The present application is based on Japanese Patent Application No. 2006-127088 filed on Apr. 28, 2006, the contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to an image recording apparatus including a recording head that records an image on a recording medium, and a carriage that carries the recording head and reciprocates in opposite directions intersecting a feeding direction in which the recording medium is fed, and particularly to such an image recording apparatus in which an ink supply tube that supplies an ink to the recording head is connected to the carriage such that the ink supply tube can follow the reciprocation of the carriage.
2. Discussion of Related Art
As an image recording device that ejects, based on an input signal, droplets of ink to record an image on a recording medium, there is known such a device that includes a recording head having an actuator (e.g., a piezoelectric element, an electrostriction element, or a heating element), and supplies ink to the actuator so that when the actuator is deformed or heated based on an input signal, the ink is locally pressed or vaporized to eject droplets of the ink.
For example, an image recording device that is so-called a serial printer includes a carriage that reciprocates in opposite directions perpendicular to a direction of feeding of a recording medium, and a recording head that is mounted on the carriage. Each time the recording medium is fed by an incremental amount corresponding to one line, the carriage reciprocates to record the line. Ink is supplied to the recording head from an ink cartridge separate from the carriage, via a flexible ink supply tube that is connected to the recording head mounted on the carriage. The ink supply tube is long enough to follow the reciprocation of the carriage, and is provided between the ink cartridge and the carriage such that the ink supply tube is flexed to form a generally U-shaped curved portion. This image recording device is disclosed by any of Japanese Patent Application Publications Nos. 10-217496, 2003-11340, 2005-35033, 63-154354, and 2005-88524.
As shown in
Meanwhile, a flexible, electrically conductive cable that is so-called a flat cable is connected, at one end thereof, to the carriage 90 so as to control the recording head. The other end of the flat cable is connected to, e.g., a main substrate. Like the above-described ink tube 91, the flat cable is led from the carriage 90, and follows the reciprocation of the carriage 90 while forming a generally U-shaped curved portion. This image recording device is disclosed by, e.g., Japanese Patent Application Publication No. 6-320835.
As explained above, the flat cable and the ink tube have such flexibilities that assure that those elements can follow the reciprocation of the carriage while changing the diameters and/or positions of the U-shaped curved portions thereof. Accordingly, the respective intermediate portions of the flat cable and the ink tube, located between the carriage and the respective midway portions of those elements fixed to the housing of the image recording device, may more or less sag downward. In particular, in the case where the flat cable and the ink tube are led horizontally from the carriage, there is a strong tendency that those elements sag downward due to their self weights and/or the weight of the ink. In addition, in a full-color-image recording device, a plurality of sorts of inks corresponding to a plurality of colors are supplied to a recording head mounted on a carriage via a plurality of ink supply tubes, respectively. Although the ink supply tubes follow the reciprocation of the carriage while individually changing their shapes, the changing of those shapes may be out of order, i.e., random.
In the case where a sufficiently broad space cannot be provided around a flat cable and/or an ink supply tube, in view of the need to reduce a height and/or an overall size of an image recording device, reciprocation of a carriage may result in enlarging respective curved portions of the flat cable and the ink tube so that the enlarged curved portions may be brought into contact with one or more peripheral members and even be damaged by the same. The damaging of the flat cable may cause breakage of one or more electrically conductive lines contained therein; and the damaging of the ink supply tube may cause leakage of ink. In addition, when the flat cable and the ink tube are contacted with the peripheral members, a load may be applied to the carriage so that the speed of movement of the carriage may be made unstable and accordingly a quality of images recorded by the recording head may be lowered.
The present invention has been developed in the above-explained background. It is therefore an object of the present invention to solve at least one of the above-indicated problems. It is another object of the present invention to provide an image recording apparatus that includes a carriage reciprocateable in opposite directions intersecting a feeding direction in which a recording medium is fed and that can prevent sagging of an ink supply tube that follows the carriage and/or enlarging of a curved portion of the ink supply tube. It is another object of the present invention to provide an image recording apparatus that includes a plurality of ink supply tubes and that can prevent the ink supply tubes from individually changing their shapes randomly.
The above objects may be achieved by the present invention. According to the present invention, there is provided an image recording apparatus, comprising a housing; a recording head which ejects droplets of at least one sort of ink and thereby records an image on a recording medium; a carriage which is provided in the housing and which carries the recording head and reciprocates in opposite directions intersecting a feeding direction in which the recording medium is fed, wherein the carriage includes a tube connection portion; at least one ink supply tube which is connected, at one end thereof, to the tube connection portion of the carriage so as to supply the at least one sort of ink to the recording head, and is fixed, at a fixed portion thereof, to the housing such that an intermediate portion thereof located between the one end thereof and the fixed portion thereof forms a first curved portion that is convex in one of the opposite directions, wherein the at least one ink supply tube has a first flexibility assuring that when the carriage reciprocates, the at least one ink supply tube follows reciprocation of the carriage while the first curved portion thereof changes a shape thereof a pivotable support member which is supported by the housing such that the pivotable support member is pivotable about a supporting point, wherein the pivotable support member includes an arm portion which extends from the supporting point and has a first support portion that supports a portion of the first curved portion of the at least one ink supply tube; and a biasing device which biases the pivotable support member in a biasing direction to cause the pivotable support member to pivot in a direction to decrease a radius of curvature of the first curved portion of the at least one ink supply tube.
In the present image recording apparatus, an appropriate portion of the first curved portion of the ink supply tube is supported by the first support portion of the pivotable support member that is pivotable about the supporting point. Thus, the ink supply tube can follow the reciprocation of the carriage while the tube is prevented from sagging downward. In addition, since the pivotable support member is biased by the biasing device in the direction to reduce a diameter of the first curved portion of the ink supply tube, the curved portion is flexed in the direction to reduce the radius of curvature thereof. Thus, the swelling of the curved portion can be effectively restrained. The recording head mounted on the carriage may eject, at appropriate timings, the droplets of the ink based on the recording-related signal transmitted from, e.g., a control substrate. The first curved portion of the ink supply tube may have a generally U-shaped configuration in its plan view, and the ink tube may follow the reciprocation of the carriage while changing the radius of curvature of the U-shaped curved portion thereof. A biasing force of the biasing device is pre-selected at a value assuring that the reciprocation of the carriage is not adversely affected and the ink supply tube is not damaged.
