This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2010-238008 filed on Oct. 22, 2010.
1. Technical Field
The present invention relates to a sensing device, and to an image forming device that is equipped with the sensing device.
2. Related Art
An image reading section (sensing device) provided in an image forming device has been disclosed. The image reading section is disposed at the downstream side of an image forming section on a sheet conveying path and that reads the image on the sheet that was subjected to image formation at the image forming section. An opposing member, that has plural reference surfaces and is rotatably provided, and an image reading portion, that reads the reference surfaces provided at the opposing member, are provided at the image reading section.
According to an aspect of the invention, there is provided a sensing device including: a sensing section having an illuminating section that illuminates light toward a conveying path on which a recording medium is conveyed, and a light-receiving section that receives reflected light of light illuminated from the illuminating section, the sensing section sensing an image on the recording medium that is conveyed on the conveying path; a housing that accommodates the illuminating section; a covering member, that is freely installed at and removed from the housing, having a transmitting member through which the light illuminated from the illuminating section is transmitted, the covering member covering the housing; and a setting section disposed at a side, of the covering member, opposite a side at which the housing is disposed, the setting section being freely installed at and removed from the housing, and having a setting surface that sets a position at which the recording medium reflects light, wherein, at a positioning portion of the setting section, the covering member is positioned at least in a direction perpendicular to the setting surface.
An exemplary embodiment of the present invention will be described in detail based on the following figures, wherein:
Examples of a sensing device and an image forming device relating to an exemplary embodiment of the present invention are described in accordance with
(Overall Structure)
An image forming device 10 relating to the present exemplary embodiment forms full-color images or black-and-white images. As shown in
An image signal processing section 13, that carries out image processings on image data that is sent-in from external devices such as computers or the like, is provided in the upper portion of the second housing 10B.
On the other hand, toner cartridges 14V, 14W, 14Y, 14M, 14C, 14K, that accommodate respective toners of a first special color (V), a second special color (W), yellow (Y), magenta (M), cyan (C), black (K), are replaceably provided in the upper portion of the first housing 10A along the horizontal direction.
Note that the first special color and the second special color are appropriately selected from colors (including transparent) other than yellow, magenta, cyan and black. Further, in the following description, when differentiating among the first special color (V), the second special color (W), yellow (Y), magenta (M), cyan (C) and black (K) for the respective structural parts, one of the letters V, W, Y, M, C, K is appended to the reference numeral. If not differentiating among the first special color (V), the second special color (W), yellow (Y), magenta (M), cyan (C) and black (K), the letter V, W, Y, M, C, K, is omitted.
Six image forming units 16 corresponding to the toners of the respective colors are provided along the horizontal direction beneath the toner cartridges 14, so as to correspond to the respective toner cartridges 14.
An exposure device 40, that is provided for each of the image forming units 16, is structured so as to receive, from the image signal processing section 13, image data that has been subjected to image processings by the image signal processing section 13, and illuminates a light beam L, that is modulated in accordance with this image data, onto an image holding body 18 that is described hereafter (refer to
As shown in
Provided at the periphery of each of the image holding bodies 18 are: a corona discharge type (non-contact charging type) scorotron charger 20 that charges the image holding body 18; a developing device 22 that develops, by a developer, the electrostatic latent image that is formed on the image holding body 18 by the exposure device 40; a blade 24 serving as a removing member that removes the developer remaining on the image holding body 18 after transfer; and a charge-removing device 26 that carries out charge removal by illuminating light onto the image holding body 18 after transfer.
The scorotron charger 20, the developing device 22, the blade 24 and the charge-removing device 26 are disposed so as to face the surface of the image holding body 18, in that order from the rotating direction upstream side of the image holding body 18 toward the downstream side.
The developing device 22 is structured to include a developer accommodating member 22A that accommodates a developer G containing toner, and a developing roller 22B that supplies, to the image holding body 18, the developer G that is accommodated in the developer accommodating member 22A. The developer accommodating member 22A is connected to the toner cartridge 14 (see
As shown in
The intermediate transfer belt 34 is trained around a drive roller 38 that is driven by an unillustrated motor, a tension imparting roller 41 that imparts tension to the intermediate transfer belt 34, an opposing roller 42 that opposes a secondary transfer roller 62 that will be described hereinafter, and plural training rollers 44. The intermediate transfer belt 34 is circulated in one direction (counterclockwise direction in
The respective primary transfer rollers 36 are disposed so as to oppose the image holding bodies 18 of the respective image forming units 16, with the intermediate transfer belt 34 nipped therebetween. A transfer bias voltage, that is the opposite polarity of the toner polarity, is applied to the primary transfer rollers 36 by an electricity supplying unit (not shown). Due to this structure, the toner images formed on the image holding bodies 18 are transferred onto the intermediate transfer belt 34.
