The present application claims priority from Japanese Patent Application Nos. 2007-198856 and 2007-199158, which were filed on Jul. 31, 2007, the disclosures of which are herein incorporated by reference in its entirety.
1. Field of the Invention
The present invention relates to an image recording apparatus configured to record images while reciprocating a recording head with a carriage, and more particularly to an image recording apparatus in which drive power of a plurality of drive sources is transmitted to a plurality of driven portions.
2. Description of the Related Art
There is conventionally known an ink-jet printer as an image recording apparatus in which ink is ejected on the basis of input signals to record images on a recording medium such as a recording sheet. The ink-jet printer is configured so as to introduce ink into an actuator of a recording head and eject, onto the recording sheet, the ink pressurized by utilizing deflection or flexure of piezoelectric elements, electrostrictive elements, and so on or by utilizing local or partial boiling of the ink by heat-generating elements, based on input signals.
In the ink-jet printer, when the recording sheet is fed onto a sheet-discharge tray from a sheet-supply tray, an image recording operation is performed in which the ink is selectively ejected onto the recording sheet from the recording head. A sheet-supply operation in which the recording sheet is supplied from the sheet-supply tray to a sheet-feed path, and a sheet-feed operation in which the recording sheet is fed in the sheet-feed path are performed by rotations of rollers referred to as a sheet-supply roller and a sheet-feed roller in a state in which the rollers are pressed on the recording sheet. As the drive source of the rollers each as one of driven portions, a motor such as a DC motor or a stepping motor is used. Drive power is transmitted from the motor to the rollers by a drive-power transmitting system including a pinion gear, a timing belt, and so on.
In the image recording operation, air bubbles may be generated in nozzles of the recording head through which the ink is ejected, or the nozzles may be plugged or clogged with foreign matters, whereby an ink ejection failure may occur. As a technique for restoring or preventing the ink ejection failure, there has been known what is called a purging operation that is a technique for removing, by sucking, the air bubbles and the foreign matters from the nozzles of the recording head. A maintenance unit for performing the purging operation includes a cap for covering the nozzles of recording head, a pump for reducing a pressure in the cap, and so on. The motor is also used as a drive source for driving the pump, as one of the driven portions, of the maintenance unit and a cam, as another of the driven portions, for switching a state of an air-discharge valve. The drive power is transmitted from the motor to a selected one or ones of the driven portions by a drive-power transmitting system like the drive-power transmitting system described above.
There is conventionally known an image recording apparatus including a switching mechanism for switching driven portions to which the drive power of the motor as the drive source is transmitted. This switching mechanism selectively transmits the drive power to a selected one or ones of the driven portions depending upon a position of the carriage, as disclosed in Japanese Patent Application Publication No. 2007-90761 (Patent Document 1). Thus, the drive power can be transmitted from one drive source to the sheet-feed roller and so on when the image recording operation is performed, or to the maintenance unit when the purging operation is performed, for example.
According to Patent Document 1, drive power of one LF motor (42) is selectively transmitted to one or ones of a plurality of driven portions by the switching mechanism (100). This switching mechanism (100) includes a switching gear (102) and four types of transmission gears, namely, a transmission gear (113) for intermittently supplying recording sheets, a transmission gear (114) for successively supplying the recording sheets, a transmission gear (121) for supplying the recording sheets accommodated in a lower cassette, and a transmission gear (115) for maintenance of the recording head. A lever (104a) is positioned at one of a first, a second, and a third guide position (111, 112, 108), whereby the switching gear (102) is meshed with a selected one of the transmission gears that corresponds to the one of the guide positions at which the lever is positioned, so as to transmit the drive power to the one of the transmission gears. A position of the lever (104a) is switched depending upon a position of a carriage (13) which is moved in a main scanning direction in correspondence with respective modes of operations of the image recording apparatus. It is noted that respective reference numerals within parentheses are reference numerals that are used in Patent Document 1.
It is not so complicated to control the switching mechanism (100) in which the switching gear (102) is meshed with a selected one of the transmission gears (113, 114, 121, 115) in order to transmit the drive power of the LF motor (42) to a selected or desired one or ones of the driven portions in correspondence with the respective modes of the operations of the image recording apparatus as disclosed in Patent Document 1. However, image recording apparatuses are considered to become more multifunctional, and thus a number of modes of operations of each of the image recording apparatuses is considered to be accordingly increased. For example, in order to make it possible to record images on both sides of each of the recording sheets, there arises a need to switch paths for recording a front and a back side of each recording sheet. Further, in a two-sided recording, in order to eliminate a problem such as cockling of the recording sheet which is caused by ink absorbed in the recording sheet, a feeding of the recording sheets may be stopped for ink-drying time in which the ink on the recording sheet is dried. In the ink-drying time, it is desirable that a carriage is operated for capping nozzles of a recording head in order to prevent the ink in the recording head from drying.
Considering an adapting to the increased number of the modes and a driving of one or ones of the driven portions in the two-sided recording or the like with another one or ones of the driven portions being stopped, a system in which a switching gear is selectively meshed with one of a plurality of transmission gears in correspondence with the modes of the operations of the image recording apparatus becomes more complicated in controlling, e.g., releasing of a pressure between surfaces of the switching gear and one of the transmission gears which is being meshed with the switching gear, and matching of rotational phases (i.e., rotational angles) of the switching gear and one of the transmission gears which is to be meshed with the switching gear, when a gear with which the switching gear is meshed is switched from one to another of the transmission gears. Further, there is a risk of requiring more time for switching the meshes of the switching gear and the transmission gears. In order to solve these problems, it can be considered an image recording apparatus in which a plurality of motors each as a drive source are provided and which has a structure in which a plurality of transmission gears are disposed in correspondence with the plurality of motors.
