The present application claims priority from Japanese Patent Application No. 2010-067359, which was filed on Mar. 24, 2010, the disclosure of which is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates to an image recording device which conveys a tray placing thereon a recording medium by nipping the tray with a roller pair and records an image on the recording medium.
2. Description of the Related Art
An image recording device in which a recording medium is placed on a special tray to record an image is known. An upper surface of the tray has a placing portion having a concave shape. A recording medium is placed on the concave and fed in the image recording device while being nipped by a roller pair, and an image is recorded thereon.
The thickness in the vertical direction of the region in the tray provided with the placing portion is less than the thickness of the region in the tray not provided with the placing portion. In other words, the tray is lower in rigidity in the central portion in the width direction than in the side end portions in the width direction. Thus, the regions in the tray having different rigidities are applied with the pressing force by the roller, and thereby the tray may warp and the recording medium placed on the tray may become unstable.
A need has arisen to provide an image recording device which stabilizes the height of a surface of a recording medium placed on a tray, on which an image is to be recorded, and thereby is capable of recording a high-quality image on the recording medium.
According to an embodiment of the present invention, an image recording device includes a tray, a recording unit, a drive roller, a first driven roller, a second driven roller, a first urging member and a second urging member. The tray has a recess capable of placing thereon a recording medium. The recording unit is configured to record an image on the recording medium. The drive roller is configured to feed the tray having the recording medium placed on the recess by rotating with a drive force transmitted from a drive source. The first driven roller is disposed facing the drive roller. The second driven roller is disposed facing the drive roller. The first urging member is configured to urge the first driven roller toward the drive roller. The second urging member is configured to urge the second driven roller toward the drive roller. The first driven roller is movable between a first basic position where the first driven roller contacts the drive roller and presses toward the drive roller with a first force and a first nip position where the first driven roller presses a first portion of the tray, corresponding to the recess of the tray, toward the drive roller with a third force. The second driven roller is movable between a second basic position where the second driven roller contacts the drive roller and presses toward the drive roller with a second force and a second nip position where the second driven roller presses a second portion of the tray, not corresponding to the recess of the tray, toward the drive roller with a fourth force. A difference between the first force and the second force is smaller than a difference between the third force and the fourth force, and the third force is smaller than the fourth force.
An embodiment of the present invention will be described below. The embodiment described below is merely an example of the present invention, and it is needless to say that the embodiment of the present invention can be altered as required within the scope not changing the gist of the present invention. In the following description, vertical directions 7 are defined with reference to a multi-function device 10 set in the usable state (the state of
[Multi-Function Device 10]
As illustrated in
As illustrated in
The multi-function device 10 is formed with a path 65. The path 65 bends from a rear end portion of the feed tray 20 toward the upper side and the front side of the multi-function device 10 to extend from the rear side toward the front side of the multi-function device 10, and leads to the discharge tray 21 through the space below the recording unit 24. The recording sheet is guided through the path 65 in a conveying direction (the direction indicated by a dash-dotted arrowed line in
The feed unit 15 is provided above the feed tray 20. The feed unit 15 includes a feed roller 25, a feed arm 26, and a drive transmission mechanism 27. The feed roller 25 is axially supported by the front end of the feed aim 26 which pivots in the vertical directions 7 to be contactable with and separable from the feed tray 20. The feed roller 25 rotates with drive force transmitted thereto from a feed motor (not illustrated) by the drive transmission mechanism 27 formed by a plurality of gears in mesh with one another. The feed roller 25 supplies recording sheets stacked on the feed tray 20 to the path 65 by separating the recording sheets one from another.
The recording unit 24 is provided above the path 65 extending from the rear side to the front side of the multi-function device 10. The recording unit 24 includes a carriage 40 equipped with a recording head 38 and moving back and forth in main scanning directions (directions perpendicular to the drawing plane of
[First Roller Pair 58 and Second Roller Pair 59]
On the upstream side in the conveying direction of the recording unit 24, a first roller pair 58 is provided which is formed by a first convey roller 60 (an example of a drive roller) placed above the path 65 and pinch rollers 61 placed below the path 65 to face the first convey roller 60. The first roller pair 58 nips and conveys the recording sheet onto the platen 42.
The first convey roller 60 is rotatably supported by a frame (not illustrated) of the printer 11 provided to left and right end portions of the path 65. The plurality of pinch rollers 61 are provided to be separate from one another in the horizontal directions 9. There is no limit on the number of the pinch rollers 61. In the present embodiment, description will be made on the assumption that four pinch rollers 61 (pinch rollers 141, 142, 143, and 144) (pinch roller 142, 143 disposed in the central portion is an example of a first driven roller, and pinch roller 141, 144 disposed in the side end portion is an example of a second driven roller) are provided.
