The present document-incorporates by reference the entire contents of Japanese priority document, 2006-008207 filed in Japan on Jan. 17, 2006, Japanese priority document, 2006-027582 filed in Japan on Feb. 3, 2006, Japanese priority document, 2006-156714 filed in Japan on Jun. 5, 2006, and Japanese priority document, 2006-190133 filed in Japan on Jul. 11, 2006.
1. Field of the Invention
The present invention relates to an image recording medium, a sheet feeding device for the image recording medium, and an image forming apparatus that realizes print output of highly glossy photograph images according to execution of folding and heat-bonding of the image recording medium in a post-processing device after image formation.
2. Description of the Related Art
In recent years, as it is well known, technical attempts concerning various image forming apparatus have been carried out to obtain glossy images of a photographic image quality. In the present invention, a structure of an image forming apparatus that forms images of a photographic image quality on a recording medium including a transparent section and a non-transparent section is explained.
In the conventional technology disclosed in Japanese Patent Application Laid-Open No. 2000-321842, a sensor that detects reflected light from a recording medium is provided in a position on an upstream side in a recording medium conveying direction of registration rollers. A type of the recording medium is distinguished based on a result of the detection by the sensor.
On the other hand, in Japanese Patent Application Laid-Open No. 2005-10529, an image recording medium including a transparent section and a non-transparent section is disclosed.
In the conventional technology described in Japanese Patent Application Laid-Open No. 2000-321842, the sensor is provided in the position on the upstream side in the recording medium conveying direction of the registration rollers. Thus, when a difference in an amount of sag of the recording medium nipped between the registration rollers occurs or a leading edge of the recording medium shifts obliquely, it is difficult to accurately detect a boundary between the transparent section and the non-transparent section of the recording medium disclosed in Japanese Patent Application Laid-Open No. 2005-10529.
Various technical attempts described in (A) to (F) below have been carried out to obtain glossy images of a photographic image quality.
(A) As an example of an image forming apparatus, there is a color image forming apparatus including an intermediate transfer member onto which different color toner images of a plurality of colors are multiply transferred from at least one image bearing member, a transparent-toner developing unit that develops a transparent toner image, a second transfer unit that transfers the color toner images and the transparent toner image formed on the intermediate transfer member onto a transfer material, and a fixing unit that fixes the color toner images and the transparent toner image formed on the transfer material (see Japanese Patent Application Laid-Open No. 2002-341623). In the conventional example, high glossiness is obtained by, after usual image formation is carried out on a sheet, uniformly forming a transparent toner image over the sheet before the sheet is conveyed to the fixing unit and fixing the transparent toner image.
However, in this technology, for example, a heavy load is applied to the fixing unit because a transparent toner is always supplied to the entire surface of the sheet and there is a difference in toner thickness between an image section and a non-image section of the sheet.
(B) As an example of an image recording medium, there is a receiving sheet for electrophotography that has a toner receiving layer on one surface of a support member and a back layer on the other surface. The support member has a thermoplastic resin layer(s) on one surface or both surfaces of a base thereof. Binders in an uppermost layer on the toner receiving layer side and an uppermost layer on the back layer side are soap-free water-dispersed polymer having a glass transition temperature (Tg) of 20° C. to 80° C. At least one of the toner receiving layer and the back layer contains a polymeric antistatic agent (see Japanese Patent Application Laid-Open No. 2004-191678). In the receiving sheet, a special recording medium is used to make the receiving sheet glossy. Thermoplastic resin layers are provided in the front and the back of a sheet and, after normally fixing an image on the sheet, pressure and heat are further applied thereto to realize uniform glossiness on the surface thereof.
However, the effect of this technology is realized when the receiving sheet is used together with a special fixing device disclosed in Japanese Patent Application Laid-Open No. 2004-191678. Thus, there are problems in terms of a structure, cost, power consumption, and the like.
(C) As an example of a fixing unit, there are two fixing units, as a first fixing unit and a second fixing unit, provided in an image forming apparatus (see Japanese Patent Application Laid-Open No. 2003-270991). In this conventional technology, after usual fixing of a toner image (the first fixing unit), the fixing unit including a highly smooth belt melts a toner again and, then, cools and peels off the toner to obtain uniform glossiness making use of the smoothness of the belt.
However, as in (B) above, there are problems in terms of a structure, cost, power consumption, and the like.
(D) As an example of an image recording medium, there is an image display plate. In the image display plate, a transparent film and a print surface reversely printed on the rear surface of the transparent film are provided. A light back-reflection sheet is provided on the print surface of the transparent film. An adhesive surface is provided on a surface of the light back-reflection sheet corresponding to the print surface. The adhesive surface and the print surface are integrated (see Japanese Patent Application Laid-Open No. 2004-302044).
However, this technology is provided on condition that the light back-reflection sheet, on which it is difficult to print an image, is used. Since it is difficult to print an image on the light back-reflection sheet, the 0.5 transparent film is used to form the image display plate. It is not an object to the technology to pursue a photographic image quality.
(E) As an example of an image recording medium, an adhesive layer is formed on a transparent film and the transparent film is bonded to an image surface (a print surface) in the technology disclosed in Japanese Patent Application Laid-Open No. H10-278183.
However, since adhesiveness of an image and the transparent film is low, it is impossible to reproduce a photographic image quality.
(F) As an example of an image recording medium, an invention related to a heat sensitive adhesive that is heated to have adhesion is disclosed in Japanese Patent Application Laid-Open No. 2003-206455. However, the invention does not examine a technology for obtaining a photographic image having a simple structure and a satisfactory storage life. It is possible obtain a photographic image having a simple structure and a satisfactory storage life by bonding a recording medium having, in a part thereof, a transparent section and a non-transparent white medium including an adhesive layer and forming the recording medium and the non-transparent white medium as an integral recording medium.