If two switching gears are provided for two motors, two levers each having the same structure as the above-described lever (104a) need to be disposed in correspondence with the two switching gears for determining and changing respective positions of the two switching gears. In this case, since a carriage (13) changes respective positions of the two levers (104a), a first step portion (13a) and a second step portion (13n) which are engageable with the respective levers (104a) need to be provided at two portions of the carriage (13). Thus, the carriage (13) is upsized, so that the image recording apparatus is accordingly upsized, unfortunately. Further, since an enough force for moving the two levers (104a) against first forcing springs (106) each of which applies an elastic force to a corresponding one of the two levers (104a) needs to be applied to the carriage (13), a load received by a CR motor (24) becomes larger. As a result, the CR motor (24) needs to be upsized, so that there is a risk of upsizing of the apparatus and increasing of power consumption.
This invention has been developed in view of the above-described situations, and it is an object of the present invention to provide an image recording apparatus configured to transmit drive power of a plurality of drive sources to a plurality of driven portions and including a mechanism configured to transmit the drive power to a selected one or ones of the driven portions, without upsizing of the apparatus or increasing of a load received by a carriage.
It is another object of the present invention to provide an image recording apparatus including a drive-power transmitting system which permits a supplying and a feeding of recording sheets, and a maintenance of a recording head to be performed independently of each other.
The objects indicated above may be achieved according to the present invention which provides an image recording apparatus comprising: a carriage which carries a recording head mounted on the carriage and which is reciprocable in a predetermined direction across an image recording area in which the recording head performs an image recording operation on a recording medium and a maintenance area in which a maintenance of the recording head is performed; a plurality of driven portions; a first drive source and a second drive source which generate drive power for driving the plurality of the driven portions; and a drive-power transmitting system configured to transmit the drive power of the first and the second drive source to the plurality of the driven portions, wherein the drive-power transmitting system includes: a shaft having an axis extending in an axial direction parallel to the predetermined direction; a first switching gear and a second switching gear supported by the shaft so as to be rotatable about the axis of the shaft and slidable in the axial direction, and respectively driven to be rotated by the drive power of the first drive source and by the drive power of the second drive source; a first transmission gear disposed so as to be meshed with the first switching gear in accordance with a position of the first switching gear in the axial direction, and configured to transmit, by being meshed with the first switching gear, the drive power of the first drive source, to a first driven portion as one of the plurality of the driven portions which is driven in relation to the maintenance of the recording head; a second transmission gear disposed so as to be meshed with the second switching gear in accordance with a position of the second switching gear in the axial direction, and configured to transmit, by being meshed with the second switching gear, the drive power of the second drive source, to a second driven portion as one of the plurality of the driven portions which is different from the first driven portion and which is driven in relation to the maintenance of the recording head; a third transmission gear disposed so as to be meshed with the second switching gear in accordance with the position of the second switching gear in the axial direction, and configured to transmit, by being meshed with the second switching gear, the drive power of the second drive source, to a third driven portion as one of the plurality of the driven portions which is different from the first and the second driven portion and which is driven in relation to a feeding of the recording medium in the image recording operation performed by the recording head; and a switching-gear positioning mechanism configured to slide the first and the second switching gear together with each other in the axial direction depending upon a position of the carriage, wherein when the carriage is positioned in the maintenance area, the switching-gear positioning mechanism positions a set of the first and the second switching gear at a first specific position as a position at which the first switching gear is meshed with only the first transmission gear while the second switching gear is meshed with only the second transmission gear, and wherein when the carriage is positioned in the image recording area, the switching-gear positioning mechanism positions the set of the first and the second switching gear at a second specific position as a position at which the first switching gear is not meshed with any of the first transmission gear, the second transmission gear, and the third transmission gear while the second switching gear is meshed with only the third transmission gear.
In the image recording apparatus constructed as described above, a load received by the carriage when the first switching gear and the second switching gear are moved from one to another of the plurality of the specific positions can be reduced. Consequently, a smaller-sized CR motor can be employed as a drive source for reciprocating the carriage, to reduce power consumption.
Further, in the image recording apparatus constructed as described above, when the set of the first switching gear and the second switching gear is positioned at the first specific position, the drive power is transmitted via the drive-power transmitting system for performing the maintenance of the recording head. When the set of the first switching gear and the second switching gear is positioned at the second specific position, the drive power is transmitted via the drive-power transmitting system for performing the feeding of the recording medium. Thus, the supplying and the feeding of recording medium, and the maintenance of the recording head can be performed independently of each other.
The objects, features, advantages, and technical and industrial significance of the present invention will be better understood by reading the following detailed description of a preferred embodiment of the invention, when considered in connection with the accompanying drawings, in which:
Hereinafter, there will be described a preferred embodiment of the present invention by reference to the drawings. It is to be understood that the following embodiment is described only by way of example, and the invention may be otherwise embodied with various modifications without departing from the scope and spirit of the invention. It is noted that, in the drawings, each gear is provided by a spur gear unless otherwise noted, and teeth of each gear are omitted. In
General Structure of MFD 10
As shown in
The printer section 11 is configured to be mainly connected to an external information devices such as a computer to record images or characters on a recording medium on the basis of recording data including image data or document data which is transmitted from the external information devices. It is noted that one or ones of various storage media such as a memory card can be mounted in the MFD 10. The printer section 11 can record images or characters on the recording medium on the basis of image data or the like stored in the one or ones of storage media. As the recording medium, a paper sheet and a resin sheet may be employed, for example.
The MFD 10 has a generally rectangular parallelepiped shape, and an opening 13 is formed in a front face of the MFD 10. In the opening 13, there are provided a sheet-supply tray 20 and a sheet-discharge tray 21 which are superposed on each other in a vertical direction. The sheet-supply tray 20 is configured to accommodate recording sheets, each as the recording medium, of various standard sizes such as an A4 size, a B5 size, and a postcard size which are smaller than a legal size, for example. Each recording sheet accommodated in the sheet-supply tray 20 is supplied to an inside of the printer section 11. The printer section 11 records desired images on the supplied recording sheet. Then, the recording sheet is discharged onto the sheet-discharge tray 21.
On a lower side of the opening 13, a sheet-supply cassette 14 is provided, The sheet-supply cassette 14 can accommodate the recording sheets of the legal size, the A4 size, and the B5 size, for example. The sheet-supply cassette 14 can accommodate several times to about ten times as many recording sheets as the sheet-supply tray 20 can accommodate. Thus, the sheet-supply cassette 14 accommodates a large number of the recording sheets having a relatively high frequency of use such as the A4 size.