The above and optional objects, features, and advantages of the present invention will be better understood by reading the following detailed description of the preferred embodiments of the invention when considered in conjunction with the accompanying drawings, in which:
Hereinafter, there will be described preferred embodiments of the present invention by reference to the drawings.
When the MFD 1 functions as the printer, the printer portion 2 may be connected to an external information processor (not shown) such as a computer, so that the printer portion 2 may record, based on printing data (e.g., image data or document data) supplied from the computer, an image or a document on a recording medium such as a recording sheet. In addition, the MFD 1 may be connected to a digital camera, so that the printer portion 2 may record, based on image data supplied from the digital camera, an image on a recording sheet. Moreover, the MFD 1 may include a data-storage-medium receiving portion (e.g., a slot portion 5 shown in
As shown in
The scanner portion 3, provided in the upper portion of the MFD 1, is constituted by a so-called flat-bed scanner. As shown in
The MFD 1 has, in a front and upper portion thereof, an operation panel 4 that is manually operable by a user for operating the printer portion 2 and the scanner portion 3. The operation panel 4 includes various operation keys and a liquid-crystal display (LCD). The MFD 1 operates according to commands inputted through the operation panel 4. In the case where the MFD 1 is connected to the external computer, the MFD 1 may operate according to commands sent from the computer via a printer driver or a scanner driver. The MFD 1 has, in an upper and left portion of the front surface thereof, the slot portion 5 into which each of various small-size memory cards each as a data-storage medium can be inserted. When the user operates the operation panel 4 in an appropriate manner, image data stored by the small-size memory card inserted in the slot portion 5 are read out, so that the LCD of the panel 4 displays images represented by the image data. In addition, the printer portion 2 can be controlled to record, on a recording sheet or sheets, an image or images that is or are selected, through the operation of the keys of the panel 4, from the images displayed by the LCD.
Hereinafter, the internal construction of the MFD 1, in particular, the printer portion 2 will be described by reference to
As shown in
The sheet-supply arm 26 is supported by an axis member 26a, such that the arm 26 is pivotable about the axis member 26a. Thus, the sheet-supply arm 26 is swingable upward and downward about the axis member 26a. As shown in
Except for a portion of the sheet-feed path 23 where the image recording unit 24 is provided, the path 23 is defined by an outer guide surface and an inner guide surface that are opposed to each other and are distant from each other by an appropriate distance. For example, a curved portion 17 of the sheet-feed path 23 that is located in a rear end portion of the MFD 1 is constituted by an outer guide member 18 and an inner guide member 19 that are each fixed to a main frame 2b (i.e., a portion of a housing) of the MFD 1. In the curved portion 17 of the sheet-feed path 23, sheet-feed rollers 16 are provided such that the sheet-feed rollers 16 are freely rotatable about respective-axis lines parallel to a widthwise direction of the path 23, i.e., the direction perpendicular to the drawing sheet of
As shown in
The first guide rail 43 located on an upstream side of the second guide rail 44 as seen in the sheet-feed direction has a flat shape whose length as measured in a widthwise direction of the sheet-feed path 23 (.e., the leftward and rightward directions in
The second guide rail 44 located on a downstream side of the first guide rail 43 in the sheet-feed direction also has a flat shape whose length as measured in the widthwise direction of the sheet-feed path 23 is substantially equal to that of the first guide rail 43. Another low-friction tape 40 is adhered to an upper surface of the second guide rail 44, i.e., more specifically described, along a downstream-side edge portion thereof in the sheet-feed direction. This second low-friction tape 40 is for lowering the friction produced when the carriage 38 slides on the second guide rail 44. A downstream-side end portion of the carriage 38 is placed on the second low-friction tape 40, and is slid in a lengthwise direction of the tape 40. The second guide rail 44 has, as an upstream-side end portion thereof, an upright wall 45 that extends upward at a substantially right angle from a horizontal bottom portion thereof The carriage 38 has a holding portion (e.g., a pair of rollers) that holds the upright wall 45 such that the carriage 38 is slideable along the wall 45. Thus, the carriage 38 is accurately positioned relative to the guide rails 43, 44 with respect to the sheet-feed direction, such that the carriage 38 is slideable in directions that intersect the sheet-feed direction, e.g., the opposite directions that are perpendicular to the sheet-feed direction. In short, the carriage 38 is supported by the two guide rails 43, 44 such that the carriage 38 is slideable thereon, i.e., is reciprocateable in the opposite directions intersecting the sheet-feed direction while being guided by the upright wall 45 of the second guide rail 44. Although not shown in
A carriage driving device 46 is provided on the downstream-side guide rail 44. The carriage driving device 46 includes a drive pulley 47 and a driven pulley 48 that are respectively provided around widthwise opposite ends of the sheet-feed path 23, and an endless, annular timing belt 49 that is wound on the two pulleys 47, 48 and has teeth on an inner surface thereof. An axis member of the drive pulley 47 is connected to a carriage (CR) motor 73 (
A portion of the timing belt 49 is fixed to a bottom portion of the carriage 38. Therefore, when the timing belt 49 is circulated, the carriage 38 is reciprocated on the two guide rails 43, 44 while being guided by the upright wall 45. Since the inkjet recording head 39 is mounted on the carriage 38, the recording head 39 can be reciprocated in the widthwise direction of the sheet-feed path 23, i.e., the main scanning direction. The downstream-side guide rail 44 is equipped with an encoder strip 50 -as a portion of a linear encoder 77 (
The encoder strip 50 has an optical pattern including a plurality of light transmitting portions that each transmit light, and a plurality of light blocking portions that each blocks light and are alternate with the light transmitting portions at a predetermined pitch in the lengthwise direction of the strip 50. A transmission-type optical sensor 35 is provided, on an upper surface of the carriage 38, at a position corresponding to the encoder strip 50. The optical sensor 35 is reciprocated with the carriage 38 along the encoder strip 50, while detecting the optical pattern of the strip 50. The recording head 39 is equipped with a head control substrate, not shown, that controls an ink ejecting operation of the head 39. The head control substrate outputs pulse signals based on detection signals supplied from the optical sensor 35. Based on the pulse signals, a position and a velocity of the carriage 38 are detected or recognized and the reciprocation of the carriage 38 is controlled. Since the head control substrate is located under a top cover of the carriage 38, the substrate is not shown in
As shown in
As shown in
The waste-ink tray 84 is for collecting the ink ejected by the recording head 39 when the head 39 performs an idling operation, i.e., a so-called “flushing” operation. The waste-ink tray 84 is provided, on an upper surface of the platen 42, at a position within the reciprocation range of the carriage 38 but outside the image-record range of the recording head 39. The waste-ink tray 84 is equipped with a woven felt that absorbs and holds the ink flushed by the recording head 39. Those maintenance devices cooperate with each other to perform maintenance operations on the recording head 39; such as removal of air bubbles and/or mixed inks, or prevention of drying of inks.