As described later, the pinch rollers 141 to 144 are rotatably supported by roller support members 94 (see
The first convey roller 60, which is an upper roller, is arranged such that the central axis thereof is located forward (downstream in the conveying direction of the recording sheet) of the central axis of each of the pinch rollers 61, which is a lower roller. Accordingly, the recording sheet is conveyed obliquely downward and pressed onto the platen 42.
On the downstream side in the conveying direction of the recording unit 24, a second roller pair 59 is provided which is formed by a second convey roller 62 placed below the path 65 and spur rollers 63 placed above the path 65 to face the second convey roller 62. The second convey roller 62 is rotatably supported by the frame (not illustrated) of the printer 11 provided to the left and right end portions of the path 65. The plurality of spur rollers 63 are provided to be separate from one another in the horizontal directions 9. Each of the spur rollers 63 is brought into pressure-contact with the roller surface of the second convey roller 62 by a resilient member (not illustrated), such as a spring. The second roller pair 59 nips and conveys the recording sheet to the discharge tray 21.
As illustrated in
The first convey roller 60 and the second convey roller 62 are rotated with rotational drive force transmitted thereto from a convey motor (not illustrated, an example of a drive source) via a drive transmission mechanism (not illustrated). The drive transmission mechanism is formed by planetary gears and so forth. The drive transmission mechanism rotates the rollers 60 and 62 to cause the rollers 60 and 62 to convey the recording sheet or a later-described medium tray 71 (an example of a tray) in the conveying direction when the convey motor is rotated in one of the forward direction and the reverse direction (the forward direction in the present embodiment), and to cause the rollers 60 and 62 to convey the recording sheet or the medium tray 71 in the opposite direction to the conveying direction when the convey motor is rotated in the other one of the forward direction and the reverse direction (the reverse direction in the present embodiment).
[Medium Tray 71]
As described above, the multi-function device 10 has the function of recording an image on a disc surface of a recording medium. When an image is recorded on a disc surface of a recording medium, the recording medium is placed on the medium tray 71. Placed on a tray guide 76, the medium tray 71 is inserted through the opening 13 along the path 65 in the direction of an arrow 77 opposite to the conveying direction.
As illustrated in
Further, the length in the vertical directions 7 of the recess, i.e., a depth d of the medium carrying portion 70 is greater than the thickness in the vertical directions 7 of the recording medium. Accordingly, the upper surface of the recording medium placed on the medium carrying portion 70 is reduced projecting upward from the upper surface 72 of the medium tray 71.
The medium carrying portion 70 may lack the projecting portion 73. Further, the medium carrying portion 70 is not limited to the circular shape. For example, as illustrated in
[Positions in Horizontal Directions 9 of Pinch Rollers 141 to 144]
As illustrated in
As illustrated in
Each of the pinch rollers 141 to 144 is placed at a position facing only either one of the first region and the second region. This means that the position in the horizontal directions 9 of each of the pinch rollers 141 to 144 is in either one of the first range R1 and the second range R2, and that each of the pinch rollers 141 to 144 is not located partially in the first range R1 and partially in the second range R2.
[Movement of Pinch Rollers]
As illustrated in
To achieve the above-described movement of the pinch rollers 61, the printer 11 is provided with the roller support members 94 (see
The side end portions 151 are provided to left and eight end portions of the pinch rollers 141 to 144. The lower portions 152 are provided under the pinch rollers 141 to 144. As illustrated in
A lower portion of each of the side end portions 151 is provided with an opening 153 in the horizontal directions 9. The first shaft 99 described later pieces through the opening 153. An opening 153a (see
The discs 98 (see
As illustrated in
[Adjustment of Pressing Force]
When the pinch rollers 61 are located at the second position, the pressing force applied by the pinch rollers 142 and 143 to the medium tray 71 is adjusted to be lower than the pressing force applied by the pinch rollers 141 and 144 to the medium tray 71. To achieve such adjustment of the pressing forces, the printer 11 is provided with the first resilient members 91 (an example of a first urging member, a second urging member, a first-first urging member, a first-second urging member) and the second resilient members 92 (an example of a first urging member, a second urging member, a second-first urging member, a second-second urging member), as illustrated in
Each of the resilient members 91 and 92 is a coil spring in the present embodiment, but is not limited to the coil spring and may be a torsion spring, for example. In the present embodiment, a spring higher in spring constant than the second resilient members 92 is used to form the first resilient members 91.