The scanner section 12 functions as what is called a flatbed scanner (FBS). As shown in
On a top front portion of the MFD 10, an operation panel 19 is provided. The operation panel 19 includes a plurality of operation buttons and a liquid crystal display portion. The plurality of the operation buttons include a power button, a start button, a stop button, mode buttons, ten keys, and the like, for example. The power button is for turning a power on and off, the start button is for starting an image reading operation, the stop button is for stopping various operations, the mode buttons are for setting one of modes such as a copying mode, a scanning mode, and a facsimile mode, and the ten keys are for inputting facsimile numbers and for performing various settings for, e.g., conditions of the image reading operation and the image recording operation. The MFD 10 is operated on the basis of operation commands from the operation panel 19. Where the MFD 10 is connected to a computer as the external device, the MFD 10 is operated also on the basis of commands transmitted from the computer via a printer driver or a scanner driver.
Printer Section 11
As shown in
The first arm 26 is pivotably supported by a support shaft 26A so as to be moved upward and downward such that the first arm 26 can contact the sheet-supply tray 20. The first arm 26 is forced so as to pivot downward by a self-weight thereof or by a force of a spring or the like. Thus, the first arm 26 normally contacts the sheet-supply tray 20, and when the sheet-supply tray 20 is inserted into or pulled out of the MFD 10, the first arm 26 is retracted to an upper position thereof. The first sheet-supply roller 25 is brought into pressing contact with the uppermost recording sheet in the sheet-supply tray 20 since the first arm 26 is forced so as to pivot downward. In this state, the first sheet-supply roller 25 is rotated, whereby the uppermost recording sheet is fed toward the inclined sheet-separate plate 22 owing to a friction force between a roller surface of the first sheet-supply roller 25 and the recording sheet.
The first sheet-feed path 23 initially extends upward from the inclined sheet-separate plate 22, then turns toward a front side of the MFD 10. Further, the sheet-feed path 23 extends from a rear side toward the front side of the MFD 10 while passing through an image recording unit 24 and finally reaching the sheet-discharge tray 21. Accordingly, each recording sheet accommodated in the sheet-supply tray 20 is fed to the image recording unit 24 while being guided through the sheet-feed path 23 so as to make an upward U-turn. After the recording sheet is subjected to the image recording operation by the image recording unit 24, the recording sheet is discharged onto the sheet-discharge tray 21.
The first sheet-feed path 23 is defined by a pair of guide surfaces facing to each other with a predetermined distance interposed therebetween, except a portion thereof where the image recording unit 24 is disposed. For instance, a portion of the first sheet-feed path 23 in the rear side of the MFD 10 is defined by a first guide member 27 and a second guide member 28 which are fixed to a frame of the MFD 10. Guide rollers may be provided at a curved portion of the first sheet-feed path 23 particularly where the sheet-feed path 23 is curved, so as to be rotated in a widthwise direction of the first sheet-feed path 23, in a state in which roller surfaces of the guide rollers are exposed at an outer one of the guide surfaces. The guide rollers assure a smooth feeding of each recording sheet contacting the outer guide surface at the curved portion of the first sheet-feed path 283
The image recording unit 24 is provided on a downstream side of the curved portion of the first sheet-feed path 23 in a direction in which each recording sheet is fed (hereinafter may be referred to as a sheet feeding direction), The image recording unit 24 includes the carriage 62 which carries the recording head 61 mounted thereon and which is reciprocable in a predetermined direction. The recording head 61 is of an ink-jet type in which the recording head 61 performs the image recording operation by ejecting the ink through nozzles of the recording head 61. To the recording head 61, cyan ink (C), magenta ink (M), yellow ink (Y), and black ink (Bk) are supplied via the respective ink tubes 59 (shown in
A sheet-feed roller 29 and a pinch roller 30 are provided as a pair on an upstream side of the image recording unit 24 in the sheet feeding direction. Each recording sheet fed in the first sheet-feed path 23 is nipped by the sheet-feed roller 29 and the pinch roller 30, and fed onto the platen 63. Drive power generated or outputted by a line feed motor (an LF motor) 65, as a first drive source, shown in
On a downstream side of the image recording unit 24, a sheet-discharge roller 31 and a spur 32 are provided as a pair. The sheet-discharge roller 31 and the spur 32 feed, to the sheet-discharge tray 21, each recording sheet on which images are recorded, while nipping the recorded recording sheet therebetween. The drive power generated by the LF motor 65 is transmitted to the sheet-feed roller 29 and the sheet-discharge roller 31, whereby the sheet-feed roller 29 and the sheet-discharge roller 31 are intermittently driven at the predetermined line feed pitch. The rotations of the sheet-feed roller 29 and the sheet-discharge roller 31 are synchronized with each other. A rotary encoder (not shown) provided on the sheet-feed roller 29 is configured to detect, via an optical sensor, a pattern of an encoder disc which rotates with the sheet-feed roller 29. On the basis of thus detected detection signals, the rotation of the LF motor 65 is controlled. It is noted that the rotary encoder is omitted in
The spur 32 is brought into pressing contact with each recorded recording sheet. A roller surface of the spur 32 has a plurality of projections and depressions like a spur so as not to deteriorate the images recorded on the recording sheet. The spur 32 is provided so as to be movable toward and away from the sheet-discharge roller 31. The spur 32 is elastically forced by a coil spring so as to be brought into pressing contact with the sheet-discharge roller 31. When each recording sheet is fed into between the sheet-discharge roller 31 and the spur 32, the spur 32 is retracted against a force of the coil spring by a distance corresponding to a thickness of the recording sheet. In this state, each recording sheet is held between the sheet-discharge roller 31 and the spur 32 such that the spur 32 presses each recording sheet to the sheet-discharge roller 31. Thus, a rotational force of the sheet-discharge roller 31 is reliably transmitted to each recording sheet.