As shown in
Each of the ink tubes 41 is formed of a synthetic resin to be straight in its original shape. Each ink tube 41 has an appropriate degree of rigidity (.e., flexural rigidity) to keep its straight shape. On the other hand, each ink tube 41 has such a flexibility that when an external force is applied to the tube 41, the tube 41 is flexed, and additionally has such an elasticity that when the external force is removed, the tube 41 is returned to its original straight shape. Therefore, as the carriage 38 moves, each ink tube 41 changes its shape to follow the movement of the carriage 38. As shown in
As shown in
Respective midway portions of the four ink tubes 41 that are fixed by the first fixing clip 36 to the housing 2b of the printer portion 2 are arranged such that those midway portions are superposed on each other in a vertical direction, i.e., a direction perpendicular the drawing sheet of
Respective lengths of the respective intermediate portions of the four ink tubes 41, located between the fixing clip 36 and the carriage 38, are substantially equal to each other. A most upstream one 41a of the four ink tubes 41a, 41b, 41c, 41d as seen in the sheet-feed direction at the carriage 38 is an uppermost one of the four tubes 41a, 41b, 41c, 41d as seen in the vertical direction at the fixing clip 36. The ink tube 41b adjacent to the most upstream ink tube 41a at the carriage 38 is adjacent to the uppermost ink tube 41a at the fixing clip 36. This is repeated, and eventually the four ink tubes 41a, 41b, 41c, 41d are arranged, at the tube connection portion 140, in the order of description in the sheet-feed direction, i.e., in the direction from the upstream side toward the downstream side, and are arranged, at the fixing clip 36, in the order of description in the vertical direction, i.e., in the direction from the upper side toward the lower side. As described above, the respective entire lengths of the four ink tubes 41 are designed to be substantially equal to each other. Therefore, the respective intermediate portions of the four ink tubes 41 are curved such that respective centers of the respective U-shaped curves of those intermediate portions are somewhat offset from each other in the sheet-feed direction, owing to the horizontal arrangement of the four tubes 41 at the carriage 38. Thus, the respective U-shaped curved portions of the four ink tubes 41 are arranged in an oblique direction from the upper side toward the lower side, so that when the intermediate portions of the four tubes 41 follow the movement of the carriage 38 while changing their shapes, the interference of the intermediate portions with each other is effectively restrained. In the present embodiment, the four ink tubes 41 are employed. However, in the case where an increased number of ink tubes are employed, those ink tubes may be arranged in the same manner as described above. The total number of ink tubes employed may be changed, as needed, depending upon the total number of inks used. For example, in the case where the present invention is applied to a monochromatic-image recording apparatus wherein only a black ink is used, only one ink tube is employed.
The MFD 1 operates under control of a control portion 64 (
The flat cable 85 has such a flexibility that when the carriage 38 reciprocates in the main scanning direction, the cable 85 flexes and follows the movement of the carriage 38 in a state in which opposite major surfaces of the thin belt-like flat cable 85 are vertical, that is, a perpendicular to those major surfaces is horizontal. As shown in
As described above, the other end portion of the flat cable 85, fixed to the carriage 38, is electrically connected to the head control substrate (not shown) mounted on the carriage 38. The one end portion of the flat cable 85, fixed to the second fixing clip 86, is further extended and is electrically connected to the main substrate. The generally U-shaped curved portion of the flat cable 85 is not fixed to anything, so that like the ink tubes 41, the intermediate portion of the flat cable 85 may follow the reciprocation of the carriage 38 while changing its shape. The ink tubes 41 and the flat cable 8 that follow the reciprocation of the carriage 38 while changing their shapes, are supported by a pivotable support member 100. A construction of the pivotable support member 100 and a construction of a supporting device that pivotally supports the pivotable support member 100 will be described in detail, later.
On a front side of the ink tubes 41 and the flat cable 85, there is provided a restrictor wall 37 that is elongate in the reciprocation direction of the carriage 38, i.e., the leftward and rightward directions in
More specifically described, the four ink tubes 41 extend from the first fixing clip 36 along the restrictor wall 37, while abutting on the vertical rear-side surface of the wall 37. Thus, the four ink tubes 41 are effectively prevented from swelling in a frontward direction, i.e., a direction away from the carriage 38. In the state in which the four ink tubes 41 are in abutment on the restrictor wall 37 as shown in
The first fixing clip 36 is provided at a substantially middle position in the lengthwise direction of the MFD 1, and fixes the four ink tubes 41 such that the four tubes 41 extend in a direction having a component toward the restrictor wall 37. That is, the vertical rear-side surface of the restrictor wall 37 and the direction in which the four ink tubes 41 extend from the first fixing clip 36 cooperate with each other to contain, in a plan view, an angle smaller than 90 degrees, preferably, 45 degrees. As described above, each ink tube 41 has appropriate degrees of rigidity (flexural rigidity), flexibility, and elasticity. Therefore, if the four ink tubes 41 extend from the first fixing clip 36 with an appropriate angle relative to the restrictor wall 37, the four tubes 41 are pressed against the vertical surface of the restrictor wall 37. Thus, within the reciprocation range in which the carriage 38 reciprocates, a range in which the ink tubes 41 are restricted by the restrictor wall 37 increases and accordingly a range (.e., an area) in which the respective curved portions of the ink tubes 41 swell in the rearward direction, i.e., a direction toward the carriage 38 decreases.
