The following disclosure generally relates to image sensors, and more specifically to an image sensor having a uniform power signature.
A traditional digital camera includes an image sensor and processing circuitry for converting an optical image into digital data that can be stored or transmitted for viewing. Some image sensors perform analog optical sensing and digital logic processing on the same integrated circuit (IC). In some cases, the physical packaging of the IC is minimized to provide an image sensor that can placed in compact digital camera devices.
However, due to the physical and electrical integration the digital logic with the analog optical sensing, operations performed within the digital logic may generate interference or electrical noise that affects the analog operations. In some cases, the interference or noise produces a visible artifact or in a digital image that may be distracting or undesirable.
One traditional solution to reduce the effects of interference is to physically isolate the analog sensors from the digital logic processing. However, the increasingly compact physical packaging constraints may limit the amount of physical separation that can be accommodated. That is, to achieve sufficient physical isolation between the analog and digital portions of an image sensor, the size of the image sensor may be too large to fit into the limited space available in some types of digital cameras. This is particularly true for digital cameras that are integrated into a mobile telephone or other portable electronic device. Additionally, increasing demands in the processing capabilities of the on-board digital logic processing may further exacerbate interference problems between the circuitry.
Thus, there is a need for a system and technique for reducing the effect of digital logic interference on the quality of a digital image. The techniques disclosed herein can be used to produce a digital image having reduced or minimized visual artifacts without significantly increasing the size of the sensor or the drawbacks of some traditional noise reduction techniques.
One example embodiment includes a method of operating an image sensor to achieve a substantially uniform power signature. An array of pixels may be scanned using analog sensing circuitry to obtain an analog sensor output. The scanning is performed over a first time interval. The analog sensor output is converted to a digital data output using digital logic circuitry. The converting occurs over a second time interval that is subsequent to the first time interval and may be substantially the same duration as the first time interval. While the array of pixels are being scanned, the digital logic circuitry is operated over the first time interval and substantially coincides with the scanning of the array of pixels.
In some example embodiments, operating the digital logic circuit includes setting a processing rate of the digital logic circuitry to cause the operating of the digital logic circuitry to occur throughout the first time interval. The operation may also include performing two or more individual digital logic operations at the set processing rate. In some cases, the two or more individual digital logic operations are performed on data obtained from a previous pixel scanning operation. In some cases, the two or more individual digital logic operations are separated by a delay period that is less than a duration of either of the two or more individual digital logic operations. The delay period may be less than, for example, 10% of the duration of either of the two or more individual digital logic operations. In some cases, the delay period may be less than 5% of the duration of the individual digital logic operations.
In some example embodiments, the operations may be metered out so that the digital processing substantially coincides with the analog sensing operations. For example, in some cases, operating the digital logic circuitry includes performing one or more valid digital logic operations on data obtained from a previous scan using the analog sensing circuitry. The operations may also include performing one or more spacer digital logic operations on simulated data that was not obtained using the analog sensing circuitry. In some cases, the one or more valid digital logic operations in combination with the one or more spacer digital logic operations cause the operating of the digital logic circuitry to occur throughout the first time interval.
In general, a digital camera may include an image sensor for converting an optical image into digital data that is used to produce a digital image. The image sensor may be implemented on one or more integrated circuits (ICs) that are configured to convert light into electrical signals and convert the electrical signals into digital data. Generally, the one or more ICs form multiple electrical subsystems that are physically and electrically integrated together. In one example, the one or more integrated circuits includes, among other elements, analog sensor circuitry used to detect and measure the light of the optical image, and digital logic circuitry coupled to the analog sensor circuitry and used to convert the analog signals into digital data.