As shown in
As shown in
The switch back roller 35 and the spur 36 are provided on a downstream side of a portion of the first sheet-feed path 23, at which the first sheet-feed path 23 and the second sheet-feed path 33 are connected to each other. When a one-sided recording is performed on each recording sheet, the image recording unit 24 records the images on one side of the recording sheet fed through the first sheet-feed path 23, and then the recorded recording sheet is discharged onto the sheet-discharge tray 21 by the switch back roller 35 and the spur 36. When a two-sided recording is performed, the image recording unit 24 records the images on one side of the recording sheet fed through the first sheet-feed path 23, and then the recorded recording sheet is fed toward the second sheet-feed path 33 by the switch back roller 35 and the spur 36, that is, a switch back feeding is performed. In other words, the switch back roller 35 is driven to switch from one to another of paths through which the recording sheets are to be fed upon the image recording operation performed by the recording head 61.
In the switch back feeding, the frame 37 is pivoted by a pivoting mechanism toward the second sheet-feed path 33 to lower the spur 38. Then, the recording sheet is guided by the spur 38 toward the second sheet-feed path 33 and fed onto the sheet-supply tray 20. When a leading end of the recording sheet reaches the first sheet-supply roller 25, the recording sheet is again fed by the first sheet-supply roller 25 to the image recording unit 24 via the first sheet-feed path 23 such that the other side of the recording sheet which is not subjected to the image recording operation is to be opposed to the recording head 61. After the other side of the recording sheet has been subjected to the image recording operation, the recording sheet is discharged to the sheet-discharge tray 21 by the path-switching portion 34.
The switch back roller 35 of the path-switching portion 34 is rotated by the drive power outputted from the LF motor 65 and is synchronized with the sheet-feed roller 29. The frame 37 of the path-switching portion 34 is rotated by the drive power outputted from the ASP motor 66 as the second power source. That is, each of the switch back roller 35 and the pivoting mechanism functions as one of the driven portions of this MFD 10. More specifically, the pivoting mechanism functions as a fourth driven portion, and each of the sheet-feed roller 29, the sheet-discharge roller 31, and the switch back roller 35 functions as one of fifth driven portions of this MFD 10. As described above, the feeding of the recording sheets includes the supplying of the recording sheets from the sheet-supply tray 20 and the sheet-supply cassette 14, and the feeding of the recording sheets in a first sheet-feed path 23 and a second sheet-feed path 33. The fifth driven portions perform the feeding of the recording sheets in the first sheet-feed path 23 and the second sheet-feed path 33.
As shown in
A third sheet-feed path 40 is formed to extend upward from the inclined sheet-separate plate 39. The third sheet-feed path 40 initially extends upward from the inclined sheet-separate plate 39, and then turns toward the front side of the MFD 10. Finally, the third sheet-feed path 40 communicates with the first sheet-feed path 23 at a position located upstream of the sheet-feed roller 29 in the sheet feeding direction. The third sheet-feed path 40 is defined by, as an inner guide surface thereof, a back surface of the second guide member 28 which functions as the outer guide surface of the first sheet-feed path 23, and, as an outer guide surface thereof, a third guide member 41 provided on an outer side of the inner guide surface of the third sheet-feed path 40 with a predetermined distance therebetween. The recording sheet accommodated in the sheet-supply cassette 14 is fed to the image recording unit 24 while being guided through the third sheet-feed path 40 so as to make an upward U-turn and then fed into the first sheet-feed path 23. After the recording sheet has been subjected to the image recording operation by the image recording unit 24, the recording sheet is discharged onto the sheet-discharge tray 21.
Above the sheet-supply cassette 14, there is provided a second sheet-supply roller 42, as one of the third driven portions, for supplying each recording sheet accommodated in the sheet-supply cassette 14 toward the third sheet-feed path 40. The second sheet-supply roller 42 is supported by a shaft at a free end of a second arm 43. The second sheet-supply roller 42 rotates by drive power which is transmitted from the ASF motor 66 to the second sheet-supply roller 42 via the drive-power transmitting system which has the plurality of gears meshed with each other and which will be described in detail.
The second arm 43 is pivotably supported by a support shaft 43A so as to be moved upward and downward such that the second arm 43 can contact the sheet-supply cassette 14. The second arm 43 is forced so as to pivot downward by a self-weight thereof or by a force of a spring, or the like. Thus, the second arm 43 normally contacts the sheet-supply cassette 14, and when the sheet-supply cassette 14 is inserted into or pulled out of the MFD 10, the second arm 43 is retracted to an upper position thereof. The second sheet-supply roller 42 is brought into pressing contact with the uppermost recording sheet in the sheet-supply cassette 14 since the second arm 43 is forced so as to pivot downward. In this state, the second sheet-supply roller 42 is rotated, whereby the uppermost recording sheet is fed toward the inclined sheet-separate plate 39 owing to a friction force between a roller surface of the second sheet-supply roller 42 and the recording sheet. The recording sheet is brought into contact with the inclined sheet-separate plate 39 and guided upward. Then, the recording sheet is fed to the third sheet-feed path 40.
Image Recording Unit 24
As shown in
The guide rail 44 is provided on an upstream side of the guide rail 45 in the sheet feeding direction and has a planar plate shape having a length longer than a range in which the carriage 62 reciprocates, in a widthwise direction of the first sheet-feed path 23 (i.e., in the right and left direction in
A belt driving mechanism 46 is disposed on an upper surface of the guide rail 45. The belt driving mechanism 46 includes a drive pulley 47, a driven pulley 48, and an endless, annular belt 49 having teeth on an inner side thereof. The drive pulley 47 and the driven pulley 48 are disposed near respective opposite ends of the sheet-feed path 23 in a widthwise direction thereof. The belt 49 is tensioned between the drive pulley 47 and the driven pulley 48. The drive pulley 47 is driven by a CR motor (not shown). The timing belt 49 is circulated by the rotation of the drive pulley 47. It is noted that the belt 49 does not have to be necessarily provided by the endless, annular belt, and may be provided by a non-endless belt that is connected at its opposite end portions to the carriage 62.