However, since the recording medium formed has the adhesive layer, it is necessary to contrive a stocking method and a conveying method for the recording medium. Moreover, in bonding the medium and the recording medium, since a bonding position is determined at a point when an adhesive surface of the medium comes into contact with the recording medium, it is necessary to contrive positioning of the medium before bonding.
As described above, in all the conventional technologies (A) to (F), structures of image forming apparatuses are complicated and there are problems in terms of cost, power consumption, a storage life of an image, and the like.
It is an object of the present invention to at least partially solve the problems in the conventional technology.
A sheet feeding device according to one aspect of the present invention includes a pair of registration rollers that align a leading edge of a recording medium having a transparent section and a non-transparent section; and a boundary sensor that detects a boundary between the transparent section and the non-transparent section. The boundary sensor is provided on a downstream side of a direction of conveying the recording medium by the registration rollers.
An image forming apparatus according to another aspect of the present invention includes the sheet feeding device according to the present invention; and an image forming unit that forms an image on the recording medium. The recording medium is configured to be folded along the boundary between the transparent section and the non-transparent section to superimpose the transparent section on the non-transparent section.
An image recording medium according to still another aspect of the present invention includes a recording medium that is a sheet-like medium, on which an image is formed by an image forming apparatus, including a transparent section; an overlapping medium configured to overlap the transparent section; and an adhesive layer on which an adhesive is applied. The overlapping medium is integrated with an image formation surface of the transparent section via the adhesive layer.
An image forming apparatus according to still another aspect of the present invention includes a conveyance path for conveying the image recording medium according to the present invention; an image forming unit that forms an image on the image recording medium; and a control unit that reverses the image horizontally or vertically when forming the image in the transparent section.
An image forming apparatus according to still another aspect of the present invention forms an image on the image recording medium according to the present invention.
The above and other objects, features, advantages and technical and industrial significance of this invention will be better understood by reading the following detailed description of presently preferred embodiments of the invention, when considered in connection with the accompanying drawings.
Exemplary embodiments of the present invention are explained in detail below with reference to the accompanying drawings.
In
An optical writing unit 3 including a light source, a polygon mirror, an f-θ lens, and a reflection mirror is arranged above the image forming units 1Y, 1M, 1C, and 1K. The optical writing unit 3 irradiates a laser beam on the surfaces of the respective sensitive drums 11Y, 11M, 11C, and 11K while scanning the surfaces with the laser beam. A transfer unit 6 serving as a belt driving device is arranged below the image forming units 1Y, 1M, 1C, and 1K. The transfer unit 6 has a transfer conveyor belt 60 that conveys a recording medium T to pass transfer sections of the respective image forming units 1Y, 1M, 1C, and 1K. A cleaning device 85 including a brush roller and a cleaning blade is arranged to be in contact with the outer peripheral surface of the transfer conveyor belt 60. Foreign matters such as a toner adhering on the transfer conveyor belt 60 are removed by the cleaning device 85. The transfer conveyor belt 60 is driven to convey the recording medium T in an A direction in the figure by conveyor-belt driving rollers 61, 62, 63, and 66, a conveyor-belt armored roller 64, and a conveyor-belt tension roller 65 while being pulled by a spring 69 at a fixed tension set in advance. A belt opposed roller 80 is arranged in a position opposed to the conveyor belt driving roller 61 in a section where the recording medium T starts to be conveyed by the transfer conveyor belt 60.
A fixing unit 7 of a belt fixing system, a sheet discharge tray 8, and a toner supply container TC are provided above the transfer unit 6. In the figure, a waste toner bottle, a duplex/reversal unit, a power supply unit, and the like are provided in a space S indicated by an alternate long and two short dashes line. A sheet feeding unit (a sheet feeding device) 20 are provided in a lower part of the image forming apparatus 100. The sheet feeding unit 20 includes sheet feeding cassettes 4a and 4b in which recording media T are placed and registration rollers 5 that align a leading edge position of the recording medium T with front positions of the image forming units 1Y, 1M, 1C, and 1K. A registration sensor 74 is provided on the upstream side of the registration rollers 5. A boundary sensor 73 is provided on the downstream side of the registration rollers 5. A manual feed tray MF for manually feeding sheets is provided on a side of the image forming apparatus 100.
As shown in
In
The boundary sensor 73 is a transmission photosensor. The boundary sensor 73 includes a light emitting unit 73a that emits light to a conveyance surface of the recording medium T and a light receiving unit 73b that is provided in a position opposed to the light emitting unit 73a and detects the light from the light emitting unit 73a. As shown in
In
Actions and effects of the image forming apparatus according to the first embodiment are explained below. At the time of image formation, a predetermined voltage is applied to a charging roller from a power supply. The charging roller charges the surface of the photosensitive drum 11 opposed to the charging roller. The optical writing unit 3 irradiates a laser beam based on image data on the surface of the photosensitive drum 11 charged at a predetermined potential to write an electrostatic latent image thereon. When the surface of the photosensitive drum 11 carrying the electrostatic latent image reaches the developing device, a toner is supplied to the electrostatic latent image on the surface of the photosensitive drum 11 by the developing roller arranged to be opposed to the photosensitive drum 11. As a result, a toner image is formed on the surface.
The operation described above is applied to all the photosensitive units 2Y, 2M, 2C, and 2K in the same manner at predetermined timing. Toner images of predetermined colors are formed on the surfaces of the photosensitive drums 11Y, 11M, 11C, and 11K, respectively. The recording medium T is conveyed from the sheet feeding cassette 4a or 4b or the manual feed tray MF. When the recording medium T reaches the nip section 5a of the registration rollers 5, the recording medium T temporarily stops (
The toner images on the respective photosensitive drums 11Y, 11M, 11C, and 11K are transferred onto the recording medium T, which has passed the registration rollers 5, one after another while the recording medium T is conveyed by the transfer conveyor belt 60. The transfer conveyor belt 60 transfers the toner images onto the recording medium T according to application of a voltage, which has a polarity opposite to that of the toners on the photosensitive drums 11Y, 11M, 11C, and 11K, from the power supply to primary transfer rollers 67Y, 67M, 67C, and 67K. The primary transfer rollers 67Y, 67M, 67C, and 67K are arranged to be opposed to the photosensitive drums 11Y, 11M, 11C, and 11K across the transfer conveyor belt 60.