As previously mentioned, due to size constraints in a typical implementation, one or more of the circuit subsystems may cause interference that results in visual artifacts or defects in a digital image. In particular, electrical power consumption in the digital logic circuitry may create electrical noise that affects the output of the analog sensor circuitry. The noise or emissions caused by the operation of the digital logic circuitry and apparent to other subsystems may be referred to as a power signature. As mentioned previously, one solution to reduce the effect of the digital logic operations on the analog sensor circuitry is to physically isolate the two subsystems. However, this solution may not be practical for some compact image sensors that may be configured to minimize the physical footprint of the digital camera.
Another solution is to minimize the amount of time that the digital logic circuitry is operated to reduce the impact of any interference that exists. However, as previously mentioned, the processing requirements on image sensors tend to increase rather than decrease as digital camera technology evolves. Furthermore, the abrupt change between operating and non-operating conditions may result in artifacts that are even more pronounced and may be difficult to compensate for using post-processing techniques.
Another solution, is to actually increase the overall amount of interference produced by the digital logic circuitry to produce a more uniform effect on the analog sensing circuitry. For example, the operation of the digital logic circuitry may be artificially extended so that the operation of the digital logic circuitry substantially overlaps with interference-sensitive operations performed in the analog sensing circuitry. This may result in a substantially uniform interference, which may alter the digital image, but in a way that is not as visually distinguishable. In some cases, the power signature of the digital logic may affect the entire image in equal amounts, which may not apparent or noticeable to the human eye. Additionally, an interference effect that is more uniform and predictable, may be easier to compensate for using post-processing techniques.
Some of the examples described herein are directed to an image sensor and processes for operating an image sensor in a uniform power mode. In some cases, the image sensor may have a uniform power signature that reduces or minimizes the visual artifacts in a digital image produced using the image sensor. Additionally, an image sensor having a uniform power signature may be particularly well suited for devices having limited space for image sensor hardware. For example, as described in more detail below with respect to
1. Example Portable Electronic Device
As previously mentioned, an image sensor having a uniform power signature may be integrated into a compact digital camera that is particularly well suited for use in a portable electronic device. In accordance with various embodiments,
As shown in
In this example, the device 100 includes a touch sensor 102 that is a transparent sensor configured to detect and track multiple touch input from the user. The touch sensor 102 may be used to input commands to the device 100, including, for example, a camera shutter command, a video record command, or other control related to the digital cameras 110, 120. The touch sensor may also be used to provide user controls for operation of the mobile phone or other functionality provided on the device 100. The touch sensor 102 may be formed from a grid of transparent conductive traces configured to detect a touch using a capacitive sensing technique. Alternatively, the touch sensor 102 can be formed from a non-transparent sensor and implement non-capacitive sensing techniques.
The device 100 may also accept user input via the control button 102. The control button 102 may provide, for example, a camera shutter command, a video record command, or other control related to the digital cameras 110, 120. The control button 102 may be used as a user control to toggle the display 101 on or off. The operation of the control button 102 can be used to control various other functions on the device 100.
As shown in
The image sensor used for either the front 110 or rear 120 digital cameras includes a sensor array or matrix integrated into one or more surfaces of an IC component. For example, the image sensor may include a charge-coupled device (CCD) sensor array, complementary metal-oxide-semiconductor (CMOS) image sensor array, or other type of active-pixel sensor. A typical sensor array may include a two-dimensional array of sensor cells, where each cell may include a photodetector, such as a photodiode, and one or more transistors to activate each pixel. These elements may form part of the analog sense circuitry used to convert light into electrical energy. Also, as described in more detail with respect to
As shown in
The electrical signals produced by the pixels 206 are collected using one or more row scanners 212 or one or more column scanners 208. For purposes of this example, the photodetector pixels 206, the row 212 scanner, and the column scanner 208 together form part of the analog sensing circuitry 210. In other examples, there may be additional electronic components that also form part of the analog sensing circuitry. For example, the sensor 200 may include other components for conditioning the power or processing signals produced by the image sensor 200.