A removing device 46, that causes a blade to contact the intermediate transfer belt 34 and removes residual toner, paper dust, and the like that are on the intermediate transfer belt 34, is provided at the opposite side of the drive roller 38 with the intermediate transfer belt 34 sandwiched therebetween.
Two recording media accommodating sections 48, that accommodate recording media P that are examples of media such as sheets or the like, are provided along the horizontal direction beneath the transfer section 32.
The recording media accommodating sections 48 can be pulled-out freely from the first housing 10A. A feed-out roller 52, that feeds the recording medium P out from the recording media accommodating section 48 to a conveying path 60, is provided above one end side (the right side in
A bottom plate 50 on which the recording media P are placed is provided within each of the recording media accommodating sections 48. When the recording media accommodating section 48 is pulled-out from the first housing 10A, the bottom plate 50 is lowered due to the instruction of an unillustrated control section. Due to the bottom plate 50 being lowered, a space into which a user replenishes the recording media P is formed in the recording media accommodating section 48.
When the recording media accommodating section 48 that has been pulled-out from the first housing 10A is set in the first housing 10A, the bottom plate 50 rises up due to the instruction of the control section. Due to the bottom plate 50 rising up, the uppermost recording medium P that is set on the bottom plate 50 and the feed-out roller 52 contact one another.
Separating rollers 56, that separate one-by-one the recording media P that are fed-out from the recording media accommodating section 48 in a state of being superposed one another, are provided at the recording medium conveying direction downstream side (hereinafter simply called “downstream side” upon occasion) of the feed-out roller 52. Plural conveying rollers 54, that convey the recording medium P to the conveying direction downstream side, are provided at the downstream side of the separating rollers 56.
The conveying path 60, that is provided between the recording media accommodating sections 48 and the transfer section 32, extends to a transfer position T between the secondary transfer roller 62 and the opposing roller 42, so as to turn the recording medium P, that is fed-out from the recording media accommodating section 48, back toward the left side in
A transfer bias voltage of the opposite polarity as the toner polarity is applied by an electricity supplying section (not shown) to the secondary transfer roller 62. Due to this structure, the toner images of the respective colors, that have been transferred onto the intermediate transfer belt 34 so as to be superposed one on another, are secondarily transferred, by the secondary transfer roller 62, onto the recording medium P that is conveyed-in along the conveying path 60.
A spare path 66 that extends from the side surface of the first housing 10A is provided so as to merge into the second turn-back section 60B of the transfer path 60. The recording medium P, that is fed-out from another recording media accommodating section (not shown) that is disposed adjacent to the first housing 10A, is fed-into the conveying path 60 through the spare path 66.
Plural conveying belts 70, that convey the recording medium P on which the toner images have been transferred toward the second housing 10B, are provided in the first housing 10A at the downstream side of the transfer position T. A conveying belt 80, that conveys downstream the recording medium P that has been conveyed by the conveying belts 70, is provided in the second housing 10B.
Each of the plural conveying belts 70 and the conveying belt 80 is formed in an annular shape and is trained around a pair of training rollers 72. The pair of training rollers 72 are disposed at the recording medium P conveying direction upstream side and downstream side, respectively. Due to one of the training rollers 72 being driven to rotate, the conveying belt 70 (the conveying belt 80) is circulated in one direction (clockwise direction in
A fixing unit 82 that fixes the toner images, that have been transferred onto the surface of the recording medium P, to the recording medium P by heat and pressure is provided at the downstream side of the conveying belt 80.
The fixing unit 82 has a fixing belt 84 and a pressure-applying roller 88 that is disposed so as to contact the fixing belt 84 from the lower side thereof. A fixing portion N, at which pressure is applied to the recording medium P and the recording medium P is heated such that the toner images are fixed thereon, is formed between the fixing belt 84 and the pressure-applying roller 88.
The fixing belt 84 is formed in an annular shape, and is trained around a drive roller 89 and a driven roller 90. The drive roller 89 opposes the pressure-applying roller 88 from the upper side thereof, and the driven roller 90 is disposed further toward the upper side than the drive roller 89.
A heating portion, such as a halogen heater or the like, is incorporated in each of the drive roller 89 and the driven roller 90. The fixing belt 84 is heated thereby.