When the recording medium T passes a position where the primary transfer roller 67K and the photosensitive drum 11K opposed to each other, the toner images of the four colors are superimposed one on top of another on the recording medium T. Subsequently, the recording medium T is conveyed to the fixing unit 7 and an image 9 is fixed by heat and pressure. In a usual image forming operation, after passing the fixing unit 7, the recording medium T is discharged to the sheet discharge tray 8 through a recording-medium conveyance path indicated by an arrow B in
As described above, according to the first embodiment, the boundary sensor 73 is provided in the position on the downstream side in the recording medium T conveying direction of the registration rollers 5. Thus, it is possible to accurately detect the boundary T3 between the transparent section T1 and the non-transparent section T2 with little difference in an amount of sag and few errors in an amount of biting and the like. Therefore, it is possible to highly accurately form the image 9 in a target position of the transparent section T1 of the recording medium T by using ON/OFF signals received by the light receiving unit 73b as a writing trigger for an image forming unit.
Since the non-transparent section T2 of the recording medium T is white, when the recording medium T is folded along the boundary T3 to superimpose the transparent section T1 and the non-transparent section T2 one on top of the other, it is possible to obtain the image 9 excellent in color reproducibility.
In the following explanation of a second embodiment of the present invention, components that realize actions and effects identical with those in the first embodiment are denoted by the identical reference numerals and signs. Detailed explanations of the components are omitted. Differences from the first embodiment are mainly explained.
In the second embodiment, the image 9 obtained by horizontally reversing an original image is formed on the front surface T4 of the transparent section T1 of the recording medium T as shown in
The image 9 obtained by horizontally or vertically reversing the original image is formed on the front surface T4 of the transparent section T1 of the recording medium T as described above. Consequently, when the recording medium T is folded along the boundary T3 to superimpose the transparent section T1 and the non-transparent section T2 one on top of the other, it is possible to obtain a normal non-reversed image viewed from a non-image surface (the rear surface) T5 of the recording medium T.
It is possible to perform the folding processing for the recording medium T using a folding processing unit of a post-processing device provided next to the image forming apparatus 100.
As described above, according to the second embodiment, it is possible to fold the recording medium T along the boundary T3 between the transparent section T1 and the non-transparent section T2 to superimpose the transparent section T1 and the non-transparent section T2 one on top of the other. Thus, for example, sheet feeding work is easier compared with work for separately feeding a transparent recording medium and a non-transparent recording medium. Moreover, a structure required for superimposing the transparent recording medium and the non-transparent recording medium one on top of the other is unnecessary.
Other than simply folding the transparent section T1 and the non-transparent section T2 to superimpose the sections one on top of the other, the transparent section T1 and the non-transparent section T2 may be bonded after being folded and superimposed one on top of the other. In this case, since the image formation surface is covered with the transparent section T1, the image formation surface is not directly exposed to the outside. This makes it possible to maintain a high-quality image.
As described above, according to the third embodiment, it is possible to freely change an area of the transparent section T1 of the recording medium T. Moreover, it is possible to use the recording medium T for various applications by forming the transparent section T1 large or forming the non-transparent section T2 large. Therefore, convenience of use of the recording medium T is satisfactory.
As described above, according to the fourth embodiment, as shown in
As described above, according to the fifth embodiment, even when the transparent section T1 is provided in an arbitrary position in the recording medium T, it is possible to detect the leading edge T8 and the trailing end T7 in the recording medium T conveying direction, which form boundaries between the transparent section T1 and the non-transparent section T2, using the boundary sensor 73 (not shown in
According to the sixth embodiment, even when the image 9 is formed in the non-transparent section T2, it is possible to detect the boundary T3 between the transparent section T1 and the non-transparent section T2 using the boundary sensor 73 (not shown in
According to the seventh embodiment, it is possible to, making use of a difference between reflectance of the transparent section T1 and reflectance of the non-transparent section T2, detect the boundary T3 between the transparent section T1 and the non-transparent section T2 using the reflected light photosensor. Since it is possible to use the reflected light photosensor, choices of a photosensor are widened. This makes it possible to design a highly-accurate and highly-efficient sheet feeding device.
Embodiments of the present invention are not limited to the first to the seventh embodiments described above. Various modifications of the embodiments are possible without departing from the spirit of the present invention. In the first to the third embodiment, the non-transparent section T2 of the recording medium T is white. However, when a monotone image is outputted instead of a full-color photograph image, the non-transparent section T2 is not limited to white.
For example, as indicated by (b) shown in
It is possible to enlarge and reduce the image with respect to the original image 20M as required. When original data is a mirror image, the mirror image itself is formed in the transparent section 21a. A color, a pattern, and the like of the non-transparent section 21b on the same surface as the recording image 20m affect a background of a finished image when an adhesive described later is transparent. Thus, the non-transparent section 21b is designed as appropriate taking that point into account.
The transparent section 21a is folded back along a boundary O-O between the transparent section 21a and the non-transparent section 21b with the image formation surface, on which the recording image 20m is formed, set on the inner side thereof. In folding back the transparent section 21a, an adhesive is applied to an area overlapping the transparent section 21a (or the image formation surface) on the upper surface of the non-transparent section 21b in advance.
When a layer of the adhesive is not colorless and transparent, the adhesive layer forms a background of a finished image. When the adhesive layer is colorless and transparent, the non-transparent section 21b forms a background of a finished image. If the non-transparent section 21b is reflected on a background of a finished image, it is advisable to make the adhesive layer transparent. If a background of a finished image is set regardless of a color, a pattern, and the like of the non-transparent section 21b, the adhesive layer only has to be made non-transparent. It is considered that, if the adhesive always has a general white color as a background color, it is possible to cope with various images in many cases.