As shown in
In a typical implementation, the analog sensing circuitry 210 operates on a regular (row or column) scan cycle to collect electrical signals accumulated by the photodetector pixels 206. With regard to a CMOS-type image sensor, the analog sensing circuitry 210 may operate on a row-scan cycle where each row 214 of pixels 206 is scanned sequentially. During each row scan cycle, the charge that has been accumulated on each pixel 206 in the row 214 (signal value) is read out and the pixel is reset to begin charge accumulation for the next cycle. In some cases, the residual signal of the pixel in the reset state (reset value) is also read out during the row scan cycle.
At the completion of a row scan cycle, the electric signals that are collected by the row scanner 212 are passed to the digital logic circuitry 220. During a subsequent row scan, the digital logic circuitry 220 may processes the electric signals and convert the signals to digital data. In some cases, operations performed by the digital logic circuitry 220 produce electrical noise or interference due to minor fluctuations in power consumption. In particular, digital data transmission and digital data processing results in power consumption as bit values switch from low to high and some power dissipation as bit values switch from high to low. The electrical noise generated in the digital logic circuitry may be transmitted to other portions of the IC through the power lines, through the silicon substrate, or in electromagnetic fields around the sensor. Collectively, the electrical noise generated by the digital logic circuitry and apparent to other subsystems may be referred to as a power signature.
As previously mentioned, the power signature of the digital logic circuitry 220 may affect the sensor operations of the analog sensing circuitry 212. In particular, interference caused by the power consumption/dissipation of the digital logic circuitry may alter the electrical signals produced by the pixels 206 while they are generated or after they are collected and before they are converted into digital data.
2. Example Power Signatures of an Image Sensor
As shown in
The timing diagram 300 also depicts an example operational cycle 320 of example digital logic circuitry. The operations of the digital logic circuitry may include, for example, analog to digital conversion of signals received from the analog sensing circuitry, data transmission operations, data caching operations, and other digital logic operations. In the example depicted in
The processing cycle 320 depicted in
However, the transition of the digital logic circuitry between the operation cycles 322a, 322b and the dormant cycle 323a may affect analog sensing circuit operations that are occurring in parallel. In particular, the digital operation cycles 322a and 322b may generate electrical noise that affects a corresponding portion of the scan cycles 312a, 312b. The interference between the digital and analog operations is represented by an example observed interference sequence 330. The interference sequence 330 represents the potential effect of digital logic cycles (322a, 322b) that occur at the same time as portions of the scan cycles (312a, 312b). In particular, interference regions 332a and 332b represent portions of the cycle where digital logic operations 322a, 322b may affect or interfere with parallel portions of the scan cycles 312a, 312b. Non-interference region 333a represents a portion of the cycle where there is little or no electrical interference between the digital logic operations 322a, 322b and the analog sensing operations 312a, 312b.
In some cases, the abrupt transition between the interference regions 332a, 332b and the non-interference region 333a may result in undesirable visual artifacts in the digital image. For example, the interference caused by the digital logic operations may result in the pixel values read during that time as being slightly darker or lighter as compared to other pixel values that are read while there is little or no interference. This may result in a visible shadow or shaded line artifact in the final digital image. In some cases, the interference may result in bending artifacts or other visual inconsistencies in the digital image. In general, these types of artifacts reduce the overall quality of the digital image and are usually undesirable. Furthermore, these types of artifacts may be difficult to remove using post-processing techniques. In particular, the subtle changes in brightness or color that are visible to the human eye may be too fine or too unpredictable for traditional image processing to identify and correct.
Thus, in at least some cases, it may be advantageous to reduce or eliminate abrupt transitions between interfering and non-interfering regions in the operation cycle of the image sensor. In one example, the image sensor may be operated in a uniform power mode in which the operations of the digital logic circuitry occur over the same time interval as the analog sensing operations. Examples of operating an image sensor in a uniform power mode are provided below in Sections 2.a-c. and with respect to
a. Reducing Processing Rate to Produce a Uniform Power Signature
In this example, the digital logic is operated at reduced processing rate to extend the duration of the digital logic operations. The individual operations 421 that comprise the digital logic processing cycle 422a, as shown in
As a result of the reduced processing rate, the digital logic processing cycles 422a and 422b may substantially coincide with scan cycles 412a and 412b of the analog sensor operations 410. Thus, in this case, the digital logic processing cycle 422a may be characterized as having a substantially uniform power signature. More specifically, the digital logic operations 420 in this example are substantially uniform at least for the period of time that those operations substantially overlap with a corresponding scan cycle (412a, 412b).