As shown in
A cooling unit 110, that cools the recording medium P heated by the fixing unit 82, is provided at the downstream side of the conveying belt 108.
The cooling unit 110 has an absorbing device 112 that absorbs the heat of the recording medium P, and a pushing device 114 that pushes the recording medium P against the absorbing device 112. The absorbing device 112 is disposed at one side of the conveying path 60 (the upper side in
The absorbing device 112 has an absorbing belt 116 that is annular and contacts the recording medium P and absorbs the heat of the recording medium P. The absorbing belt 116 is trained around a drive roller 120 that transmits driving force to the absorbing belt 116, and plural training rollers 118.
A heat sink 122, that is formed of an aluminum material and planarly contacts the absorbing belt 116 and dissipates the heat that the absorbing belt 116 has absorbed, is provided at the inner peripheral side of the absorbing belt 116.
Fans 128, for taking heat from the heat sink 122 and exhausting hot air to the exterior, are disposed at the rear side of the second housing 10B (the far side in the depthwise direction of
The pushing device 114, that pushes the recording medium P against the absorbing device 112, has a pushing belt 130 that is annular and conveys the recording medium P while pushing the recording medium P against the absorbing belt 116. The pushing belt 130 is trained around plural training rollers 132.
A correcting device 140 that nips and conveys the recording medium P and corrects curving (curling) of the recording medium P, is provided at the downstream side of the cooling unit 110.
An inline sensor 200, that serves as an example of a sensing device that senses toner density defects, image defects and image position defects of the toner images fixed on the recording medium, and the position and the shape and the like of the recording medium P, is provided at the downstream side of the correcting device 140. Details of the inline sensor 200 are described later.
Discharging rollers 198, that discharge the recording medium P, on whose one side an image has been formed, out to a discharging section 196 that is mounted to the side surface of the second housing 10B, are provided at the downstream side of the inline sensor 200.
On the other hand, when images are to be formed on both surfaces, the recording medium P that is sent-out from the inline sensor 200 is conveyed to an inversion path 194 that is provided at the downstream side of the inline sensor 200.
Provided at the inversion path 194 are: a forked-off path 194A that is forked-off from the conveying path 60; a sheet conveying path 194B, that conveys, toward the first housing 10A side, the recording medium P that is conveyed along the forked-off path 194A; and an inverting path 194C that turns the recording medium P, that is conveyed along the sheet conveying path 194B, back in the opposite direction so as to switchback-convey the recording medium P and invert the obverse and reverse thereof.
Due to this structure, the recording medium P that is switchback-conveyed at the inverting path 194C is conveyed toward the first housing 10A, and further, is fed into the conveying path 60 provided above the recording media accommodating sections 48 and is again fed to the transfer position T.
The image forming processes of the image forming device 10 are described next.
The image data that has been subjected to image processings at the image signal processing section 13 is sent to the respective exposure devices 40. At the exposure devices 40, the respective light beams L are emitted in accordance with the image data and expose the respective image holding bodies 18 that have been charged by the scorotron chargers 20, such that electrostatic latent images are formed.
As shown in
As shown in
The toner images of the respective colors that have been transferred onto the intermediate transfer belt 34 so as to be superposed one on another, are secondarily-transferred, by the secondary transfer roller 62, onto the recording medium P that is conveyed-in from the recording media accommodating section 48. The recording medium P, on which the toner images have been transferred, is conveyed by the conveying belts 70 toward the fixing unit 82 that is provided within the second housing 10B.
The toner images of the respective colors on the recording medium P are fixed to the recording medium P by heat and pressure being applied thereto by the fixing unit 82. Further, the recording medium P on which the toner images have been fixed passes through the cooling unit 110 and is cooled, and thereafter, is sent into the correcting device 140 such that curvature that has arisen at the recording medium P is corrected.
Image defects and the like of the recording medium P, whose curving has been corrected, are detected by the inline sensor 200. Thereafter, the recording medium P is discharged-out to the discharging section 196 by the discharging rollers 198.
On the other hand, if an image is to be formed on the non-image surface at which an image has not been formed (i.e., if double-sided printing is to be carried out), after passing through the inline sensor 200, the recording medium P is inverted at the inversion path 194, and is fed-into the conveying path 60 provided above the recording media accommodating sections 48. Toner images are formed on the reverse surface of the recording medium P by the processes described above.