The non-transparent section 21b passes a fixing roller unit or is conveyed by a conveying roller in the image formation process together with the transparent section 21a. Thus, if the adhesive is applied to the non-transparent section 21b and exposed from the beginning, the adhesive sticks to the conveying roller. This is unsuitable for conveyance in the image forming apparatus. Thus, the adhesive only has to be applied to the non-transparent section 21b when the non-transparent section 21b is superimposed on the transparent section 21a after the recording medium 21 passes through the image forming apparatus. Alternatively, when the adhesive is applied to the non-transparent section 21b in advance, a heat-resistance seal only has to be stuck to the surface of the adhesive to protect the adhesive when the non-transparent section 21b passes a heat fixing unit and peeled off when the non-transparent section 21b is superimposed on the transparent section 21a. Moreover, it is also possible to use a heat-sensitive adhesive and impart adhesion to the adhesive after the non-transparent section 21b passes the heat fixing unit at a final step.
The transparent section 21a is integrated with the non-transparent section 21b via the adhesive by folding back the transparent section 21a. In this example, since the area of the transparent section 21a is smaller than that of the non-transparent section 21b, as indicated by (c) shown in
As described above, according to the eighth embodiment, after an image is outputted to the image recording medium, an arbitrary folding-back section located in a boundary between the transparent section 21a and the non-transparent section 21b is folded back to integrate the transparent section 21a and the non-transparent section 21b via the adhesive. This makes it possible to easily obtain a highly glossy photograph image. It is also possible to easily realize creation of a blank section for handwriting a message or the like.
A ninth embodiment of the present invention is explained. The ninth embodiment is the same as the eighth embodiment up to the process for forming the recording image 20m based on the original image 20M in the transparent section 21a of the recording medium 21 as indicated by (b) shown in
The overlapping medium 22 indicated by (e) shown in
As described above, according to the ninth embodiment, the one side 22a of the overlapping medium 22 having the same size as the recording medium 21 is a surface to be the back of an image recording medium finally manufactured. The overlapping medium 22 is integrated with the recording medium 21 via the adhesive without folding back the image recording medium. This makes it possible to easily obtain a highly glossy photograph image.
A cross section of the image recording medium manufactured as described above is shown in
In
In the first to the ninth embodiments, in the image forming apparatus shown in
In an image forming apparatus, a condition that these recording media having transparent sections at least in a part thereof are conveyed through the image forming apparatus is set. As a method of setting the condition, there are, for example, a method in which a user instructs the image forming apparatus to convey the recording media in a setting of sheet feeding means (the sheet feeding cassette 4a) in advance and a method in which the user registers a transparent area (the transparent section 21a) of a specific size in a control unit of the image forming apparatus in advance.
After a transparent section is decided, when it is judged that an image is formed at least in the transparent section decided, the image forming apparatus automatically forms an image reversely. As a result, a reversed image is formed at least in the transparent section 21a on the recording medium after passing the fixing unit 7.
It is possible to easily obtain a photographic image by placing the recording medium obtained above on a white overlapping medium with a print surface (an image formation surface) thereof faced downward. Since the print surface (the image formation surface) is faced downward on the white overlapping medium, the print surface is not directly damaged from the outside. Thus, a storage life of the image is satisfactory. The reversed image is formed in the transparent section and an image component (a toner image) adheres to a transparent base material side.
In general, sizes and resolutions of data such as characters and images that can be recorded in the transparent section are not fixed. Therefore, it is extremely complicated to manually adjust images of different sizes to a size of the transparent section one by one and reverse and output the image.
In the tenth embodiment, it is possible to automatically process a series of operations for enlarging or reducing a size of an image to be outputted to a proper size according to an area decided as transparent by the image forming apparatus and applying reversal operation to the image. A difference between the manual work (the conventional technology) and the automatic work (the tenth embodiment) is schematically described below with general image forming means such as a copying machine or a printer as an example.
A: When a reversed image is formed on a recording medium having a transparent section at least in a part thereof by the manual work
1. Selection of an image
2. Change in a size of image data (enlarge and reduce a size of image data taking into account a resolution and a transparent section size)
3. Reversal of image data
4. Alignment of image data (move image data to the transparent section taking into account the non-transparent section)
5. Print instruction
In general, dedicated application software is separately required for the work in 2 and 3 above. Usually, every time image data is changed and every time a condition of the transparent section is changed, adjustment is required.
B. When the series of operation is automatically executed in the tenth embodiment
1. The user instructs the image forming apparatus to execute printing in the transparent section such as “photographic print”. It is possible to give this instruction using, for example, a setting button for copying and a setting icon on a printer driver.
2. Selection of an image
3. Print instruction (the image is automatically enlarged or reduced properly to a size of the transparent section and reversed)
The image formation in the transparent section by the image forming apparatus is executed by a program of the control unit (not-shown) incidental to the image forming apparatus. The image formation is performed in a procedure shown in
When it is judged at step P-1 that photographic print is selected, the program proceeds to step P-5. The program selects an image that should be printed and instructs the image forming apparatus to print the image. At step P-6, the program checks whether recording media having transparent sections at least in a part thereof are set in a sheet feeding cassette or the like. When the recording media are not set, at step P-7, the program displays an error message. When the recording media are set, the program proceeds to step P-8. The program enlarges or reduces a size of an image to be formed in the transparent section 21a to adjust the size to a size of the transparent section.
At step P-9, the program processes image data to form a reversed image in the transparent section 21a. At step P-10, the program adjusts an image writing position to place the image in the transparent section 21a. Subsequently, the program proceeds to step P-3. At step P-4, the program executes printing of an image at a resolution and in a position conforming to the print instruction.
As described above, according to the tenth embodiment, an image obtained by reversing an original image is formed in the transparent section of the recording medium by the program of the control unit. Finally, a highly glossy photograph image obtained by superimposing the transparent section and the non-transparent section one on top of the other via an adhesive layer is automatically outputted from the image forming apparatus.