The second fixing clip 86 is provided at a position that is substantially middle in the lengthwise direction of the MFD 1 and is nearer to the respective centers of the curved portions of the ink tubes 41 than the first fixing clip 36. The second fixing clip 86 fixes the flat cable 85 such that the cable 85 extends in a direction having a component toward the restrictor wall 37. That is, the vertical rear-side surface of the restrictor wall 37 and the direction in which the flat cable 85 extends from the second fixing clip 85 cooperate with each other to contain, in a plan view, an angle smaller than 90 degrees, preferably, 45 degrees. As described above, the flat cable 85 has not only an appropriate degree of flexibility but also an appropriate degree of rigidity (flexural rigidity). Therefore, if the flat cable 85 extends from the second fixing clip 86 with an appropriate angle relative to the restrictor wall 37, the cable 85 is pressed against the vertical surface of the restrictor wall 37, indirectly via the ink tubes 41. Thus, within the reciprocation range of the carriage 38, a range in which the flat cable 85 is restricted by the restrictor wall 37 increases and accordingly a range (i.e., an area) in which the curved portion of the flat cable 85 swells in the rearward direction, i.e., a direction toward the carriage 38 decreases. Whether the flat cable 85 is pressed against the restrictor wall 37, directly or indirectly, depends on a relative-positional relationship between the four ink tubes 41 and the flat cable 85. Therefore, in the case where the relative-positional relationship between the ink tubes 41 and the flat cable 85, employed in the present embodiment, is reversed, the flat cable 85 is directly pressed against the restrictor wall 37, and the ink tubes 41 are indirectly pressed against the restrictor wall 37 via the flat cable 85.
Each of the cavities 55 communicates with a corresponding one of the nozzles 53, and each array of cavities 55 communicates with a common manifold 56. More specifically described, four arrays of cavities 55 communicate with four manifolds 56, respectively, that temporarily hold the four sorts of inks C, M, Y, Bk, respectively. On an upstream side of each of the four manifolds 56, there is formed a buffer tank 57. That is, the four buffer tanks 57 temporarily accommodate the four inks C, M, Y, Bk, respectively. Each of the four buffer tanks 57 is supplied with a corresponding one of the four inks C, M, Y, Bk from a corresponding one of the four ink tubes 41a, 41b, 41c, 41d via a corresponding one of four ink-supply inlets 58. Since the inks C, M, Y, Bk are temporarily accommodated by the buffer tanks 57, air bubbles that have been produced in the ink tubes 41 or elsewhere are captured and are prevented from entering the manifolds 56 and the cavities 56. The air bubbles captured in the buffer tanks 57 are discharged or sucked by a pump device (not shown) via respective air-discharge outlets 59. On the other hand, the inks C, M, Y, Bk supplied from the buffer tanks 57 are distributed to the cavities 55 via the manifolds 56.
Thus, the inks C, M, Y, Bk supplied from the ink cartridges via the ink tubes 41a, 41b, 41c, 41d flow to the cavities 55 through respective ink channels including the buffer tanks 57 and the manifolds 56. The inks C, M, Y, Bk supplied through the ink channels are ejected in the form of fine droplets from the nozzles 53 upon deformation of the piezoelectric elements 54.
As shown in
Since the spur roller 63 is pressed on the recording sheet having the images thereon, an outer circumferential surface of the spur roller 63 has a plurality of projections so as not to deteriorate the images recorded on the sheet. The spur roller 63 is movable or slideable toward and away from the discharge roller 62, and is biased by a coil spring (not shown) so as to be pressed on the same 62. When the recording sheet reaches a pinching or nipping point of the combination of the discharge roller 62 and the spur roller 63, the spur roller 63 is forcedly retracted from the discharge roller 62 against the biasing force of the coil spring, by a distance corresponding to the thickness of the recording sheet, so that the spur roller 63 cooperates with the discharge roller 62 to nip the recording sheet. Thus, the rotation force of the discharge roller 62 is reliably transmitted to the recording sheet. The above-indicated pinch roller paired with the feed roller 60 has a construction similar to that of the spur roller 63, and cooperates with the feed roller 60 to nip the recording sheet and reliably transmit the rotation force to the same.
The ROM 66 stores, e.g., control programs used to control the various operations of the MFD 1. The RAM 67 is used as a memory area or an operation area that temporarily stores various sorts of data needed for the CPU 65 to implement the above-indicated control programs. The EEPROM 68 stores various pre-set data and flags that should be kept after the MFD 1 is powered off.
The ASIC 70 produces, according to a command supplied from the CPU 65, a phase drive signal to drive the LF motor 71, and supplies the signal to a driver circuit 72 to drive the LF motor 71 and thereby control the rotation thereof
The driver circuit 72 drives the LF motor 71 that is connected to the sheet-supply roller 25, the feed roller 60, the discharge roller 62, and the purge device 51. Based on the output signal supplied from the ASIC 70, the driver circuit 72 produces an electric signal to drive the LF motor 71. In response to the electric signal, the LF motor 71 is rotated and the rotation force of the motor 71 is transmitted to those elements 25, 6062, 51 via respective well-known transmission devices each including gears and a drive shaft.
The ASIC 70 additionally produces, according to a command supplied from the CPU 65, a phase drive signal to drive the CR motor 73, and supplies the signal to a driver circuit 74 to drive the CR motor 73 and thereby control the rotation thereof.
The driver circuit 74 drives the CR motor 71. Based on the output signal supplied from the ASIC 70, the driver circuit 74 produces an electric signal to drive the CR motor 73. In response to the electric signal, the CR motor 73 is rotated and the rotation force of the motor 73 is transmitted to the carriage 38 via the carriage driving device 46, so that the carriage 38 is reciprocated in the main scanning direction. Thus, the control portion 64 controls the reciprocation of the carriage 38.
A driver circuit 75 is for driving the ink-jet recording head 39 at appropriate timings to eject, from appropriate nozzles 53 thereof, droplets of the inks toward the recording sheet. Based on a driving control procedure indicated by the CPU 65, the ASIC 70 produces an output signal to drive and control the recording head 39. The driver circuit 75 is provided in the head control substrate, and the flat cable 85 transmits signals from the main substrate constituting the control portion 64, to the head control substrate.
The ASIC 70 is coupled with the rotary encoder 76 that detects the amount of rotation of the feed roller 60, and also with the linear encoder 77 that detects the position of the carriage 38. When the MFD 1 is powered on, the carriage 38 is moved to an initial position provided at one of the lengthwise opposite ends of the pair of guide rails 43, 44, so that the position detected by the linear encoder 77 is initialized. When the carriage 38 is moved from the initial position on the guide rails 43, 44, the optical sensor 35 mounted on the carriage 38 detects the optical pattern of the encoder strip 50 and produces a pulse signal, so that based on a total number of the pulses of the pulse signal, the control portion 64 can recognize an amount of movement of the carriage 38. The control portion 64 controls, based on the thus obtained movement amount of the carriage 38, the rotation of the CR motor 73 and thereby controls the reciprocating movement of the carriage 38.