Note that, in the image forming device 10 relating to the present exemplary embodiment, the parts for forming the images of the first special color and the second special color (the image forming units 16V, 16W, the exposure devices 40V, 40W, the toner cartridges 14V, 14W, the primary transfer rollers 36V, 36W) are structured so as to be able to be installed in the first housing 10A as additional parts in accordance with the selection of the user. Accordingly, the image forming device 10 may be structured so as to not have parts for forming images of a first special color and a second special color, or may be structured so as to have only parts for forming the image of either one color among a first special color and a second special color.
The inline sensor 200 is described next.
In the following description, the length direction of the image forming device 10 (the subscanning direction that is the conveying direction of the recording medium P) is called the X direction, the height direction of the device is called the Y direction, and the depth direction of the device (the main scanning direction) is called the Z direction. The X direction, the Y direction and the Z direction are perpendicular to one another. Further, in the following description, “front surface” refers to the surface of the device that is shown in
(Basic Structure and Functions of Inline Sensor)
As shown in
Note that the light from the recording medium P includes reflected light that was reflected at the recording medium P and transmitted light that was transmitted through the recording medium P. In a broader sense, the light from the recording medium P is light that makes it possible to sense information relating to the image formed on the recording medium P and the position and shape of the recording medium P. Further, transmission includes, in addition to light passing through a window glass or the like, light passing through an imaging lens or the like as well. Moreover, sensing of the recording medium P includes sensing of the position and shape of the recording medium P.
The illuminating section 202 is disposed at the upper side of the conveying path 60 of the recording medium P, and has a pair of lamps 212. The lamps 212 are xenon lamps whose lengths are in the Z direction, and the lengths of the ranges of illumination thereof are greater than the width of the largest recording medium P that is conveyed. The pair of lamps 212 are disposed symmetrically around an optical axis OA (the optical axis from the standpoint of design) that is reflected by the recording medium P and heads toward the imaging section 208. More specifically, the lamps 212 are disposed so as to be symmetrical to one another with respect to the optical axis OA and such that the angles of illumination onto the recording medium P are respectively 45° to 50°.
In detail, the pair of lamps 212 includes a first lamp 212A that is provided at the upstream side in the conveying direction of the recording medium P, and a second lamp 212B that is provided at the side opposite the first lamp 212A with the optical axis OA therebetween.
The imaging optical system 206 is structured with the main portions thereof being: a first mirror 214 that reflects, in the X direction (in the present exemplary embodiment, toward the downstream side in the conveying direction of the recording medium P), the light that is led along the optical axis OA; a second mirror 216 that reflects upward the light reflected by the first mirror 214; a third mirror 218 that reflects, toward the upstream side in the conveying direction of the recording medium P, the light reflected by the second mirror 216; and a lens 220 that collects (images), onto the CCD sensor 204, the light reflected by the third mirror 218. The CCD sensor 204 is disposed at the upstream side, in the conveying direction of the recording medium P, with respect to the optical axis OA.
The length in the Z direction of the first mirror 214 is greater than the width of the largest recording medium P. The first mirror 214, the second mirror 216 and the third mirror 218 reflect the reflected light of the recording medium P that is incident on the imaging optical system 206, while respectively narrowing the light in the Z direction (the main scanning direction). Due thereto, reflected light from respective portions in the transverse direction of the recording medium P are made incident on the lens 220 that is substantially cylindrical.
Due to the above structure, at the inline sensor 200, the CCD sensor 204 outputs (feeds-back) signals, that correspond to the imaged light, i.e., the image density, to a control device 192 (see
Further, a light amount narrowing portion 224 is provided between the third mirror 218 and the lens 220 at the imaging optical system 206. The light amount narrowing portion 224 narrows, in the Y direction (a direction intersecting the main scanning direction), the light amount of the light that traverses the optical path in the Z direction and is imaged on the CCD sensor 204, and is structured so as to be able to adjust the amount of narrowing of the light amount by being operated from the exterior. The amount of narrowing of the light amount by the light amount narrowing portion 224 is adjusted such that, even if the amount of light emitted from each of the lamps 212 varies over time, the light amount that is imaged on the CCD sensor 204 is a predetermined amount. Details are described later.
On the other hand, the setting section 210 has a reference roller 226 that is long in the Z direction. The reference roller 226 has: a detection reference surface 228 that is directed toward the conveying path 60 side at the time of carrying out image detection of the recording medium P; a withdrawn surface 230 that is directed toward the conveying path side when image detection of the recording medium P by the inline sensor 200 is not carried out; white reference surfaces 232; a color reference surface 234 at which patterns of multiple colors are formed along the longitudinal direction; and a combined test surface 236 at which plural patterns for testing are formed. In the present exemplary embodiment, the reference roller 226 is formed in the shape of a polygonal tube at which eight or more surfaces are formed in the peripheral direction. One of each of the detection reference surface 228, the withdrawn surface 230, the color reference surface 234, and the combined test surface 236 are provided, and two of the white reference surfaces 232 are provided.