In
In a usual post-processing device, to place sheets forming a printed material including a plurality of pages one on top of another in order, the sheets are reversed before entering the post-processing device. In the eleventh embodiment, by providing a not-shown branching device in a portion for the reversal, it is possible to send sheets to the post-processing device without reversing the sheets. In other words, it is possible to realize a way of folding opposite to a way of using a usual center folding device simply by providing the branching device.
The center folding device is generally used to place a plurality of output sheets one on top of another, staple the center of the sheets, and fold the sheets. For a photographic image having a satisfactory storage fife according to the eleventh embodiment, a folding operation is carried out every time one photographic image is obtained. Thus, a reversing operation is unnecessary.
In
In this case, the leading edge of the recording medium 21 conveyed to the roller pair 87 through the roller pair 86 is temporarily conveyed in an H direction in
The image formed as described above is outputted in a form of a toner layer present between the transparent section 21a and the non-transparent section 21b of the recording medium 21 as shown in
Compared with the image surface in
As described above, according to the eleventh embodiment, the center folding device is additionally arranged in the position behind the position where a recording medium passes the fixing unit of the conventional image forming apparatus to automatically apply the center folding processing to the recording medium on which an image is formed. This makes it possible to obtain a highly glossy photographic image.
A twelfth embodiment of the present invention is explained. In the twelfth embodiment, the structure of the center folding device added as the post-processing device of the image forming apparatus is changed. Therefore, in the twelfth embodiment, image formation on an image recording medium is performed according to operations that are the same as those performed by the image forming apparatus according to the first embodiment. A center folding operation after image formation is explained below.
Referring to
Referring to
Since the surface of the recording medium 21 having the image is the transparent section 21a, when the image is seen from the rear surface of the recording medium, the image is a photographic image having uniform glossiness. Since the image surface is not directly touched, a storage life of the image is satisfactory. Moreover, since a surface opposed to the image surface is non-transparent white, a color of the image is clear. Therefore, it is possible to obtain a more preferable image.
A heat-sensitive adhesive layer formed on the non-transparent white surface opposed to the image surface is described below. The heat-sensitive adhesive contains a solid plasticizer and thermoplastic resin emulsion as essential components and is obtained by mixing a tackifier or the like to these components. A heat-sensitive adhesive material is obtained by coating a mixture of these components over a support member.
An adhesive layer surface of the heat-sensitive adhesive material does not show adhesiveness at all at the room temperature. However, the adhesiveness is developed when the heat-sensitive adhesive material is heated by a heat source. The adhesiveness is maintained for a while even after the heat source is removed (an adhesive state is semi-permanently maintained when the heat-sensitive adhesive material is stuck). It is considered that, first, the solid plasticizer is melted by heating and, then, the thermoplastic resin and the tackifier are melted, whereby the adhesiveness is developed.
In the heat-sensitive adhesive material of this type, unlike the general adhesive material, releasing paper is not used. Thus, the heat-sensitive adhesive material is advantageous in terms of resource saving and environmental problems. Moreover, the heat-sensitive adhesive material can be bonded to a member, to which the heat-sensitive adhesive material is bonded, by heating after being brought into contact with the member. Thus, it is possible to prevent a mistake in bonding the heat-sensitive adhesive material.
The inventor has found that low-temperature adhesion is further facilitated by using, as a compound used for the solid plasticizer, at least one kind of compounds having, in particular, a benzoate group, a benzophenone group, a phenylenediamine group, and a benzothiazole group.
As specific examples, as shown in Tables 1 and 2, there is a compound 1 as the compound having the benzoate group, there are compounds 2, 3, and 4 as the compound having the benzophenone group, there are compounds 5 and 6 as the compound having the phenylenediamine group, and there are compounds 7, 8, 9, 10, and 11 as the compound having the benzothiazole group. However, the compounds used for the solid plasticizer are not limited to these compounds.
Among these compounds, in particular, the compound 1 having the benzoate group, the compound 2 having the benzophenone group, the compound 5 having the phenylenediamine group, and the compound 7 having the benzothiazole group have high compatibility with the thermoplastic resin and the tackifier. Thus, these compounds show high adhesiveness under the low-temperature environment.
Examples of the thermoplastic resin emulsion forming the heat-sensitive adhesive layer are described below. However, the thermoplastic resin emulsion is not limited to these examples. Examples of types of the thermoplastic resin emulsion include resin such as a (meta)acrylic ester copolymer, a styrene-isoprene copolymer, a styrene-acrylic ester copolymer, a styrene-butadiene copolymer, an acrylonitrile-butadiene copolymer, an ethylene-vinyl acetate copolymer, a vinyl acetate-acrylic ester copolymer, an ethylene-chloroethylene copolymer, an ethylene-acrylic ester copolymer, a vinyl acetate-ethylene-chloroethylene copolymer, a vinyl acetate-ethylene-acrylic ester copolymer, a vinyl acetate-ethylene-styrene copolymer, polybutadiene, and polyurethane.
It has been found that, it is possible to realize high adhesiveness when the acrylic ester copolymer is used as the thermoplastic resin emulsion of the heat-sensitive adhesive layer and that 2-ethylhexyl acrylate of the acrylic ester copolymer is resin that improves adhesion.
It is possible to add a tackifier to the heat-sensitive adhesive layer to improve adhesion. Specific examples of the tackifier include terpene resin, aliphatic petroleum resin, aromatic petroleum resin, coumarone-indene resin, styrene resin, phenolic resin, terpene phenol resin, and colophonium derivative resin. The tackifier is mixed at a ratio equal to or lower than 2.0 parts per million and preferably at a ratio in a range of 0.2 to 1.5 parts per million to 1.0 parts per million of the thermoplastic resin. When the tackifier exceeding 2.0 parts per million is mixed, blocking tends to occur.