The ASIC 70 is additionally coupled with the scanner portion 3; the operation panel 18 that is manually operable for inputting user's commands to the MFD1; the slot portion 19 in which various small-size memory cards can each be inserted; and a parallel interface 78 and a USB interface 79 for communicating data with an external information device such as a personal computer via a parallel cable and a USB cable, respectively. Moreover, the ASIC 70 is coupled with an NCU (network control unit) 80 and a modem 81 that cooperate with each other to enable the MFD 1 to function as a facsimile machine.
Hereinafter, there will be described in detail the pivotable support member 100 that supports the four ink tubes 41 and the flat cable 85.
As shown in
The main arm portion 103 and the auxiliary arm portion 106 are bent substantially perpendicularly to the shaft portion 102, such that the main arm portion 103 and the auxiliary arm portion 106 are substantially parallel to each other. The supporting device that pivotally supports the pivotable support member 100 will be described in detail, later. In short, as shown in
The upper end portion of the main arm portion 103 that extends horizontally provides the support portion 104 that supports a lower end of the flat cable 85 taking the posture that the opposite major surfaces of the cable 85 extend vertically. When the flat cable 85 follows the reciprocation of the carriage 38 while changing its shape, the cable 85 is slideable on the support portion 104. That is, a length of the main arm portion 103 the upper end of which provides the support portion 104 is so selected as to assure that when the carriage 38 is reciprocated within the prescribed range, the support portion 104 can support the flat cable 85 such that the cable 85 is slideable on the support portion 104.
The holding portion 105 as the free end portion of the main arm portion 103 is for holding the four ink tubes 41 (41a, 41b, 41c, 41d). The holding portion 105 includes a loop 107 having a generally rectangular shape that is elongate in a vertical direction; a base portion 108 projecting outward from the loop 107; and a rounded portion 109 as a free end portion of the base portion 108. The four ink tubes 41 are passed through the loop 107 of the holding portion 105. Inner length (height) and width of the loop 107 have such a dimensional relationship with respective outer diameters of the four ink tubes 41 that the order of arrangement of the four tubes 41 does not change in the loop 107 and the four tubes 41 are slideable relative to the loop 107 in a direction of extension of the tubes 41. For example, in the case where each of the respective outer diameters of the four ink tubes 41 is expressed as A and the inner height and width of the loop 107 are expressed as H and L, respectively, the above-indicated dimensional relationship is expressed as follows: A≦L<2A, and 4A≦H. The loop 107 is formed by first bending an end portion of a steel wire rod such that the end portion extends upward from the main arm portion 103, and additionally bending the end portion to have an elongate rectangular shape. The base portion 108 of the holding portion 105 extends in substantially the same direction as the direction of extension of the main arm portion 103. A free end portion of the base portion 108 is first bent upward and then is rounded downward like an arc to form the rounded portion 109.
As shown in
The four ink tubes 41 are passed through the loop 107 of the holding portion 105, and are supported by the base portion 108. Thus, the respective lengthwise intermediate portions of the four ink tubes 41 are slideably held by the holding portion 105. The loop 107 surrounds the four ink tubes 41, and holds the four tubes 41 in the same vertical arrangement as that in which the first fixing clip 36 fixes the four tubes 41. Therefore, when the four ink tubes 41 follow the carriage 38 while changing their shapes, the four tubes 41 can be prevented from being scattered, i.e., being largely separated from each other, and the above-indicated intermediate portions of the four tubes 41 can change their shapes in an integral manner while maintaining their vertical arrangement at the first fixing clip 36. The ink tubes 41, surrounded by the loop 107, are slideable in the direction of extension of the tubes 41 and, when the tubes 41 change their shapes, the tubes 41 can actually slide by respective appropriate amounts relative to the loop 7. Thus, no excessively high load is applied to the ink tubes 41. On the other hand, when the ink tubes 41 change their shapes, friction is produced between the tubes 41 and the loop 107, so that a rotation force to rotate or pivot the pivotable support member 100 is transmitted to the same 100.
Respective portions of the ink tubes 41 that are held by the holding portion 105 are lengthwise pre-selected based on the manner in which the tubes 41 change their shapes. When the carriage 38 is moved to a position (i.e., the above-described capping position), shown in
In the case where the respective lengthwise pre-selected portions of the ink tubes 41, held by the loop 107 of the holding portion 105, belong to those portions of the tubes 41 that can change their shapes along the restrictor wall 37, the pre-selected portions, surrounded by the loop 107, can be brought into contact with the restrictor wall 37 when the tubes 41 follow the carriage 38. As described previously, since the loop 107 maintains the vertical arrangement of the four ink tubes 41, the ink tubes 41 are brought into contact with the restrictor wall 37 with the vertical arrangement of the tubes 41 being unchanged. Thus, the four ink tubes 41 are uniformly contacted with the restrictor wall 37, in such an advantageous manner in which no stress is concentrated on any particular one of the four tubes 41. As shown in
The four ink tubes 41 that are surrounded by the loop 107 are additionally supported by the base portion 108 that is more distal than the loop 107. As described previously, the base portion 108 is provided at a position higher than the main arm portion 103. Therefore, the lowest one of the four ink tubes 41 supported by the base portion 107 is higher than the lower end of the flat cable 85 supported by the support portion 104.
When the ink tubes 41 follow the carriage 38 while changing their shapes, the tubes 41 that are supported by the base portion 108 are slideable on the base portion 108 that is more distal than the loop 107. That is, the ink tubes 41 can slide on the base portion 108 located between the loop 107 and the rounded portion 109. Since the rounded portion 109 is formed by bending the free end portion of the base portion 108 upward, the ink tubes 41 can be prevented from falling off the base portion 108. In addition, since the rounded portion 109 is rounded downward like an arc, the ink tubes 41 are prevented from being contacted with an acuminate free end of the steel wire rod constituting the pivotable support member 100.