The reference roller 226 is structured such that the surface thereof that is directed toward the conveying path 60 is switched due to the reference roller 226 rotating around a rotating shaft 226A. The switching of the surface of the reference roller 226 is carried out by a control circuit that is provided at a circuit board 262 that is described later. Further, by forming the reference roller 226 in the shape of a polygonal tube more than an octagonal shape, the difference in the distances, with respect to the center of rotation, of the peripheral direction centers of the respective surfaces and the corner portions between the surfaces is kept small. Due thereto, the corner portions between the surfaces of the reference roller 226 do not interfere with the illuminating section 202, while the distances between the respective surfaces of the reference roller 226 and the illumination positions of the respective lamps 212 (the window glass 286 that is described later) are kept small.
The width in the peripheral direction of the detection reference surface 228 is smaller than those of the other surfaces. The surfaces at the both peripheral direction sides of the detection reference surface 228 are guide surfaces 238 that do not function as the above-described references. The detection reference surface 228 is a setting surface (position reference surface) that sets the position of the surface (reflection surface) to be detected (to be read) of the recording medium P that is conveyed.
The width in the peripheral direction of the withdrawn surface 230 is larger than those of the other surfaces. The withdrawn surface 230 is a guide surface that guides the recording medium P when image detection of the recording medium P by the inline sensor 200 is not carried out. The distance to the withdrawn surface 230 from the axial center of the rotating shaft 226A is smaller than that of the detection reference surface 228. Due thereto, when image detection of the recording medium P by the inline sensor 200 is not carried out, a conveying path is formed at which the interval between the withdrawn surface 230 and the illuminating section 202 (the window glass 286) is wider than when image detection of the recording medium P by the inline sensor 200 is carried out.
The white reference surface 232 is for calibration of the imaging optical system 206, and is structured by adhering a reference white film such that a predetermined signal is outputted from the imaging optical system 206. The color reference surface 234 is for calibration of the imaging optical system 206, and is structured by adhering a film at which are formed patterns of reference colors such that predetermined signals are outputted from the imaging optical system 206 in accordance with the respective colors.
As shown in
The position detection pattern 240 is structured by adhering a film having a white background on which a pattern, that is the letter “N” in black, is formed such that the vertical lines of the letter “N” run along the conveying direction of the recording medium P. The focus detection pattern 242 is structured by adhering a film having a white background on which is formed a ladder pattern that is as if numerous black straight lines are lined-up along the transverse direction of the recording medium P.
The depth detection pattern 244 is formed by a film having a white background being adhered to steps at which three depth detection portions 244A, 244B, 244C, whose distances from the rotating shaft 226A of the reference roller 226 are different from one another, are arrayed in the form of steps in the longitudinal direction of the combined test surface 236.
At least one of the position detection patterns 240 is provided at each of the longitudinal direction both ends of the combined test surface 236. The focus detection patterns 242 are disposed so as to be adjacent to the position at the longitudinal direction central sides of the combined test surface 236 with respect to the position detection patterns 240 disposed at the aforementioned both ends. A total of three of the depth detection patterns 244 are provided, at both end sides and at the central portion in the longitudinal direction of the combined test surface 236. In the present exemplary embodiment, a further one of each of the position detection pattern 240 and the focus detection pattern 242 are provided between the depth detection pattern 244 disposed in the center and the depth detection pattern 244 disposed at one longitudinal direction end.
The processes of calibration of the CCD sensor 204 are described next.
As shown in
After the detection position in the conveying direction of the recording medium P is adjusted, the focal point of the CCD sensor 204 is confirmed by the focus detection pattern 242, and the illumination depth is confirmed by the depth detection pattern 244.
Further, the color reference surface 234 is directed toward the conveying path 60 of the recording medium P. The CCD sensor 204 is automatically adjusted such that a signal of a predetermined intensity is outputted at each color.
Note that the calibration of the CCD sensor 204 as described above is carried out, for example, when the power of the image forming device 10 is turned on (around one time per day). On the other hand, the calibration of the image forming device 10 based on the signals of the CCD sensor 204 (the above-described adjustment of the exposure devices 40 and the like) is carried out, for example, each time a job that forms images on a predetermined amount or more of the recording media P is completed (around 10 times per day).