When an anti-blocking agent is added in the heat-sensitive adhesive layer, blocking in the high-temperature environment is further prevented. Examples of the anti-blocking agent include a wax and an inorganic filler. Examples of the anti-blocking agent are listed below. However, the anti-blocking agent is not limited to the examples.
Examples of the wax include waxes such as animal and vegetable waxes and a synthetic wax, higher fatty acid, higher fatty acid amide other than N-hydroxymethyl stearic amide and stearic amide, higher fatty acid anilide, acetylide of aromatic amine, a paraffin wax, a haze wax, a carnauba wax, shellac, a montan wax, paraffin oxide, a polyethylene wax, and polyethylene oxide.
Examples of the higher fatty acid include stearic acid and behenic acid. Examples of the higher fatty acid amide include stearic amide, oleic amide, N-methyl stearic amide, erucamide, methylol behenic amide, methylol stearic amide, methylene bisstearic amide, and ethylene bisstearic amide. Examples of the higher fatty acid anilide include stearic anilide and linoleate anilide. Examples of the acetylide of aromatic amine include acetotoluidide.
Examples of a heat fusion material other than waxes include a leuco dye and a developer generally used for a thermal recording material. The heat fusion materials including the wax desirably have as high a melting point as possible to prevent the heat fusion materials from affecting adhesion.
Examples of the inorganic filler include carbonates, oxides, hydroxides, sulfates, and the like of aluminum, zinc, calcium, magnesium, barium, titanium, and the like and an inorganic pigment containing clays such as natural silica, zeolite, kaolin, and calcined kaolin. These inorganic fillers desirably have as low oil absorption as possible to prevent the inorganic fillers from affecting adhesion.
These anti-blocking agents are mixed at a ratio equal to or lower than 1.5 parts per million and preferably at a ratio in a range of 0.6 to 1.0 parts per million to 1.0 parts per million of the thermoplastic resin. When the anti-blocking agent exceeding 1.5 parts per million is mixed, adhesion tends to fall.
For the purpose of improving adhesion of the heat-sensitive adhesive layer and the support member or cohesion in the heat-sensitive adhesive layer, it is possible to add an aqueous polymeric binder, for example, polyvinyl alcohol, polyvinyl acetate, oxidized starch, etherified starch, a cellulose derivative such as carboxymethyl cellulose or hydroxyethyl cellulose, casein, gelatin, or alginic acid soda to the heat-sensitive adhesive layer.
The aqueous polymeric binder is added at a ratio not spoiling original adhesion of a heat-sensitive adhesive sheet. Specifically, the aqueous polymeric binder is added at a ratio equal to or lower than 30% by weight and preferably equal to or lower than 10% by weight to a total solid content of the heat-sensitive adhesive layer. It is possible to add various additives such as a hardener, antiseptics, a dye, a developer, a pH moderator, and an anti-foaming agent to the heat-sensitive adhesive layer according to the present invention as required.
A melting point of the solid plasticizer and the thermoplastic resin of the heat-sensitive adhesive layer is lower than a melting point of the toner. If the heating is performed at a temperature between the melting points, it is possible to bond heat-sensitive adhesive material to the member without melting the toner and disturbing the image.
As described above, according to the twelfth embodiment, as shown in
Therefore, it is possible to easily obtain a photographic image having a satisfactory storage life, which conventionally requires a complicated structure or a complicated procedure, simply by supplying the non-transparent section and the transparent section of the recording medium to the image forming apparatus. According to the twelfth embodiment, it is possible to use the center folding function in the post-processing device. Therefore, it is possible to automatically obtain a photographic image.
A thirteenth embodiment of the present invention is explained. In the thirteenth embodiment, the structure of the center folding device added as the post-processing device of the image forming apparatus is changed. Therefore, in the thirteenth embodiment, image formation on an image recording medium is performed according to operations that are the same as those performed by the image forming apparatus according to the first embodiment. An internal structure of the image recording medium and a center folding operation after image formation are explained below.
Since the second medium section 101 forms a background color, if a full-color photograph image is outputted, the second medium 10 is usually white. However, if a monotone image is outputted, it is not particularly necessary to limit a color of the second medium section 101 to white. A user may select the color of the second medium section 101 as the user likes.
In this way, in the recording medium section 110a having the transparent section 102 at least in a part thereof, an image is formed on the recording medium by horizontally or vertically reversing an original image. Thus, when the image is seen from a non-image surface of the transparent recording medium, that is, when the image after output of the image recording medium is seen, it is possible to obtain a normal image that is not reversed.
According to the thirteenth embodiment, in the recording medium section 110a having the transparent section 102 at least in a part thereof, at least the surface of the image formation surface 104 of the transparent section 102 is smooth. Thus, it is possible to obtain a photographic image that is smooth and adheres to the image formation surface 104.
The heat-sensitive adhesive layer formed on the second medium section 101 is described below.
The inventor has found that low-temperature adhesion is further facilitated by using, as a compound used for the solid plasticizer, at least one kind of compounds having, in particular, a benzoate group, a benzophenone group, a phenylenediamine group, and a benzothiazole group. As specific examples, as shown in Tables 1 and 2, there is a compound 1 as the compound having the benzoate group, there are compounds 2, 3, and 4 as the compound having the benzophenone group, there are compounds 5 and 6 as the compound having the phenylenediamine group, and there are compounds 7, 8, 9, 10, and 11 as the compound having the benzothiazole group. However, the compounds used for the solid plasticizer are not limited to these compounds. Among these compounds, in particular, the compound 1 having the benzoate group, the compound 2 having the benzophenone group, the compound 5 having the phenylenediamine group, and the compound 7 having the benzothiazole group have high compatibility with the thermoplastic resin and the tackifier. Thus, these compounds show high adhesiveness under the low-temperature environment.