By way of example,
In this example, it is not necessary that the digital logic and analog sensing operations overlap completely or that the digital logic operations are exactly continuous. As shown in
b. Adding Spacer Operations to Produce a Uniform Power Signature
In addition to the implementation described above with respect to
In accordance with this approach,
In this example, additional operations are inserted into the digital logic processing cycles 522a and 522b to extend the duration of the digital logic operations. In this example, the digital logic cycle 522a includes two types of operations: valid operations 521 and spacer operations 525. In some cases, the valid operations 521 correspond to operations that are necessary to convert the analog sensor signals into digital data. Valid operations 521 include data processing operations, data transmission operations, or other digital logic operations associated with the processing of the analog sensor signals. On the other hand, spacer operations 525 are added to the digital logic cycle 522a for the purpose of extending the duration of the digital logic cycle 522a by filling gaps or delays between valid operations 521 and typically operate on simulated or not-valid data. The spacer operations 525 may also include data processing operations, data transmission operations, or other digital logic operations. However, unlike valid operations 521, because the spacer operations 525 operate on simulated or not-valid data, the spacer operations 525 may not necessarily be used to convert the analog sensor signals into digital data. In some cases, the simulated data was not obtained using the analog sensing circuitry and is not used to produce the digital image. In some cases, the spacer operations 525 may be omitted without affecting the digital logic performance of the image sensor. In some cases, the spacer operations 525 are distinguished from the valid operations 521 because they are performed on simulated or not-valid data that is designated using a “valid” bit or other digital identifier. In some cases, automated clock gating tools can be used to reduce the power used when processing simulated or not-valid data.
As shown in
By way of example,
As with previous examples, it is not necessary that the digital logic and analog sensing operations overlap completely or that the digital logic operations are exactly continuous. As shown in
c. Forcing Data Variation to Produce a Uniform Power Signature
In general, the techniques described above with respect to
However, during the normal operation of an image sensor, some data values may tend to remain constant and cause minor fluctuations in the power consumption of the image sensor. Because the minor power fluctuations may affect the analog sensor operations, as discussed above, it may be advantageous to reduce the occurrence of static data values.
In one example, one or more pixels in the sensor array may become saturated because the amount of light incident on the pixel has exceeded the detection threshold of the photodetector. In this case, the digital data associated with any pixels that are saturated remains a constant, maximum value. In some cases, the digital data associated with the saturated pixels, on the aggregate, is static enough to reduce the power consumption of the digital logic circuitry.
In some cases, the digital data associated with saturated pixels (saturated data) is intentionally varied a small amount to force a change in bit values. For example, the a small value may be periodically added or subtracted from the saturated data to force the static value to change. In another example, the saturated data may be multiplied by a factor that results in a small change in the data value. In some cases, these small variations are sufficient to increase the power consumption of the digital image and improve the power signature uniformity. In some cases, the small variations are also small enough to not affect the visual appearance of a resulting digital image. That is, the data variations may be large enough to be effective in reducing fluctuations in the power consumption, yet small enough to remain visibly imperceptible to a human eye.
Additionally, the small variations induced in the static data may be removed by downstream processing before the digital image is created. For example, variations may be induced in the saturated data by slightly increasing the saturated data value. This may force bit values to change during the digital logic processing and produce the desired increase in power consumption. The artificially increased data values can then be truncated back to the original saturation data value just before output. As a result, the digital image will remain unaffected by the induced variation.