As illustrated in
As illustrated in
As illustrated in
When the pinch rollers 141 to 144 are located at the first position, if the discs 98 rotate and the first shaft 99 moves downward, the side end portions 151 are pressed by the first shaft 99, and thereby the roller support members 94 move downward. As a result, the pinch rollers 141 to 144 also move downward. In this process, the pinch rollers 142 and 143 start moving downward before the pinch rollers 141 and 144 start moving downward. This is because the lower end of the first shaft 99 reaches the bottom surface of the opening 153 faster in
When the pinch rollers 141 to 144 reach the second position, the position of the pinch rollers 142 and 143 (see
If the medium tray 71 is inserted when the pinch rollers 141 to 144 are located at the second position, the medium tray 71 is nipped by the first roller pair 58 while pressing the pinch rollers 141 to 144 downward, as illustrated in
In this process, the force of the medium tray 71 for pressing the pinch rollers 142 and 143 downward is absorbed by the second resilient members 92. Thereby, as illustrated in FIG. 7A, the lower end of the first shaft 99 and the bottom surface of the opening 153a of the corresponding side end portion 151 are kept in contact with each other. As a result, the upward biasing by the first resilient members 91 remains cancelled. Meanwhile, the force of the medium tray 71 for pressing the pinch rollers 141 and 144 downward is not completely absorbed by the second resilient members 92. As a result, the roller support members 94 are pressed downward by a part of the force of the medium tray 71 for pressing the pinch rollers 141 and 144 downward. Thereby, as illustrated in
Accordingly, when the pinch rollers 61 are located at the first position, the pinch rollers 141 to 144 are biased by the first resilient members 91 and the second resilient members 92. Meanwhile, when the pinch rollers 61 are located at the second position, the pinch rollers 141 and 144 are biased by the first and second resilient members 91 and 92, but the pinch rollers 142 and 143 are biased only by the second resilient members 92. Thus, a difference between the pressing force applied by the pinch rollers 142 and 143 and the pressing force applied by the pinch rollers 141 and 144 when the pinch rollers 141 to 144 contact the first convey roller 60 is smaller than a difference between the pressing force applied by the pinch rollers 142 and 143 and the pressing force applied by the pinch rollers 141 and 144 when the pinch rollers 141 to 144 contact the medium tray 71. Furthermore, when the pinch rollers 141 to 144 contact the medium tray 71, the pressing force applied by the pinch rollers 142 and 143 is smaller than the pressing force applied by the pinch rollers 141 and 144.
[Movement in Vertical Directions 7 of Platen 42]
As illustrated in
The platen support member 53 and the platen 42 supported by the platen support member 53 are configured to be able to change the posture thereof between a first posture (the posture indicated by a solid line in
When the platen support member 53 is in the first posture, the width along the vertical directions 7 of the path 65 corresponds to a first width 28 (see
As illustrated in
The second eccentric cam 97 (an example of an eccentric cam) is located under and in contact with the platen support member 53. The second eccentric cam 97 is rotatably supported by, for example, the frame of the printer 11, with the direction of the axis line thereof extending along the horizontal directions 9 and a second shaft 100 serving as a rotary shaft thereof. The second eccentric cam 97 is formed by a disc, the radius of which from the second shaft 100 changes periodically. With drive transmitted from a not-illustrated second cam motor, the second eccentric cam 97 is rotated. As the second eccentric cam 97 is rotated, the circumferential surface thereof is slidingly moved on the platen support member 53. The radius of the circumferential surface of the second eccentric cam 97 from the second shaft 100 changes periodically. Due to this change, therefore, the platen support member 53 moves in the vertical directions 7.
[Image Recording on Recording Medium]
Description will be made below of a procedure in which the medium tray 71 is inserted into the multi-function device 10 and an image is recorded on a recording medium placed on the medium tray 71. Upon issuance by not-illustrated instruction device of an instruction for recording an image on the recording medium, the first eccentric cam is rotated, and the pinch rollers 61 move downward, as illustrated in
Thereafter, the medium tray 71 is inserted by a user of the multi-function device 10 through the opening 13 on the front side of the multi-function device 10 along the path 65 in the direction of the arrow 77 opposite to the conveying direction. In this process, the medium tray 71 is inserted as placed on the tray guide 76. Upon detection by a not-illustrated sensor of the insertion of the medium tray 71, the first convey roller 60 and the second convey roller 62 are driven to rotate in reverse.