(Divided Structure of Inline Sensor)
As shown in
As shown in
As shown in
As shown in
In order to fix the upper unit 248 to the second housing 10B such that the rear cover 404 is pushed against the receiving frame 408, the upper unit 248 and the receiving frame 408 are fastened together by using elongated screws 412 that are inserted and pass through the upper unit 248 from the front side toward the rear side. By using the elongated screws 412, fastening by screws can be carried out with good workability from the front side.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
When the lower drawer 400 is pushed into the second housing 10B and the lower unit 250 is installed at the center unit 246 as shown in
As shown in
As described above, due to the inline sensor 200 being structured so as to be divisible to the center unit 246, the upper unit 248 and the lower unit 250, repair and replacement at times of trouble or the like can be carried out on a unit-by-unit basis. Further, in particular, by separating the center unit 246 and the lower unit 250, jamming of the recording medium P can be cleared up easily at the time when it occurs.
(Structure of Upper Unit) As shown in
The imaging system housing 256 is formed in the shape of a substantially rectangular box that is long in the X direction, as seen from the Z direction. The CCD sensor 204 is accommodated in one end portion in the X direction of the imaging system housing 256 (in the present exemplary embodiment, the end portion at the upstream side in the conveying direction of the recording medium P). Further, the second mirror 216 and the third mirror 218 are disposed at the other end portion in the X direction of the imaging system housing 256. A window portion 256A, on which light is incident along the optical axis OA, is formed in the substantially central portion in the X direction of the imaging system housing 256. An optical chamber 205 is provided in the imaging system housing 256. Due to the window portion 256A being closed by a light-transmissive window glass 258, the interior of the optical chamber 205 becomes a sealed (airtight) space, and the CCD sensor 204 and the like are accommodated therein.
The upper housing 254 has the upper cover 260 that covers the imaging system housing 256 from above. Due thereto, a substrate chamber 264 in which the circuit board 262 is accommodated, is formed between the upper cover 260 and an upper wall 256U of the imaging system housing 256. Further, the upper housing 254 has, at the outer side of the one end portion in the X direction that is the side at which the CCD sensor 204 is disposed at the imaging system housing 256, a duct cover 268 that forms the duct 265. The duct cover 268 covers the aforementioned end portion of the imaging system housing 256 from the upstream side in the conveying direction of the recording medium P and from the sheet conveying path 60 side, and forms the duct 265 whose X-Y sectional configuration is “L” shaped.
The upper end of the duct 265 is an air intake port 266A. The end portion of the duct 265 at the side opposite the air intake port 266A is a connection port 266B that is connected to a duct 308 of a lamp housing 284 that is described later. A fan 270, that creates within the duct 265 an airstream that is directed from the upper side toward the lower side, is disposed in the duct 265. Further, a fan 272, that sends air into the optical chamber 205 provided in the imaging system housing 256 (i.e., that makes the interior of the optical chamber 205 be positive pressure), is disposed in the duct 265. Moreover, a fan 274 (not illustrated), that sends air into the substrate chamber 264, is provided in the duct 265.
The upper housing 254 has a cover 275 that covers the imaging system housing 256 from the side of the second mirror 216 and the third mirror 218. The cover 275 forms a heat insulated space 276 between the cover 275 and the imaging system housing 256.
(Structure of Center Unit)
As shown in
At the illuminating section 202, the lights emitted by the respective lamps 212 pass through the window glass 286 and are illuminated onto the recording medium P, and the light reflected at the recording medium P passes through the window glass 286 and enters into the lamp housing 284 along the optical axis OA. The light reflected from the recording medium P that enters into the lamp housing 284 passes through the window glass 258 of the imaging system housing 256 that structures the imaging section 208, and is guided to the imaging section 208 interior.
As shown in
Note that, as shown in
(Placement of Lower Unit and Window Cover)
As shown in
On the other hand, as described above, when the lower unit 250 is to be installed at the center unit 246, the positioning pins 454 are fit also into the positioning holes 452 of the front cover 450 of the lower unit 250. Namely, at the front side, the window cover 288 and the lower unit 250 are positioned by the common positioning pins 454, and therefore, the window cover 288 is disposed with good positional accuracy with respect to the lower unit 250.
As shown in
On the other hand, as shown in
Accordingly, at the rear side, the window cover 288 is urged toward and pushed against the prescribing portions 472 that serve as datums and that are provided at the lower unit 250. Therefore, the window cover 288 is disposed with good positional accuracy in the Y direction with respect to the lower unit 250.