3. Example Process for Operating an Image Sensor
In accordance with the examples provided above, an image sensor may be configured to produce a uniform power signature. In particular, the examples discussed above with respect to Sections 2.a-c. may be implemented separately or in combination to improve the uniformity of the power signature produced by digital logic circuitry of an image sensor.
In operation 602, an array of pixels is scanned to obtain an analog sensor output. In particular, an array of photodetector pixels may be scanned using analog sensing circuitry, including, for example, a row scanner 212 or column scanner 208, as described above with respect to
In accordance with the examples provided above, the row (or column) scan may be performed over a specified time interval. The duration of the time interval may depend, at least in part, on the number of pixels being scanned, the duration of any accumulation time used to collect sensor information, and the number of samples or readings performed for each pixel in the array.
In operation 604, the analog sensor output is converted to digital data. In particular, the analog sensor output of operation 602 is converted in using the digital logic circuitry. In one example, the analog sensor output is converted to digital data using analog-to-digital converter (ADC) circuitry. In some cases, the analog sensor output is converted into a set of digital data values. In some cases, the digital data values are further processed using additional digital logic circuitry. The digital data may be used to produce a digital image that may be stored in computer-readable memory or displayed on a display device.
In one example implementation, the analog sensor output is processed during a digital logic operation cycle that is subsequent to the digital logic operations performed in operation 606, below. In some cases, the conversion of the analog sensor output is also performed in accordance with the techniques for providing a substantially uniform power signature discussed below with respect to operation 606.
In operation 606, the digital logic circuitry is operated during the pixel scan of operation 602. In particular, the digital logic circuitry is operated over the time interval of the scanning operation 602 such that the operation of the digital logic circuitry substantially coincides with the scanning of the array of pixels. Operation 606 may be performed in accordance with any of the examples provided above with respect to Sections 2.a-c.
In one example, the processing rate may be set to extend the digital logic processing to coincide with the pixel scan operations. In one example, the processing rate is reduced resulting in an overall digital logic processing time that is substantially the same as, and occurs in parallel with, the time interval of the pixel scan. In some cases, the processing rate is extended to provide a substantially uniform power signature during the scan performed in operation 602. In some cases, the time interval of the scan operation is measured or obtained and the approximate number of digital logic operations are estimated. The processing rate may then be determined based on the ratio or the relative difference between the time interval of the scan and the estimated number of digital logic operations to be performed. Section 2.a., above provides an example of an image sensor operated in accordance with this technique.
In another example, additional spacer operations are inserted into a sequence of valid digital logic operations. In some cases, the valid digital logic operations are metered out such that they are performed over the entire duration of the scanning operation in 602. Spacer operations may be interspersed with the valid logic operations to provide a substantially uniform power signature during the scan performed in operation 602. In some cases, the processing rate of the operations is also adjusted in combination with the use of spacer operations to achieve a substantially uniform power signature. Section 2.b., above provides an example of an image sensor operated in accordance with this technique.
In yet another example, static data may be artificially varied to improve the power signature of the digital logic circuitry. In one example, the data associated with saturated pixels may be varied a small amount to increase the power consumption or power dissipation of the digital logic circuitry. Section 2.c., above provides an example of an image sensor operated in accordance with this technique.
It is believed that the present disclosure and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components without departing from the disclosed subject matter or without sacrificing all of its material advantages. The form described is merely explanatory, and it is the intention of the following claims to encompass and include such changes.
While the present disclosure has been described with reference to various embodiments, it will be understood that these embodiments are illustrative and that the scope of the disclosure is not limited to them. Many variations, modifications, additions, and improvements are possible. More generally, embodiments in accordance with the present disclosure have been described in the context or particular embodiments. Functionality may be separated or combined in blocks differently in various embodiments of the disclosure or described with different terminology. These and other variations, modifications, additions, and improvements may fall within the scope of the disclosure as defined in the claims that follow.