Hereinafter, there will be described the construction of the supporting device that supports the pivotable support member 100 and includes the base plate 110, by reference to
As shown in
As shown in
As shown in
As shown in
Owing to the first support rib 117 formed on the base plate 110, the main arm portion 103 is supported at an appropriate height, such that the holding portion 105 is spaced from the upper surface of the base plate 110. Thus, the base portion 108 of the holding portion 105 is prevented from being interfered with by the upper surface of the base plate 110. In addition, since the second support rib 118 also contributes to supporting the main arm portion 103 at the appropriate height, the holding portion 105 can be maintained spaced from the upper surface of the base plate 110. Thus, the first and second support ribs 117, 118 cooperate with each other to maintain reliably the holding portion 105 spaced from the upper surface of the base plate 110 within the range of pivotal motion of the main arm portion 103.
As shown in
The guide member 130 supports a torsion coil spring 132 as a sort of spring member as a sort of biasing member or device. The torsion coil spring 132 is formed by winding a metal wire such as a steel wire, and includes a cylindrical coil portion 133, a first arm portion 134 as a fixed end portion that extends radially inward from the coil portion 133 and is fixed to the guide member 130, and a second arm portion 135 as an engaged end portion that extends radially outward from the coil portion 133 and is engaged with an intermediate portion of the main arm portion 103. The torsion coil spring 132 can receive a torsion moment with respect to an axis line (i.e., a centerline) of the cylindrical coil portion 133. When the first and second arm portions 134, 135 receive respective loads, a torque is produced in a circumferential direction of the cylindrical coil portion 133. In the present embodiment, the torsion coil spring 132 is employed as a sort of biasing member. However, any sort of spring or any sort of biasing member that can produce a torque may be employed. For example, the torsion coil spring 132 may be replaced with a different sort of torsion spring, a different sort of coil spring, a spiral spring (i.e., a power spring), or a volute spring.
As shown in
As shown in
As shown in
In the present embodiment, the guide member 130 not only supports the torsion coil spring 132 but also guides the ink tubes 41 and the flat cable 85 in the direction along the restrictor wall 37. As described previously, the guide member 130 is spaced from the restrictor wall 37 in the direction toward the carriage 38, and the ink tubes 41 and the flat cable 85 are passed through the space present between the restrictor wall 37 and the guide member 130. Since the ink tubes 41 and the flat cable 85 can abut on an outer circumferential surface of the guide member 130 that has a cylindrical shape, those elements 41, 85 can be prevented from being excessively largely bent at the first fixing clip 36 or the second fixing clip 86 in the direction toward the carriage 38. That is, the ink tubes 41 and the flat cable 85 can be led in the direction along the restrictor wall 37, without being locally buckled at the first or second fixing clip 36, 38. In addition, respective centers of the respective U-shaped curved portions of the ink tubes 41 and the flat cable 85 that are formed when those elements 41, 85 are moderately bent back toward the carriage 38 can be made nearer to the restrictor wall 37. Thus, respective inner areas defined by the respective curved portions of the ink tubes 41 and the flat cable 85 can be prevented from being increased, and respective lengths of the respective intermediate portions of those elements 41, 85 located between the first or second fixing clip 36, 38 and the carriage:38 can be minimized.
As shown in
Next, there will be described the tube connection portion 140 of the carriage 38, by reference to
As described heretofore, the four ink tubes 41 are first lead from the cartridge accommodating portion along the rear-side surface of the restrictor wall 37, second are moderately bent back toward the carriage 38 while forming the respective curved portions, and finally are connected to the tube connection portion 140 of the carriage 38. As shown in
The four tube joints 142 are horizontally arranged in a predetermined order in the sheet-feed direction such that the four joints 142 are spaced from each other at regular intervals. The tube joints 142 are formed of a synthetic resin, and project from the carriage 38 in a, direction parallel to the direction of reciprocation thereof. The four ink tubes 41 are connected to the carriage 38 such that the ink tubes 41 fit on the tube joints 142, respectively.
The most upstream one 41a of the four ink tubes 41 is connected to the most upstream one 142a of the four tube joints 142 as seen in the sheet-feed direction. The tube guide 141 is provided on an upstream side of the most upstream tube joint 142a in the sheet-feed direction. The tube guide 141 is integrally formed with a box-like frame of the carriage 38. The tube guide 141 is for restricting or deflecting a direction in which the ink tube 41a, connected to the tube joint 142a, extends from the carriage 38, such that the ink tube 41a is directed downstream in the sheet-feed direction. To this end, the tube guide 141 extends in the substantially same direction as that in which the tube joint 142a projects from the carriage 38. However, the tube guide 141 may be somewhat inclined, relative to the direction of projection of the tube joint 142a, such that a distal end of the tube guide 141 from the tube joint 142a is directed downstream in the sheet-feed direction.
As the carriage 38 approaches the capping position, the ink tubes 41 gradually swell, due to their elasticity, over the downstream-side guide rail 44 into the space in which the carriage 38 reciprocates, i.e., the respective curved portions of the tubes 41 increase. As the curved portions of the ink tubes 41 increase, the ink tube 41a connected to the tube joint 142a may be drawn upstream as seen in the sheet-feed direction, i.e., drawn in a direction opposite to the sheet-feed direction. However, the tube guide 141 pushes back the ink tube 41a downstream in the sheet-feed direction, i.e., in a direction to decrease the curved portion of the ink tube 41a. Thus, the increasing of the curved portion of the ink tube 41a can be prevented. In addition, since the most upstream ink tube 41a contributes to preventing the respective increasing of the respective curved portions of the other ink tubes 41b, 41c, 41d adjacent to the ink tube 41a, the respective increasing of the curved portions of all the four ink tubes 41 can be prevented.
Hereinafter, there will be described an image recording operation of the printer portion 2, in particular, respective behaviors of the ink tubes 41, the flat cable 85, and the pivotable support member 100. When the driving force of the CR motor 73 is transmitted via the carriage driving device 46 to the carriage 38 carrying the ink-jet recording head 39, the carriage 38 is reciprocated in the opposite directions perpendicular to the sheet-feed direction while being guided by the two guide rails 43, 44. Based on the recording commanding signals supplied from the control portion 64 via the flat cable 85, the recording head 39 ejects, at appropriate timings, droplets of the inks supplied via the four ink tubes 41, onto the recording sheet being temporarily stopped on the platen 42. The intermittent feeding of the recording sheet by the feed roller 60 and the discharge roller 63 and the reciprocation of the carriage 38 are alternately repeated to record a desired image or images on the recording sheet.