The carriage 62 is fixed at a bottom surface thereof to the belt 49. Thus, the carriage 62 reciprocates on the guide rails 44, 45 along the edge portion 45A on the basis of the circulation of the timing belt 49. The recording head 61 is mounted on the carriage 62 as mensioned above, so that the recording head 61 reciprocates in a widthwise direction of the sheet-feed path 23 as a main scanning direction.
An encoder strip 50 of a linear encoder (not shown) is disposed on the guide rail 44. The encoder strip 50 has a shape like a band and is formed of a transparent resin. A pair of support portions 51, 52 are respectively formed on opposite end portions of the guide rail 44 in a widthwise direction thereof (that is, in the predetermined direction in which the carriage 62 reciprocates) such that the support portions 51, 52 are erected from an upper surface of the guide rail 44. Opposite end portions of the encoder strip 50 are respectively engaged with the support portions 51, 52, so that the encoder strip 50 is provided along the edge portion 45A while being held by the support portions 51, 52.
The encoder strip 50 includes light transmitting portions each of which transmits light, and light intercepting portions each of which intercepts light. The light transmitting portions and the light intercepting portions are alternately arranged at certain pitches in a longitudinal direction of the encoder strip 50 so as to form a predetermined pattern. An optical sensor 53 of a transmission type is provided on an upper surface of the carriage 62 at a position corresponding to the encoder strip 50. The optical sensor 53 reciprocates with the carriage 62 in the longitudinal direction of the encoder strip 50. During the reciprocation, the optical sensor 53 detects the pattern of the encoder strip 50. The recording head 61 includes a head control substrate for controlling an ink ejecting operation of the recording head 61. The head control substrate outputs pulse signals based on detection signals from the optical sensor 53. On the basis of the pulse signals, a position of the carriage 62 is recognized and the drive and the rotation of the CR motor are controlled. It is noted that since the head control substrate is covered with a head cover of the carriage 62, the head control substrate is not shown in
As shown in
As shown in
The purging device 55 is for removing, by sucking, air bubbles and foreign matters from nozzles of the recording head 61. The purging device 55 includes a nozzle cap 57 for covering the nozzles of the recording head 61 when the carriage 62 is positioned in the maintenance are M1, and an air-discharge cap 58 for covering air-discharge openings of the recording head 61. The nozzle cap 57 and the air-discharge cap 58 are raised and lowered by a well-known cap-lifting-up mechanism so as to move toward and away from the recording head 61. The purging device 55 further includes a sucking pump, not shown in
The waste ink tray 56 is for receiving the ink ejected from the recording head 61 in what is called a flushing. Felts as ink absorbers are laid in the waste ink tray 56, and the ink ejected in the flushing is absorbed and held in the felts. Maintenances such as prevention of drying in the recording head 61 and removal of the air bubbles and/or mixed ink from the recording head 61 are thus performed using the purging device 55 and the waste in tray 56.
Not shown in the figures, the printer section 11 is provided with a cartridge mounting portion on which the ink cartridges storing ink of different colors of each other are mounted. The ink tubes 59 respectively corresponding to the ink of different colors are routed from the cartridge mounting portion to the carriage 62. The ink of different colors is supplied from the corresponding ink cartridges mounted on the cartridge mounting portion to the recording head 61 mounted on the carriage 62 via the corresponding ink tubes 59. The ink tubes 59 are formed of synthetic resin and have a flexibility so as to be flexed according to the reciprocation of the carriage 62.
Recording signals and the like are transmitted to the head control substrate of the recording head 61 from a main substrate constituting a control section, not shown, via a flat cable 60. It is noted that the main substrate is disposed on a front portion of the MFD 10, and thus not illustrated in
Switching Mechanism 70
There will be next explained the switching mechanism 70 which partly constituting the drive-power transmitting system. The switching mechanism 70 is for selectively transmitting the drive power of the two motors (i.e., the LF motor 65 and the ASF motor 66), to the plurality of the driven portions such as the first sheet-supply roller 25, the sucking pump of the purging device 55, the cap-lifting-up mechanism of the purging device 55, and the second sheet-supply roller 42. More specifically, the switching mechanism 70 is disposed on a right portion (in
The drive power of the LF motor 65 is inputted to one end (a left end in
The ASF motor 66 as the second drive source is disposed near the switching mechanism 70. The drive power of the ASF motor 66 is transmitted from an output shaft thereof to a second switching gear 72 via a second drive gear (not shown), whereby the second switching gear 72 is driven to be rotated. A thickness of the second drive gear is sufficiently large with respect to a range of slide of the second switching gear 72. Thus, in the slide range of the second switching gear 72, the second switching gear 72 and the second drive gear are always meshed with each other. An axis of the second switching gear 72 is parallel to that of the second drive gear, so that the second switching gear 72 is movable in a direction parallel to the axis of the second drive gear. The thickness of the second drive gear in an axial direction thereof corresponds to a range of the movement of the second switching gear 72. Thus, in the range of the movement of the second switching gear 72, the second drive gear and the second switching gear 72 are held to be meshed with each other.
As shown in
At an outside of the first switching gear 71 in the predetermined direction (more specifically, at a right side of the first switching gear 71 in
As shown in
The engaging member 75 includes a cylindrical boss 79 fitted on the cylindrical boss 76 of the input lever 74, and a slide guide 80 which projects from the cylindrical boss 79 in a radial direction thereof so as to form a Y-shape. The cylindrical boss 79 fitted on the cylindrical boss 76 of the input lever 74 is rotatable about the cylindrical boss 76 and slidable in the axial direction of the support shaft 73. One end portion of the cylindrical boss 79 which is nearer to the input lever 74 has a guide surface 81 being adjacent to a cutout of the cylindrical boss 79 and extending from an end face of the one end portion toward the other end portion 82 in a spiral manner. The guide surface 81 corresponds to two projected portions of the slide guide 80 in a peripheral direction of the support shaft 73. The end portion 82 of the cylindrical boss 79 has a tapered shape in which an inner diameter of the end portion 82 is smaller than an outer diameter of the cylindrical boss 76 of the input lever 74. This limits a position at which the cylindrical boss 79 is fitted on the cylindrical boss 76.
