, the printing paper P2 may be conveyed to the contact-pressure position of the sheet feed roller 11 on the sheet feed tray 7 via the returning section 40 by the conveying path switching mechanism 50 irrespective of whether or not the trailing edge of the printing paper P2 is located downstream of the sheet feed roller 11.
In the embodiment, since the trailing edge of the printing paper P2 is returned to the sheet feed tray 7 as a new leading edge by the conveying path switching mechanism 50, the upward-oriented surface of the printing paper P2 returned to the sheet feed tray 7 is different from the upward-oriented surface of the same before being fed from the sheet feed tray 7. Alternatively, the conveying path switching mechanism 50 may be configured to convey the printing paper P2 to the returning section 40 from the leading edge. In this case, the upward-oriented surface of the printing paper P2 returned to the sheet feed tray 7 is the same as the upward-oriented surface of the same before being fed from the sheet feed tray 7.
In the embodiment, the sheet feed tray 7 is positioned below the recording mechanism 30. However, the invention is not limited thereto. The sheet feed tray 7 can be positioned above or beside the recording mechanism 30.
In the embodiment, the recording mechanism 30 is of an ink-jet recording system. However, other recording systems (for example, electrophotographic system, thermal system, etc.) are also applicable.
In the embodiment, whether or not image data is stored in the RAM 83 is determined by making an attempt to receive the image data for the following sheet P2. However, the image data may be those received from the external apparatus for printing or those received by the facsimile transmission. In addition, by determining whether or not the image data of a document scanned by the scanner unit 6 is stored in the RAM 83, it can be applied to the copying function as well. The determination whether the image data is stored in the RAM 83 may be performed by determining whether or not the image data of the entire page is stored, or by determining whether or not at least part of the image data is stored.
While the invention has been described in connection with embodiments, it will be understood by those skilled in the art that other variations and modifications of the embodiments described above may be made without departing from the scope of the invention. Other embodiments will be apparent to those skilled in the art from a consideration of the specification or practice of the invention disclosed herein. It is intended that the specification and the described examples are considered merely as exemplary of the invention, with the true scope of the invention being indicated by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2008-329595 | Dec 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6205297 | Tachibana et al. | Mar 2001 | B1 |
20070076036 | Koga et al. | Apr 2007 | A1 |
20070201935 | Mizutani | Aug 2007 | A1 |
20070228649 | Mizutani et al. | Oct 2007 | A1 |
20080080923 | Yasue et al. | Apr 2008 | A1 |
20080100877 | Inoue | May 2008 | A1 |
20080240823 | Asada | Oct 2008 | A1 |
20080240824 | Asada | Oct 2008 | A1 |
20090250863 | Hirate et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
H09-104141 | Apr 1997 | JP |
H11-065185 | Mar 1999 | JP |
2000-159392 | Jun 2000 | JP |
2008-087204 | Apr 2008 | JP |
2008-247495 | Oct 2008 | JP |
2008-247537 | Oct 2008 | JP |
Entry |
---|
Japan Patent Office, Notice of Reasons for Rejection for Japanese Patent Application No. 2008-329595 (counterpart to above-captioned patent application), mailed Sep. 14, 2010. |
The State Intellectual Property Office of the People'S Republic of China, Notification of First Office Action for Chinese Patent Application No. 200910262665.9 (counterpart to above-captioned patent application), issued Mar. 14, 2011. |
Number | Date | Country | |
---|---|---|---|
20100238475 A1 | Sep 2010 | US |