Since the ink tubes 41 and the flat cable 85 are connected, at respective one ends thereof, to the carriage 38, those elements 41, 85 follow the reciprocation of the carriage 38 while changing their shapes, i.e., the respective radii of curvature of the respective U-shaped curved portions thereof.
As shown in
The ink tubes 41 and the flat cable 85 are guided by a portion of the outer circumferential surface of the guide member 130 that is opposed to the restrictor wall 37. Therefore, the ink tubes 41 and the flat cable 85 are prevented from being bent, at the fixing clips 36, 86, at an acute angle toward the carriage 38, and the respective centers of the U-shaped curved portions of those elements 41, 85 are made nearer to the restrictor wall 37. These features also contribute to preventing the swelling of the curved portions of the ink tubes 41 and the flat cable 85, decreasing the space to accommodate those elements 41, 85, and reducing the overall size of the printer portion 2 or the MFD 1. In addition, the respective lengths of intermediate portions of the ink tubes 41 and the flat cable 85 that are located between the fixing clips 36, 86 and the carriage 38 can be decreased.
As shown in
As shown in
As shown in
The ink tubes 41 and the flat cable 85 that can change their shapes are supported at appropriate height positions by the pivotable support member 100. As described previously, the ink tubes 41 are held by the holding portion 105, and the flat cable 85 is supported by the support portion 104. When the ink tubes 41 change their shapes to follow the reciprocation of the carriage 38, the changing of the respective shapes of the tubes 41 is transmitted to the main arm portion 103 via the holding portion 105, so that the main arm portion 103 is pivoted about the shaft portion 102 as the supporting point.
As shown in
As described previously, since the main arm portion 103 is pivoted about the shaft portion 102, the main arm portion 103 as a whole including the holding portion 105 is located, as shown in
As described previously, the loop 107 of the holding portion 105 is constructed such that the axis line 112 (
Since the rising portion 107a of the loop 107 of the holding portion 105 is inclined relative to the shaft portion 102, the base portion 108 of the loop 107 is located higher than the main arm portion 103. Therefore, it is not needed to make the entirety of the loop 107 higher than the main arm portion 103. If the entirety of the loop 107 is made higher than the main arm portion 103, then the ink tubes 41 surrounded by the loop 107 are made higher than the main arm portion 103. In the latter case, it is needed to provide one or more other members, such as a cover member disposed above the space in which the ink tubes 41 change their shapes, at higher positions so that the ink tubes 41 may not be interfered with by those members. This leads to increasing the overall size of the printer portion 2 or the MFD 1. In the present embodiment, the loop 107 of the holding portion 105 is not needed to extend so largely in an upward direction from the main arm portion 103, for the purpose of preventing the base portion 108 of the loop 107 from being interfered with by the edge portion 116 of the base plate 110. Therefore, the height position of the top end of the vertical arrangement of the four ink tubes 41 can be lowered.
As described previously, the base plate 110 that supports the pivotable support member 100 has, around the holding hole 111, the first support rib 117 that supports the main arm portion 103, and the second support rib 118 that supports the auxiliary arm portion 106. The first and second support ribs 117, 118 cooperate with each other to keep the holding portion 105 of the main arm portion 103 at a height position spaced from the upper surface of the base plate 110. Thus, the base portion 108 of the loop 107 of the holding portion 105 can be more effectively prevented from being interfered with by the edge portion 116 of the base plate 110.
As shown in
As is apparent from the foregoing description of the MFD 1, the pivotable support member 100 is pivotable about the supporting point (i.e., the shaft portion 102) located inside the respective U-shaped curved portions of the ink tubes 41 and the flat cable 85, the support portion 104 of the support member 100 supports the flat cable 85 such that the cable 85 is slideable on the support portion 104, and the holding portion 105 of the support member 100 holds the lengthwise pre-selected portions of the ink tubes 41 such that the tubes 41 are slideable relative to the holding portion 105. Therefore, when the ink tubes 41 change their shapes, the main arm portion 103 is pivoted, and the support portion 104 and the holding portion 105 that are integral with the main arm portion 103 support the ink tubes 41 and the flat cable 85 such that those elements 41, 85 can follow the reciprocation of the carriage 38. Thus, the sagging of the flat cable 85 and the scattering and/or sagging of the ink tubes 41 can be prevented and, because those elements 41, 85 are prevented from contacting the peripheral members, the damaging of those elements 41, 85 can be prevented. In addition, since the ink tubes 41 and the flat cable 85 are prevented from contacting the peripheral members, the reciprocating movement of the carriage 38 can be stabilized. Moreover, since the support portion 104 supports the flat cable 85 such that the cable 85 is slideable thereon, the cable 85 is not subjected to an excessively large load and accordingly is prevented from being damaged.
The torsion coil spring 132 biases the pivotable support member 100 in the direction to decrease the diameters of the curved portions of the ink tubes 41, i.e., flex those curved portions to decrease the radii of curvature thereof. Therefore, the swelling of the curved portions of the ink tubes 41 can be restrained and those curved portions can be prevented from expanding into the range of reciprocation of the carriage 38. In addition, the tube guide 141 is provided on the upstream side of the most upstream tube joint 142a (in the sheet-feed direction) of the tube connection portion 140 provided on the carriage 38. Therefore, the direction in which the most upstream ink tube 41 as seen in the sheet-feed direction is led from the most upstream tube joint 142a can be deflected to the direction toward the centers of the curved portions of the ink tubes 41. That is, the curved portions of the ink tubes 41 are so restricted as to decrease the diameters of those curved portions, and accordingly the swelling of the curved portions can be more effectively restrained.
While the present invention has been described in its preferred embodiment, it is to be understood that the present invention is not limited to the details of the above-described first embodiment but may be otherwise embodied.
For example, in the first embodiment, the second arm portion 135 of the torsion coil spring 132 is engaged with the main arm portion 103 of the pivotable support member 100 so as to apply the biasing force to the support member 100 in the pre-selected direction. However, the second arm portion 135 of the torsion coil spring 132 is engaged with the auxiliary arm portion 106 of the support member 100 so as to apply the biasing force to the support member 100 in the same direction. To this end, the coil spring 132 may be provided either on the upper side of the base plate 110 or on the lower side of the same 110. Meanwhile, in the present embodiment, the torsion coil spring 132 is employed as a sort of spring member that applies a torque to the pivotable support member 100. However, any other sort of biasing member or device may be employed so long as it can elastically bias the pivotable support member 100 in the direction to move the ink tubes 41 toward the restrictor wall 37.