When the medium tray 71 inserted by the user comes into contact with the second roller pair 59, the spur rollers 63 are pushed by the upper surface 72 of the medium tray 71 and thereby moved upward. As a result, the medium tray 71 is nipped and conveyed by the second roller pair 59 in the opposite direction to the conveying direction. In the present embodiment, description is made of the configuration in which the spur rollers 63 are pushed by the upper surface 72 of the medium tray 71 and thereby moved upward, as described above. However, the configuration may be modified such that at least one of the spur rollers 63 and the second convey roller 62 can be moved by an eccentric cam and so forth similarly to the platen support member 53.
The medium tray 71 conveyed by the second roller pair 59 passes under the recording unit 24, and the upstream side thereof in the conveying direction of the recording sheet comes into contact with the first roller pair 58. The medium tray 71 nipped by the first roller pair 58 and the second roller pair 59 is guided further upstream in the conveying direction of the recording sheet. In this process, the pinch rollers 141 to 144 press the medium tray 71 with respective pressing forces, which vary depending on the regions faced by the pinch rollers 141 to 144, as described above.
Thereby, the recording medium placed on the medium tray 71 is located upstream of the recording unit 24 in the conveying direction of the recording sheet. Then, the rotation direction of the first convey roller 60 and the second convey roller 62 is shifted from the reverse direction to the forward direction. Thereby, the medium tray 71 is conveyed in the conveying direction of the recording sheet, and the recording medium placed on the medium tray 71 passes over the platen 42. The recording head 38 discharges ink droplets onto the recording medium conveyed on the platen 42. Thereby, an image is recorded on a disc surface of the recording medium. Thereafter, the medium tray 71 is discharged.
In the above-described embodiment, description has been made of the configuration in which the recording unit 24, the first convey roller 60, and the spur rollers 63 are placed above the path 65 while the pinch rollers 61 and the second convey roller 62 are placed below the path 65. However, the placement of these components may be different from the placement in the above-described embodiment. For example, if the present invention is applied to the multi-function device 10 in which at least a part of the path 65 is formed in the vertical directions 7, the recording unit 24 and the spur rollers 63 may be placed on the left side of the path 65, and the second convey roller 62 may be placed on the right side of the path 65.
Further, in the above-described embodiment, description has been made of the configuration in which each of the pinch rollers 141 to 144 is placed at a position facing only either one of the first region and the second region. However, each of the pinch rollers 141 to 144 may be placed at a position facing both the first region and the second region.
[Effects of Embodiment]
The back side of the first region, i.e., the upper surface 72 of the medium tray 71 is provided with the medium carrying portion 70. Therefore, the thickness of the medium tray 71 in the first region is less than the thickness of the medium tray 71 in the second region. If the entire area of the lower surface of such a medium tray 71 is applied with equal pressing forces by the pinch rollers 61, the medium tray 71 is warped. In the above-described embodiment, however, when the medium tray 71 carrying thereon a recording medium is conveyed through the path 65, the pressing force applied by the pinch rollers 142 and 143 to the first region is adjusted to be lower than the pressing force applied by the pinch rollers 141 and 144 to the second region. Accordingly, the medium tray 71 is reduced warping. It is therefore possible to stabilize the height of a surface of the recording medium placed on the medium tray 71, on which an image is to be recorded. Consequently, it is possible to reduce the deterioration of the quality of the image recorded on the recording medium.
In the above-described embodiment, when the pinch rollers 61 are located at the second position, the pinch rollers 142 and 143 facing the first region press the medium tray 71 only with the biasing force of the second resilient members 92, and the pinch rollers 141 and 144 facing the second region press the medium tray 71 with the biasing force of the first resilient members 91 in addition to the biasing force of the second resilient members 92. That is, it is possible to adjust the pressing force applied by the pinch rollers 142 and 143 to the first region to be lower than the pressing force applied by the pinch rollers 141 and 144 to the second region.
In the above-described embodiment, the recording medium placed on the medium carrying portion 70 has the surface facing the recording unit 24 and located below the region in the upper surface 72 of the medium tray 71 excluding the medium carrying portion 70. Further, the first convey roller 60 comes into contact with the upper surface 72 of the medium tray 71, and thus is not located below the upper surface 72 of the medium tray 71. In the above-described embodiment, therefore, it is possible to reduce the first convey roller 60 from coming into contact with the recording medium placed on the medium carrying portion 70 of the medium tray 71.
In the above-described embodiment, the distance L1 between the recording unit 24 and the upper surface of a recording sheet, on which an image is recorded, is the same as the distance L2 between the recording unit 24 and the upper surface of a recording medium, on which an image is recorded. Therefore, there is no need to change the image recording method performed by the recording unit 24 depending on whether an image is recorded on a recording sheet or on a recording medium. In other words, the recording unit 24 is not required to include a mechanism allowing the image recording to be performed in two or more methods. That is, it is possible to reduce the mechanism of the recording unit 24 from becoming complicated.