The slide guide 80 has the Y-shape so as to interpose the lever guide 83 as seen in the axial direction of the support shaft 73. The slide guide 80 is brought into contact with the lever guide 83, thereby limiting a rotation of the engaging member 75 relative to the cylindrical boss 76 of the input lever 74. Thus, the engaging member 75 is slid in the axial direction while maintaining a specific rotational posture of the engaging member 75 with respect to the cylindrical boss 76 of the input lever 74.
The guide surface 81 of the engaging member 75 is brought into contact with the rib 78 of the input lever 74. As not shown in the figures, the engaging member 75 is forced toward the input lever 74 (in a direction indicated by arrow 84A in
As shown in
As shown in
On an upstream edge of the guide hole 86 in the sheet feeding direction, a return guide 91 is provided. The return guide 91 has a shape like an inverted hook. That is, the return guide 91 projects upward in the vertical direction from the edge of the guide hole 86, horizontally extends downstream in the sheet feeding direction to a central portion of the guide hole 86, and extends downward in the vertical direction from an horizontally extended end of the return guide 91 such that the horizontally extended end is located below an upper end of the lever arm 77. The return guide 91 guides the lever arm 77 along a path through which the lever arm 77 passes when returning from the third guide position 90 to the first guide position 88.
As shown in
The cutout 94 of the guide piece 92 is engaged with the lever arm 77 when the lever arm 77 is located at the third guide position 90. When the lever arm 77 is moved from the second guide position 89 to the third guide position 90, the lever arm 77 is pivoted in a direction opposite to the direction indicated by the arrow 87, thereby being engaged with the cutout 94 of the guide piece 92 at the third guide position 90. The lever arm 77 is forced by the coil spring 95A in the direction indicated by the arrow 84A, and forced by the guide surface 81 of the engaging member 75 in the direction indicated by the arrow 87. These forces maintain the engagement of the lever arm 77 with the cutout 94.
When the guide piece 92 is moved with the carriage 62 in a direction indicated by arrow 96, the lever arm 77 engaged with the cutout 94 is moved in the direction indicated by the arrow 96 with the guide piece 92 by the force in the direction indicated by the arrow 84A. In this movement, the lever arm 77 is guided by the return guide 91 to move along an upstream edge of the guide hole 86 in the sheet feeding direction to a corner portion of the guide hole 86 which is located upstream of the first guide position 88 in the sheet feeding direction, so that the lever arm 77 is brought into contact with an edge portion of the corner portion, thereby being disengaged from the cutout 94. Then, the lever arm 77 is forced by the guide surface 81 of the engaging member 75 to be rotated in the direction indicated by the arrow 87, thereby being positioned at the first guide position 88. The input lever 74 is thus selectively moved to one of the first, second, and third guide positions 88, 89, 90 by a control for the reciprocation of the carriage 62. Further, the set of the first switching gear 71 and the second switching gear 72 is correspondingly and selectively moved to and positioned at one of the second, third, and first specific positions which are arranged in order in the axial direction. In other words, the switching-gear positioning mechanism is configured to position the set of the first switching gear 71 and the second switching gear 72 at a selected one of the first, second, and third specific positions relative to the transmission gears 101, 102, 103, for establishing transmission of the drive power to a selected one or ones of the driven portions which varies or vary depending upon the selected one of the first, second, and third specific positions.
As shown in
As shown in
Each of the first transmission gear 101 and the third transmission gear 103 has a thickness equal to or slightly larger than that of each of the first switching gear 71 and the second switching gear 72. It is noted that, in this MFD 10, the first switching gear 71 and the second switching gear 72 have almost the same thickness, and the thickness is a thickness in which each of the first switching gear 71 and the second switching gear 72 is not meshed with two or more of the transmission gears 101, 102, 103 at the same time. Also, in the present embodiment, where the term “thickness of the gear” is simply used, the term “thickness” means a dimension in an axial direction thereof (i.e., a right and left direction in
The bevel gear 104 is attached to the right side of the first transmission gear 101. The bevel gear 104 has an outer diameter larger than the first transmission gear 101 so as to provide a limiting surface 105 outwardly projecting from the first transmission gear 101 in a radial direction thereof between the bevel gear 104 and the first transmission gear 101. The first switching gear 71 is brought into contact with the limiting surface 105, thereby being limited from sliding and moving in the direction indicated by the arrow 84B from a position at which the first switching gear 71 is meshed with the first transmission gear 101. Thus, the first switching gear 71 and the first transmission gear 101 are held to be meshed with each other, and the input lever 74 and the engaging member 75 are separated from the first switching gear 71.
Each of the first transmission gear 101, the second transmission gear 102, and the third transmission gear 103 is for transmitting the drive power to a selected or a corresponding one or ones of the driven portions. More specifically, the first transmission gear 101 transmits the drive power of the LF motor 65 with the bevel gear 104 provided on the right side thereof to the sucking pump (the first driven portion) and so on in the purging device 55. The second transmission gear 102 selectively transmits, depending upon forward and reverse rotations thereof, the drive power of the ASF motor 66 to the pivoting mechanism (the fourth driven portion) of the path-switching portion 34 and the cap-lifting-up mechanism (the second driven portion) of the purging device 55. The third transmission gear 103 selectively, transmits, depending upon forward and reverse rotations thereof, the drive power of the ASF motor 66 to the first sheet-supply roller 25 and the second sheet-supply roller 42 (the third driven portions). The sucking pump of the purging device 55 and the cap-lifting-up mechanism are driven in relation to a maintenance of this MFD 10. It is noted that, in this MFD 10, a “the maintenance” of this MFD 10 does not always require the purging operation, and includes a capping operation in which the nozzles of the recording head 61 are capped. Further, “a feeding” performed by the MFD 10 includes a feeding of the recording sheets by the first sheet-supply roller 25 and the second sheet-supply roller 42 in addition to a feeding of the recording sheets by the sheet-feed roller 29, the sheet-discharge roller 31, and the switch back roller 35 upon the image recording operation.