Hereinafter, there will be described a second embodiment of the present invention. In the above-described first embodiment, the flat cable 85 is located inside the U-shaped curved portions of the ink tubes 41. However, it is preferred that one of (A) the ink tubes 41 and (B) the flat cable 85 that is more flexible than the other be located inside the other. Generally, it is conceived that the single flat cable 85 is more flexible than the four ink tubes 41. However, in the case where the total number of the ink tubes 1 is smaller or in the case where a plurality of flat cables 85 are bundled or a plurality of covering sheets are used to electrically insulate the single flat cable 85, the ink tube(s) 41 may be more flexible than the flat cable(s) 85. The ink tubes 41 and the flat cable 85 form the respective curved portions whose diameters assure that when those elements 41, 85 change their shapes to follow the carriage 38, those curved portions are not buckled. One of (A) the ink tubes 41 and (B) the flat cable 85 that is more flexible than the other can form the curved portion(s) whose diameter(s) can be more easily reduced than the other. In the case where one of (A) the ink tubes 41 and (B) the flat cable 85 that is more flexible than the other is located inside the other, the space needed to accommodate the changing of respective shapes of those elements 41, 85 can be reduced, which leads to reducing the overall size of the printer portion 2 or the MFD 1. Thus, the arrangement of the ink tubes 41 and the flat cable 85 may be reversed. In the second embodiment, the flat cable 85 is located outside the U-shaped curved portions of the four ink tubes 41.
As shown in
In addition, as shown in
In each of the first and second embodiments, the pivotable support member 100 is pivoted while the same 100 is supported on the upper surface of the base plate 110 and the holding portion 105 of the main arm portion 103 supports, from the underside, the four ink tubes 41. However, a holding portion of a pivotable support member may be pendent from a main arm portion thereof.
Hereinafter, there will be described a third embodiment of the present invention, by reference to
The pivotable support member 150 includes a shaft portion 152 as a pivotal-motion supporting point; a main arm portion 153 extending horizontally from the shaft portion 152; a holding portion 155 as a first support portion that is constituted by a free end portion of the main arm portion 153; and an auxiliary arm portion 156 extending, like a crank, from the shaft portion 152 and the main arm portion 153. The shaft portion 152, the main arm portion 153, the holding portion 155, and the auxiliary arm portion 156 are integrally formed with each other by bending a single steel wire rod. Since the shaft portion 152, the main arm portion 153, and the auxiliary arm portion 156 of the pivotable support member 150 correspond to the shaft portion 102, the main arm portion 103, and the auxiliary arm portion 106 of the pivotable support member 100, the detailed description thereof is omitted.
The holding portion 155 as the free end portion of the main arm portion 153 is for holding the four ink tubes 41 by surrounding the same 41. The holding portion 155 includes a loop 157; a base portion 158 projecting outward from the loop 157; and a rounded portion 109 as a free end portion of the base portion 158. The third embodiment resembles the second embodiment in that the flat cable 85 is located outside the U-shaped curved portions of the ink tubes 41, and the pivotable support member 150 resembles the pivotable support member 100 employed in the second embodiment in that the pivotable support member 150 includes a support portion 154 as a second support portion that is continuous with the base portion 158 of the loop 157 and supports the flat cable 85. The four ink tubes 41 are passed through the loop 157 of the holding portion 155. A dimensional relationship between inner length (height) and width of the loop 157 of the pivotable support member 150 and respective outer diameters of the four ink tubes 41 is the same as described above with respect to the loop 107 of the pivotable support member 100 employed in the first or second embodiment. Therefore, the order of arrangement of the four tubes 41 does not change in the loop 157, and the four tubes 41 can slide relative to the loop 157 in a direction of extension of the tubes 41. The base portion 158 of the loop 157 is spaced from the main arm portion 153 in a direction intersecting the direction of extension of the same 153, and extends in substantially the same direction as the extension direction of the same 153. A free end portion of the base portion 158 is first bent upward and then is rounded downward like an arc to form the rounded portion 159. A top portion 160 of the loop 157 is formed by first bending upward the other end portion of the base portion 158 and then bending the same horizontally toward the main arm portion 153. Thus, the top portion 160 extends in a direction intersecting the direction of extension of the main arm portion 153.
As shown in
The base plate 164 is constituted by a flat member having a holding hole 165 that pivotally supports the shaft portion 152, and is fixed to a housing 2b of a printer portion 2 or an MFD 1. The main arm portion 153 is pivoted along a lower surface of the base plate 164 and, within a portion of a range of pivotal motion of the same 153, the holding portion 155 is entirely located right below the lower surface of the base plate 164. That is, the pivotable support member 150 is pendent from the base plate 164 such that the same 150 is pivotable about the axis line 162 of the shaft portion 152.
Thus, the third embodiment can enjoy the same advantages as those of the first or second embodiment. That is, the sagging of the flat cable 85 and the scattering and/or sagging of the ink tubes 41 can be prevented and, because those elements 41, 85 are prevented from contacting peripheral members, the damaging of those elements 41, 85 can be prevented. In addition, since the ink tubes 41 and the flat cable 85 are prevented from contacting the peripheral members, the reciprocating movement of the carriage 38 can be stabilized. Moreover, since the support portion 154 supports the flat cable 85 such that the cable 85 is slideable thereon, the cable 85 is not subjected to an excessively great load and accordingly is prevented from being damaged.
It is to be understood that the present invention may be embodied with other changes and improvements that may occur to a person skilled in the art, without departing from the spirit and scope of the invention defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-127088 | Apr 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5971529 | Pawlowski, Jr. et al. | Oct 1999 | A |
Number | Date | Country |
---|---|---|
1726445 | Nov 2006 | EP |
H58-58388 | Apr 1983 | JP |
H63-154354 | Jun 1988 | JP |
H05-292369 | Nov 1993 | JP |
H6-320835 | Nov 1994 | JP |
H10-128992 | May 1998 | JP |
10217496 | Aug 1998 | JP |
H11-268288 | Oct 1999 | JP |
H11-286101 | Oct 1999 | JP |
2003011340 | Jan 2003 | JP |
2005035033 | Feb 2005 | JP |
2005088524 | Apr 2005 | JP |
2006015706 | Jan 2006 | JP |
9947356 | Sep 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20070252875 A1 | Nov 2007 | US |