Examples of the thermoplastic resin emulsion forming the heat-sensitive adhesive layer are described below. However, the thermoplastic resin emulsion is not limited to these examples. Examples of types of the thermoplastic resin emulsion include resin such as a (meta)acrylic ester copolymer, a styrene-isoprene copolymer, a styrene-acrylic ester copolymer, a styrene-butadiene copolymer, an acrylonitrile-butadiene copolymer, an ethylene-vinyl acetate copolymer, a vinyl acetate-acrylic ester copolymer, an ethylene-chloroethylene copolymer, an ethylene-acrylic ester copolymer, a vinyl acetate-ethylene-chloroethylene copolymer, a vinyl acetate-ethylene-acrylic ester copolymer, a vinyl acetate-ethylene-styrene copolymer, polybutadiene, and polyurethane. It has been found that, it is possible to realize high adhesiveness when the acrylic ester copolymer is used as the thermoplastic resin emulsion of the heat-sensitive adhesive layer and 2-ethylhexyl acrylate of the acrylic ester copolymer is resin that improves adhesion.
It is possible to add a tackifier to the heat-sensitive adhesive layer to improve adhesion. Specific examples of the tackifier include terpene resin, aliphatic petroleum resin, aromatic petroleum resin, coumarone-indene resin, styrene resin, phenolic resin, terpene phenol resin, and colophonium derivative resin. The tackifier is mixed at a ratio equal to or lower than 2.0 parts per million and preferably at a ratio in a range of 0.2 to 1.5 parts per million to 1.0 parts per million of the thermoplastic resin. When the tackifier exceeding 2.0 parts per million is mixed, blocking tends to occur.
When an anti-blocking agent is added in the heat-sensitive adhesive layer, blocking in the high-temperature environment is further prevented. Examples of the anti-blocking agent include a wax and an inorganic filler. Examples of the anti-blocking agent are listed below. However, the anti-blocking agent is not limited to the examples.
Examples of the wax include waxes such as animal and vegetable waxes and a synthetic wax, higher fatty acid, higher fatty acid amide other than N-hydroxymethyl stearic amide and stearic amide, higher fatty acid anilide, acetylide of aromatic amine, a paraffin wax, a haze wax, a carnauba wax, shellac, a montan wax, paraffin oxide, a polyethylene wax, and polyethylene oxide. Examples of the higher fatty acid include stearic acid and behenic acid. Examples of the higher fatty acid amide include stearic amide, oleic amide, N-methyl stearic amide, erucamide, methylol behenic amide, methylol stearic amide, methylene bisstearic amide, and ethylene bisstearic amide. Examples of the higher fatty acid anilide include stearic anilide and linoleate anilide. Examples of the acetylide of aromatic amine include acetotoluidide. Examples of a heat fusion material other than the waxes include a leuco dye and a developer generally used for a thermal recording material. The heat fusion materials including the wax desirably have as high a melting point as possible to prevent the heat fusion materials from affecting adhesion. Examples of the inorganic filler include carbonates, oxides, hydroxides, sulfates, and the like of aluminum, zinc, calcium, magnesium, barium, titanium, and the like and an inorganic pigment containing clays such as natural silica, zeolite, kaolin, and calcined kaolin. These inorganic fillers desirably have as low oil absorption as possible to prevent the inorganic fillers from affecting adhesion. These anti-blocking agents are mixed at a ratio equal to or lower than 1.5 parts per million and preferably at a ratio in a range of 0.6 to 1.0 parts per million to 1.0 parts per million of the thermoplastic resin. When the anti-blocking agent exceeding 1.5 parts per million is mixed, adhesion tends to fall.
For the purpose of improving adhesion of the heat-sensitive adhesive layer and the support member or cohesion in the heat-sensitive adhesive layer, it is possible to add an aqueous polymeric binder, for example, polyvinyl alcohol, polyvinyl acetate, oxidized starch, etherified starch, a cellulose derivative such as carboxymethyl cellulose or hydroxyethyl cellulose, casein, gelatin, or alginic acid soda to the heat-sensitive adhesive layer. The aqueous polymeric binder is added at a ratio not spoiling original adhesion of a heat-sensitive adhesive sheet. Specifically, the aqueous polymeric binder is added at a ratio equal to or lower than 30% by weight and preferably equal to or lower than 10% by weight to a total solid content of the heat-sensitive adhesive layer. It is possible to add various additives such as a hardener, antiseptics, a dye, a developer, a pH moderator, and an anti-foaming agent to the heat-sensitive adhesive layer according to the present invention as required.
The heat-sensitive adhesive layer is formed in the second medium section 101. The heat-sensitive adhesive layer does not show adhesiveness at all at the room temperature. Thus, there are advantages that it is possible to stock the image recording medium 110 in the sheet feeding tray with one placed on top of another and it is possible to easily convey the medium without providing a special peeling layer. In
When image formation is performed using a toner in the normal electrophotographic system, it is necessary to fix a toner image first. Usually, since the fixing is performed by heating, only an area having the toner image formed thereon of the recording medium section 110a in the image recording medium 110 is moved through a fixing device 92. The second medium section 101 having the heat-sensitive adhesive layer 101a formed therein has to be prevented from being moved through the fixing device 92.
An example of a method for conveyance of the image recording medium 110 is explained with reference to
When a toner is a toner of a non-heat fixing type that is fixed by a chemical rather than by heating, it is easy to treat the second medium section 101 because heat is not used. Thus, the second medium section 101 may also be moved through the fixing device 92.
After the image recording medium 110 is led to the folding device 120 ((a) shown in
In this way, when an image is formed on the image recording medium 110 using the toner, after a toner image is fixed on the image recording medium 110 having the transparent section 102 at least in a part thereof, bending of the image recording medium 110 by the folding device 120 and heat-bonding of the image recording medium 110 by the heating device are performed. Thus, it is possible to fold and bond the image recording medium 110 without disturbing the image on the image recording medium 110.
In this case, a concave line 105 is provided (
As indicated by (b) shown in
After the folding, it is necessary to bond the surfaces of the image recording medium 110 superimposed one on top of the other. Thus, the image recording medium 110 is led to the heating device to activate the heat-sensitive adhesive layer. The heating device may be provided separately from the folding device. However, the image forming apparatus has a simplest structure if the folding rollers 121 also serve as the heating device.