Note that, as a modified example of this exemplary embodiment, as shown in
Further, as another modified example, although not illustrated, instead of eliminating the urging block 470, a rear plate, that runs along the rear cover 424 of the center unit 246, may be provided also at the rear side of the window cover 288, and positioning holes may be provided in this rear plate, and, when the lower unit 250 is to be installed at the center unit 246, the positioning pins 458 formed at the rear cover 456 of the lower unit 250 may be inserted into the positioning holes 460 of the center unit 246 and inserted also into the positioning holes of the window cover 288. In this case, similarly to the window cover 288 and the lower unit 250 being positioned by the common positioning pins 454 at the front side, at the rear side as well, the window cover 288 is positioned by the positioning pins 458 of the lower unit 250. Therefore, the window cover 288 is disposed with good positional accuracy with respect to the lower unit 250.
(Countermeasures to Stray Light)
As shown in
The dimensions and shape of the baffle 304 are set such that the lights, which are illuminated from the reverse sides of the lamps 212, do not reach the window portion 256A. Namely, the position of the opening edge of the lower window 304W is set such that the lights that are illuminated from the reverse sides of the lamps 212 do not directly reach the window portion 256A. Further, the side walls 304S are set to have an inclining angle with respect to OA such that the lights that are illuminated from the reverse sides of the lamps 212 do not reach the window portion 256A even if reflected one time.
Plural partitioning walls 306, that partition the portion other than the light guiding path due to the imaging optical system 206, are disposed within the imaging system housing 256. Each of the partitioning walls 306 has an opening 306A at which the size (upper limit) of the light passage portion is determined in accordance with the diffusion angle of the light reflected by the recording medium P, to the extent that the diffused light reflected at the recording medium P is not narrowed in the Y direction and the Z direction.
(Air Flow)
Further, the duct 308 is formed within the lamp housing 284 by one of the side walls 304S (in the present exemplary embodiment, the side wall 304S at the upstream side in the conveying direction of the recording medium P) and the peripheral wall of the lamp housing 284. In the state in which the lamp housing 284 is installed at the upper housing 254, the open end at the upper side of the duct 308 is connected to the duct 265 through the connection port 266B. Due thereto, the air flow generated by the operation of the fan 270, is generated within the lamp housing 284 as well.
An air discharge port 310 is formed at a portion, of a peripheral wall of the lamp housing 284, which portion is at a position at the side opposite the duct 308 side in the X direction. Accordingly, within the lamp housing 284, the air flow from the duct 265, while being guided by the peripheral walls of the lamp housing 284 and the window cover 288, flows via the first lamp 212A at the upstream side in the conveying direction of the recording medium P and the second lamp 212B at the downstream side, and passes through the air discharge port 310 and is discharged to the exterior of the lamp housing 284.
An overhanging portion 312, that is for keeping the light illuminated from the reverse side of the first lamp 212A from reaching the lower window 304W, overhangs out from the lower end of the side wall 304S that structures the duct 308. The overhanging amount of the overhanging portion 312 is set such that the cooling effects with respect to the pair of lamps 212 by the air flow to the lamps 212 are equal.
(Light Amount Narrowing Portion)
The light amount narrowing portion 224 has a side wall 224S, an upper wall 224U, and a lower wall 224L. The X-Y cross-sectional configuration of the light amount narrowing portion 224 is, in cross-section, a substantial “U” shape that opens toward the third mirror 218 side. A opening portion 314 that is substantially rectangular is formed in the side wall 224S of the light amount narrowing portion 224. A rib 316 hangs down from the free end of the upper wall 224U. The light amount narrowing portion 224 is structured so as to, by a lower edge 314L of the opening portion 314 and a lower end 316L of the rib 316, cut the light from the recording medium P and narrow the light amount in the Y direction.
One longitudinal direction end of the light amount narrowing portion 224 reaches the near side wall of the imaging system housing 256. An adjustment lever 474 (see
The light amount narrowing portion 224 rotates in accordance with operation of the adjustment lever 474, and is moved gradually from an initial position, at which the light amount is narrowed most, toward a posture of decreasing the narrowed amount.
(Jam Suppressing Structure)
As shown in
An upper chute 320U that forms the upper portion of the entrance chute 320 is structured by a smooth curved surface that is convex downward. Given that an extended line of the detection reference surface 228 of the reference roller 226 as seen from the Z direction in a state in which the detection reference surface 228 faces the conveying path 60 side of the recording medium P is IL, the dimensions and the shape of the upper chute 320U are set such that the upper chute 320U interferes with the extended line IL (the projecting end of the upper chute 320U is positioned at the lower side of the extended line IL).