When a pinch roller 61 is placed at a position facing both the first region and the second region, if the pressing force of the pinch roller 61 provided by the resilient members 91 and 92 is adjusted on the assumption that the pinch roller 61 faces the second region, the medium tray 71 may be warped. Meanwhile, if the above-described adjustment is made on the assumption that the pinch roller 61 faces the first region, the pressing force applied to the medium tray 71 is reduced, and the conveying force for conveying the medium tray 71 is reduced. In the above-described embodiment, however, each of the pinch rollers 61 is placed at a position facing only either one of the first region and the second region. Accordingly, it is possible to reduce the warp of the medium tray 71 and the reduction in conveying force for conveying the medium tray 71 described above.
[Modified Example of Embodiment]
In the above-described embodiment, description has been made of the case in which the pinch rollers 141 to 144 at the second position are in contact with the lower surface of the medium tray 71. However, as illustrated in
As illustrated in
In the configuration of
Meanwhile, as illustrated in
Accordingly, when the pinch rollers 141 and 144 are moved from the first position to the fourth position, the pinch rollers 142 and 143 are moved from the first position to the third position, i.e., a position below the fourth position.
As illustrated in
Accordingly, the pinch rollers 141 and 144 are biased by the first resilient members 91, whether the pinch rollers 141 and 144 are located at the first position or the fourth position (see
Similarly to the description of the above-described embodiment, the thickness of the medium tray 71 also varies in the modified example, depending on the region in the lower surface of the medium tray 71. Therefore, if the entire area of the lower surface of the medium tray 71 is applied with equal pressing force, the medium tray 71 is warped. In the above-described embodiment, however, when the medium tray 71 carrying thereon a recording medium is conveyed through the path 65, the pinch rollers 142 and 143 are moved by the first eccentric cam to the third position at which the pinch rollers 142 and 143 do not come into contact with the medium tray 71. Further, the pinch rollers 141 and 144 are moved by the first eccentric cam to the fourth position at which the pinch rollers 141 and 144 come into contact with the medium tray 71. That is, only the second region in the lower surface of the medium tray 71 is applied with the pressing force by the pinch rollers 141 and 144. Accordingly, it is possible to reduce the medium tray 71 from being warped. Consequently, it is possible to stabilize the height of the image recording surface of the recording medium placed on the medium tray 71, and to reduce the deterioration of the quality of the image recorded on the recording medium.
The pinch rollers 142 and 143 facing the first region are moved from the first position to the third position together with the first guide members moved by the first eccentric cam by the first movement amount. Further, the pinch rollers 141 and 144 facing the second region are moved from the first position to the fourth position together with the second guide members moved by the first eccentric cam. Accordingly, it is possible to apply the pressing force of the pinch rollers 141 and 144 only to the second region in the lower surface of the medium tray 71.
Number | Date | Country | Kind |
---|---|---|---|
2010-067359 | Mar 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5818487 | Yoshimura et al. | Oct 1998 | A |
6148722 | Hagstrom | Nov 2000 | A |
6332680 | Ozawa | Dec 2001 | B1 |
6612762 | Sakurai et al. | Sep 2003 | B1 |
6712463 | Matsumoto | Mar 2004 | B2 |
6755494 | Park | Jun 2004 | B2 |
6814436 | Anami et al. | Nov 2004 | B2 |
7101096 | Sasai et al. | Sep 2006 | B2 |
7309123 | Anami et al. | Dec 2007 | B2 |
20060187290 | Nakashima | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
2002-308493 | Oct 2002 | JP |
2006-298618 | Nov 2006 | JP |
2007-136802 | Jun 2007 | JP |
2009-096021 | May 2009 | JP |
Entry |
---|
Japan Patent Office, Notice of Reasons for Rejection for Japanese Patent Application No. 2010-067359 (counterpart to above-captioned patent application), mailed Apr. 17, 2012. |
The State Intellectual Property Office of the People'S Republic of China, Notification of First Office Action for Chinese Patent Application No. 201010502368.X (counterpart Chinese patent application), issued Jan. 30, 2013. |
The State Intellectual Property Office of the People'S Republic of China, Notification of Second Office Action for Chinese Patent Application No. 201010502368.X (counterpart Chinese patent application), issued Jul. 25, 2013. |
Number | Date | Country | |
---|---|---|---|
20110236118 A1 | Sep 2011 | US |