A melting point of the solid plasticizer and the thermoplastic resin of the heat-sensitive adhesive layer is lower than a melting point of the toner. If the heating is performed at a temperature lower than the melting point of the toner and higher than the melting point of the solid plasticizer and the thermoplastic resin, it is possible to bond the surfaces without melting the toner and disturbing the image.
The image forming apparatus also has a path for discharging the image recording medium 110 or conveying the image recording medium 110 to the next process unit without conveying the medium through the folding device and the heating device according to the switching by the conveyance-path switching pawl 122. As the next processing unit, there are a reversal unit for duplex printing, a staple, a center binding unit, a punching unit, a bookbinding unit. This shortcut path is a conveyance path at the time of usual printing in which the second medium is unnecessary and photographic print is not performed. This is a conveyance path necessary for universality of the image forming apparatus. Naturally, it is judged on software whether photographic print is performed or normal print is performed according to a print mode set by the user and the conveyance-path switching pawl 122 is actuated according to the judgment to switch the conveyance path.
As described above, according to the thirteenth embodiment, the image forming apparatus also has the path for discharging the image recording medium 110 or conveying the image recording medium 110 to the next process unit without conveying the medium through the folding device and the heating device. Thus, it is possible to cope with not only conveyance of the recording medium, with which a photographic image quality can be obtained, according to the thirteenth embodiment but also conveyance of other image recording media.
A fourteenth embodiment of the present invention is explained. In the fourteenth embodiment, a fixing device also serves as a heating device. Therefore, in the fourteenth embodiment, image formation on an image recording medium is performed according to operations that are the same as those performed by the image forming apparatus according to the first embodiment. An internal structure of the image recording medium and a center folding operation after image formation are explained below.
In this case, as in the case described above, the image forming apparatus has a shortcut conveyance path for usual printing in which the second medium section 101 is unnecessary and photographic print is not performed. The conveyance path is explained with reference to
As described above, according to the fourteenth embodiment, in the image recording medium 110, the recording medium section 110a having the transparent section 102 at least in a part thereof and the second medium section 101 including the heat-sensitive adhesive layer at least on one side thereof are arranged side by side on one sheet. After an image is formed in the recording medium section 110a, the image recording medium 110 is folded to bond the image formation surface of the recording medium section 110a and the surface of the second medium section 101 on which the heat-sensitive adhesive layer is formed. Consequently, an integral medium is formed. The image forming apparatus includes the folding device that folds at least the image recording medium 110 and the heating device that heats the image recording medium 110 folded by the folding device. Thus, the image forming apparatus is excellent in a medium stock property, a medium setting property, and a medium conveyance property in the process of forming a photographic image having a satisfactory storage life.
Furthermore, the image forming apparatus has a selecting unit that selects a medium conveyance path for an arbitrary medium. This makes it possible to switch a conveyance path for a medium that requires a photographic image quality and a medium that does not require the photographic image quality.
Moreover, the selecting unit selects a medium conveyance path according to a print mode. This makes it possible to associate the print mode and necessity of the photographic image quality.
Although the invention has been described with respect to a specific embodiment for a complete and clear disclosures the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art that fairly fall within the basic teaching herein set forth.
Number | Date | Country | Kind |
---|---|---|---|
2006-008207 | Jan 2006 | JP | national |
2006-027582 | Feb 2006 | JP | national |
2006-156714 | Jun 2006 | JP | national |
2006-190133 | Jul 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3317038 | Bade et al. | May 1967 | A |
4063641 | Kuehn et al. | Dec 1977 | A |
4721635 | Helinski | Jan 1988 | A |
5223357 | Lovison | Jun 1993 | A |
5303003 | Jamzadeh | Apr 1994 | A |
5337132 | Cherian | Aug 1994 | A |
6121989 | Song | Sep 2000 | A |
6718145 | Ohta et al. | Apr 2004 | B2 |
7260354 | Ishida | Aug 2007 | B2 |
20030044189 | Okitsu et al. | Mar 2003 | A1 |
20050196203 | Tsuda et al. | Sep 2005 | A1 |
20060133871 | Ishida | Jun 2006 | A1 |
20070025782 | Tamura et al. | Feb 2007 | A1 |
20080013976 | Tsuda et al. | Jan 2008 | A1 |
20080135160 | Iwasaki et al. | Jun 2008 | A1 |
20080236736 | Nakamura et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
1 352 863 | Oct 2003 | EP |
SHO 61-102569 | Jun 1986 | JP |
63-113576 | May 1988 | JP |
05-035151 | Feb 1993 | JP |
07-056409 | Mar 1995 | JP |
07-080971 | Mar 1995 | JP |
3047065 | Jan 1998 | JP |
10-123879 | May 1998 | JP |
10-278183 | Oct 1998 | JP |
2000-321842 | Nov 2000 | JP |
2001-001560 | Jan 2001 | JP |
2001-305894 | Nov 2001 | JP |
2002-019392 | Jan 2002 | JP |
2002-341623 | Nov 2002 | JP |
2002-372931 | Dec 2002 | JP |
2003-015524 | Jan 2003 | JP |
2003-029581 | Jan 2003 | JP |
2003-091110 | Mar 2003 | JP |
2003-206455 | Jul 2003 | JP |
2003-208114 | Jul 2003 | JP |
2003-270991 | Sep 2003 | JP |
2003-291533 | Oct 2003 | JP |
2004-037565 | Feb 2004 | JP |
2004-045874 | Feb 2004 | JP |
2004-184553 | Jul 2004 | JP |
2004-191678 | Jul 2004 | JP |
2004-302044 | Oct 2004 | JP |
2005-008417 | Jan 2005 | JP |
2005-010529 | Jan 2005 | JP |
2006-076239 | Mar 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20070164505 A1 | Jul 2007 | US |