Further, a convex portion 322, that is structured by a smooth curved surface that is convex downward, is formed at the window cover 288, further toward the conveying direction downstream side of the recording medium P than the window glass 286. The convex portion 322 is positioned at the upper side of the extended line IL.
A lower chute 320L that forms the lower portion of the entrance chute 320 is nearer to the reference roller 226 due to a lower chute member 324 that is fixed to a flange 302F that extends inwardly from the open end of the lower housing 302. The downstream end in the conveying direction of the recording medium P of the lower chute member 324 is a rounded portion 324A that is rounded so as to be convex upward.
On the other hand, an exit chute 326 is formed between the lower housing 302 and the recording medium P conveying direction downstream side portion of the convex portion 322. A lower chute 326L that forms the lower portion of the exit chute 326 is structured by a lower chute member 328 being fixed to the flange 302F that extends outwardly from the open end of the lower housing 302. The downstream end in the conveying direction of the recording medium P of the lower chute member 328 is a rounded portion 328A that is rounded so as to be convex upward.
When an image is detected by the CCD sensor 204, the detection reference surface 228 of the reference roller 226 is directed toward the recording medium P side in a posture of being substantially parallel to the window glass 286. The respective guide surfaces 238, that are provided at the both sides of the detection reference surface 228, receive the recording medium P from the entrance chute 320, and further guide the recording medium P toward the exit chute 326.
On the other hand, when an image is not detected by the CCD sensor 204, the withdrawn surface 230 of the reference roller 226 is directed toward the recording medium P side in a posture of being closer to the window glass 286 the further toward the downstream side in the conveying direction of the recording medium P (a non-parallel posture). The withdrawn surface 230 is a wide surface that extends from the rounded portion 324A of the lower chute member 324 to a vicinity of the exit chute 326. In the above-described posture, the withdrawn surface 230 receives the recording medium P from the entrance chute 320, and further guides the recording medium P toward the exit chute 326.
(Operation of Inline Sensor)
As shown in
On the other hand, at the time of calibrating the CCD sensor 204 that structures the inline sensor 200, first, the motor of the lower unit 250 is operated, and the white reference surface 232 is directed toward the conveying path 60 of the recording medium P. The CCD sensor 204 is adjusted such that a predetermined signal is outputted.
Next, the combined test surface 236 shown in
Moreover, the color reference surface 234 is directed toward the conveying path 60 of the recording medium P. The CCD sensor 204 is adjusted such that a predetermined signal is outputted at each color.
As described above, in this embodiment of the present invention, the positioning holes 464, 452, that are positioned by the common positioning pins 454 provided at the lamp housing 284, are provided at the window cover 288 and the lower unit 250. Namely, the window cover 288 and the lower unit 250 are positioned via the common positioning pins 454 of the lamp housing 284. Therefore, the window cover 288 is disposed with good positional accuracy with respect to the lower unit 250.
Further, the lower unit 250 has the prescribing portions 472 that prescribe the position of the window cover 288 in the direction perpendicular to the reading surface of the recording medium P. On the other hand, the lamp housing 284 has the urging block 470 that urges the window cover 288 toward the prescribing portions 472. Therefore, the window cover 288 is disposed with even better positional accuracy with respect to the lower unit 250.
Moreover, the window cover 288 has the sliders 298 that are guided by the rails 300 that guide installation and removal and that are provided at the lamp housing 284. Therefore, the window cover 288 is easily installed at and removed from the lamp housing 284.
Because the image forming device 10 has the inline sensor 200, the toner images can be detected within the device.
Note that, in the present exemplary embodiment, the recording medium P is exposed to light from the obverse side thereof. However, when using a recording medium P through which light is transmitted, the recording medium P may be exposed to light from the reverse side thereof.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The exemplary embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2010-238008 | Oct 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5528050 | Miller et al. | Jun 1996 | A |
20040008386 | Shiraishi | Jan 2004 | A1 |
20050122544 | Mizuhashi et al. | Jun 2005 | A1 |
20090153917 | Shiraishi | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
2010-10979 | Jan 2010 | JP |
2010-114498 | May 2010 | JP |
Entry |
---|
Japanese Office Action, dated May 7, 2014, issued in corresponding Japanese Patent Application No. 2010-238008. English translation. |
Number | Date | Country | |
---|---|---|---|
20120099873 A1 | Apr 2012 | US |