As thus described, each of ones of the driven portions is assigned to a corresponding one of the first transmission gear 101, the second transmission gear 102, and the third transmission gear 103. As each of mechanisms for transmitting the drive power from a corresponding one of the first transmission gear 101, the second transmission gear 102, and the third transmission gear 103 to a corresponding one or ones of the driven portions, a well-known mechanism using gear trains, belts, or the like may be employed. However, this does not directly affect the scope and spirit of the present invention, and the detailed explanation thereof is dispensed with.
Operation of Switching Mechanism 70
Hereinafter, there will be explained, with reference to Table 1, an operation of the switching mechanism 70 in which are switched the meshes between the first switching gear 71 and the second switching gear 72, and the first transmission gear 101, the second transmission gear 102, and the third transmission gear 103
As shown in
As shown in
The second switching gear 72 is disengaged from the third transmission gear 103 and meshed with the second transmission gear 102 when the set of the first switching gear 71 and the second switching gear 72 is slid or moved from the second specific position to the third specific position. When the second switching gear 72 is disengaged from the third transmission gear 103 and meshed with the second transmission gear 102, a pressure between surfaces of the second switching gear 72 and the third transmission gear 103 is released by a control of the MFD 10 for slightly rotating the second drive gear in a reverse direction with respect to a direction in which the second drive gear has been rotated. Then, a slight forward and reverse rotations of the second switching gear 72 with respect to the second drive gear are alternately repeated in order to match rotational phases (i.e., rotational angles) of the second switching gear 72 and the second transmission gear 102. Thus, the rotational phases of the second switching gear 72 and the second transmission gear 102 are matched with each other, and the second switching gear 72 is slid or moved on the support shaft 73 by the elastic force of the coil spring 95B, so as to be disengaged from the third transmission gear 103 and meshed with the second transmission gear 102. The rotation of the first switching gear 71, and the forward and reverse rotations of the second switching gear 72 for releasing the pressure between the surfaces and for matching the rotational phases can be controlled independently of each other. That is, when the second switching gear 72 is forwardly and reversely rotated, the first switching gear 71 can be at rest and be rotated in one direction. Further, when the set of the first switching gear 71 and the second switching gear 72 is moved from the second specific position to the third specific position, the first switching gear 71 is not meshed with any of the first transmission gear 101, the second transmission gear 102, and the third transmission gear 103. Thus, a rotation of the first switching gear 71 does not need to be controlled for releasing a pressure between surfaces and for matching rotational phases.
The second transmission gear 102 transmits the drive power of the ASF motor 66 selectively to the cap-lifting-up mechanism of the purging device 55 and the pivoting mechanism of the path-switching portion 34. In other words, in a state in which the second transmission gear 102 and the second switching gear 72 are meshed with each other, the drive power of the ASF motor 66 is permitted to be transmitted to either of the second driven portion or the fifth driven portions (i.e., another driven portions). The first switching gear 71 and the second switching gear 72 are respectively rotated by the LP motor 65 and the ASF motor 66 independently of each other. Thus, at the third specific position, the path-switching operation of the path-switching portion 34 or the capping operation of the nozzle cap 57, and the sheet-feed operation in the first sheet-feed path 23 can be independently and easily controlled.
For example, in the two-sided recording, when the recording head 61 is to be capped while the feeding of the recording sheet is stopped in order to dry the ink, the carriage 62 is moved to a position just above the nozzle cap 57. In this operation, the guide piece 92 of the carriage 62 is brought into contact with the lever arm 77, whereby the lever arm 77 is moved to the third guide position 90, but, as will be described below, since the second switching gear 72 is held to be meshed with the second transmission gear 102, the nozzle cap 57 can be lifted up by the drive power of the ASF motor 66. The first switching gear 71 can be meshed with the first transmission gear 101 when the lever arm 77 is moved to the third guide position 90. Whether the first switching gear 71 can be meshed with the first transmission gear 101 or not depends upon whether rotational phases of the first switching gear 71 and the first transmission gear 101 are matched with each other or not when the feeding of the recording sheet is stopped. However, since the LF motor 65 is stopped while the feeding of the recording sheet is stopped, even if the first switching gear 71 is meshed with the first transmission gear 101 by being slid on the support shaft 73, the first switching gear 71 can be disengaged from the first transmission gear 101 by being slid on the support shaft 73, without releasing of pressure between surfaces of the first switching gear 71 and the first transmission gear 101, by the movement of the lever arm 77 to the first guide position 88 or the second guide position 89 after the mesh of the first switching gear 71.
The carriage 62 is moved to the image recording area A1 before the recording sheet is again fed after the completion of the drying of the ink. Accordingly, the guide piece 92 moves the lever arm 77 from the third guide position 90 to the first guide position 88. When the lever arm 77 is moved to the first guide position 88, the second switching gear 72 is meshed with the third transmission gear 103. That is, the releasing of the pressure between the surfaces and the matching of the rotational phases are performed by controlling of the ASF motor 66, so that the second switching gear 72 is meshed with the third transmission gear 103. Further, the carriage 62 is moved to the maintenance area M1, so that the guide piece 92 moves the lever arm 77 from the first guide position 88 to the second guide position 89. In accordance with this movement of the lever arm 77, the set of the first switching gear 71 and the second switching gear 72 is returned to the third specific position, so that the second switching gear 72 is disengaged from the third transmission gear 103 to be meshed with the second transmission gear 102. Also in these operations, the releasing of the pressure between the surfaces of the second switching gear 72 and the third transmission gear 103 and the matching of the rotational phases of the second switching gear 72 and the second transmission gear 102 are performed by the controlling of the ASF motor 66 in a manner similar to that described above. On the other hand, after the first switching gear 71 is disengaged from the first transmission gear 101, the first switching gear 71 is not meshed with any of the transmission gears 101, 102, 103. Thus, the matching of the rotational phases does not need to be performed by the LF motor 65 which is for feeding the recording sheets. Consequently, the switching mechanism 70 is easily controlled in transmitting the drive power to the selected one or ones of the driven portions.
As shown in
At the first specific position, the first switching gear 71 is meshed with the first transmission gear 101. When the first switching gear 71 is meshed with the first transmission gear 101, a slight forward and reverse rotations of the first switching gear 71 with respect to the first drive gear are alternately repeated in order to match rotational phases of the first switching gear 71 and the first transmission gear 101. Thus, the rotational phases of the first switching gear 71 and the first transmission gear 101 are matched with each other, so that the first switching gear 71 is slid on the support shaft 73 by the elastic force of the coil spring 95B to be meshed with the first transmission gear 101. The rotation of the second switching gear 72 and the forward and reverse rotations of the first switching gear 71 for matching the rotational phases can be controlled independently of each other. That is, when the first switching gear 71 is forwardly and reversely rotated, the second switching gear 72 can be at rest and be rotated in one direction.
Further, at the first specific position, the second switching gear 72 is held to be meshed with the second transmission gear 102 while being moved or slid on the support shaft 73. That is, when the set of the first switching gear 71 and the second switching gear 72 is moved from the third specific position to the first specific position, the second switching gear 72 is slid on the support shaft 73 while being meshed with the second transmission gear 102. Thus, the rotation of the second switching gear 72 does not need to be controlled for matching the rotational phases.
The carriage 62 can be reciprocated in the maintenance area M1 without moving the set of the first switching gear 71 and the second switching gear 72 which is positioned at the first specific position. The drive power of the LF motor 65 is transmitted to the sucking pump of the purging device 55 and so on via the first switching gear 71 and the first transmission gear 101, so that operations relating to the maintenance of the MFD 10 are performed On the other hand, the drive power of the ASF motor 66 is transmitted to the cap-lifting-up mechanism of the purging device 55 via the second switching gear 72 and the second transmission gear 102, so that the capping operation of the recording head 61 is performed.
Effects of this MFD 10
In this MFD 10, the first switching gear 71 and the second switching gear 72 are supported by the support shaft 73 so as to be slidable in the predetermined direction in which the carriage 62 is reciprocated. Further, the guide piece 92 of the carriage 62 is brought into contact with the input lever 74, whereby the first switching gear 71 and the second switching gear 72 are moved against the elastic force of the coil spring 95A, so as to be selectively positioned at one of the first, the second, and the third specific position. Thus, a load received by the carriage 62 when the first switching gear 71 and the second switching gear 72 are moved from one to another of the first, the second, and the third specific, position can be reduced. Consequently, a smaller-sized CR motor can be employed as a drive source for reciprocating the carriage 62, thereby reducing power consumption.
In accordance with the switch of the positions of the set of the first switching gear 71 and the second switching gear 72, when the first switching gear 71 is meshed with the first transmission gear 101, the second switching gear 72 is maintained to be meshed with the second transmission gear 102. Thus, a state can be taken in which the first switching gear 71 is driven to be rotated to match the rotational phases of the first switching gear 71 and the first transmission gear 101 while the second switching gear 72 is held to be stopped. Further, when the second switching gear 72 is disengaged from the third transmission gear 103 to be meshed with the second transmission gear 102, the first switching gear 71 is located at a position corresponding to the spacer 106. Thus, a state can be taken in which the second switching gear 72 is driven to be rotated to release the pressure between the surfaces of the second switching gear 72 and the third transmission gear 103 and matching the phases of the second switching gear 72 and the second transmission gear 102 while the first switching gear 71 is held to be stopped. Consequently, since flexibility of the control of the respective rotations of the first switching gear 71 and the second switching gear 72 is increased, the meshes of the gears for transmitting the drive power of the two motors (i.e., the LF motor 65 and the ASF motor 66) to the selected one or ones of the driven portions can be switched at a suitable timing without driving both of the two motors. Also, the matching of the first switching gear 71 and the matching of the second switching gear 72 do not need to be performed at the same time, thereby reducing a time for controlling the respective rotations of the first switching gear 71 and the second switching gear 72, and thereby improving a reliability of the drive-power transmitting system.
In this MFD 10, the carriage 62 can be reciprocated in the maintenance area M1 without moving the set of the first switching gear 71 and the second switching gear 72 which is positioned at the first specific position. Further, the carriage 62 can be reciprocated in the image recording area A1 without moving the set of the first switching gear 71 and the second switching gear 72 which is positioned at the second specific position. When the set of the first switching gear 71 and the second switching gear 72 is positioned at the first specific position, the drive power is transmitted via the switching mechanism 70 for performing the maintenance of the MFD 10. When the set of the first switching gear 71 and the second switching gear 72 is second, and the third specific position are set in the switching mechanism 70, but a number of the specific positions may be changed without departing from the scope and spirit of the invention. Further, in the above-described embodiment, the spacer 106 is provided between the first transmission gear 101 and the second transmission gear 102, but another transmission gear different from the transmission gears 101, 102, 103 may be disposed at the position corresponding to the position at which the spacer 106 is provided. Furthermore, in the above-described embodiment, each of a positional relationship of the first switching gear 71 and the second switching gear 72, and a positional relationship of the first transmission gear 101, the second transmission gear 102, and the third transmission gear 103 is relative, and thus each of the positional relationships may be changed. Furthermore, it should be understood that the driven portions to which the drive power is transmitted via the drive-power transmitting system are not limited to those of the above-described embodiment.
Number | Date | Country | Kind |
---|---|---|---|
2007-198856 | Jul 2007 | JP | national |
2007-199158 | Jul 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5926193 | Umeda | Jul 1999 | A |
6015202 | Hiramatsu et al. | Jan 2000 | A |
6161917 | Igarashi et al. | Dec 2000 | A |
20050179713 | Waller et al. | Aug 2005 | A1 |
20050212883 | Okamoto | Sep 2005 | A1 |
20070048058 | Koga et al. | Mar 2007 | A1 |
20070048059 | Asada et al. | Mar 2007 | A1 |
20070057447 | Asada et al. | Mar 2007 | A1 |
20090256874 | Samoto et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
0476666 | Mar 1992 | EP |
1020296 | Jul 2000 | EP |
1769931 | Apr 2007 | EP |
2007090761 | Apr 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20090035018 A1 | Feb 2009 | US |