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/984,574, filed Apr. 25, 2014, which is incorporated by reference as if fully disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
4686648 | Fossum | Aug 1987 | A |
5105264 | Erhardt et al. | Apr 1992 | A |
5329313 | Keith | Jul 1994 | A |
5396893 | Oberg et al. | Mar 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5541402 | Ackland | Jul 1996 | A |
5550677 | Schofield et al. | Aug 1996 | A |
5781312 | Noda | Jul 1998 | A |
5841126 | Fossum et al. | Nov 1998 | A |
5880459 | Pryor et al. | Mar 1999 | A |
5949483 | Fossum et al. | Sep 1999 | A |
6008486 | Stam et al. | Dec 1999 | A |
6040568 | Caulfield et al. | Mar 2000 | A |
6233013 | Hosier et al. | May 2001 | B1 |
6348929 | Acharya et al. | Feb 2002 | B1 |
6448550 | Nishimura | Sep 2002 | B1 |
6541751 | Bidermann | Apr 2003 | B1 |
6713796 | Fox | Mar 2004 | B1 |
6714239 | Guidash | Mar 2004 | B2 |
6798453 | Kaifu | Sep 2004 | B1 |
6816676 | Bianchi et al. | Nov 2004 | B2 |
6905470 | Lee et al. | Jun 2005 | B2 |
6982759 | Goto | Jan 2006 | B2 |
7091466 | Bock | Aug 2006 | B2 |
7133073 | Neter | Nov 2006 | B1 |
7259413 | Rhodes | Aug 2007 | B2 |
7262401 | Hopper et al. | Aug 2007 | B2 |
7271835 | Iizuka | Sep 2007 | B2 |
7282028 | Kim et al. | Oct 2007 | B2 |
7332786 | Altice | Feb 2008 | B2 |
7390687 | Boettiger | Jun 2008 | B2 |
7437013 | Anderson | Oct 2008 | B2 |
7443421 | Stavely et al. | Oct 2008 | B2 |
7502054 | Kalapathy | Mar 2009 | B2 |
7525168 | Hsieh | Apr 2009 | B2 |
7554067 | Zarnowski et al. | Jun 2009 | B2 |
7555158 | Lee | Jun 2009 | B2 |
7626626 | Panicacci | Dec 2009 | B2 |
7671435 | Ahn | Mar 2010 | B2 |
7728351 | Shim | Jun 2010 | B2 |
7733402 | Egawa et al. | Jun 2010 | B2 |
7742090 | Street | Jun 2010 | B2 |
7764312 | Ono et al. | Jul 2010 | B2 |
7773138 | Lahav et al. | Aug 2010 | B2 |
7786543 | Hsieh | Aug 2010 | B2 |
7796171 | Gardner | Sep 2010 | B2 |
7873236 | Li et al. | Jan 2011 | B2 |
7880785 | Gallagher | Feb 2011 | B2 |
7884402 | Ki | Feb 2011 | B2 |
7906826 | Martin et al. | Mar 2011 | B2 |
7952121 | Arimoto | May 2011 | B2 |
7952635 | Lauxtermann | May 2011 | B2 |
8026966 | Altice | Sep 2011 | B2 |
8032206 | Farazi et al. | Oct 2011 | B1 |
8089524 | Urisaka | Jan 2012 | B2 |
8094232 | Kusaka | Jan 2012 | B2 |
8116540 | Dean | Feb 2012 | B2 |
8140143 | Picard et al. | Mar 2012 | B2 |
8153947 | Barbier et al. | Apr 2012 | B2 |
8159570 | Negishi | Apr 2012 | B2 |
8159588 | Boemler | Apr 2012 | B2 |
8164669 | Compton et al. | Apr 2012 | B2 |
8184188 | Yaghmai | May 2012 | B2 |
8194148 | Doida | Jun 2012 | B2 |
8194165 | Border et al. | Jun 2012 | B2 |
8222586 | Lee | Jul 2012 | B2 |
8227844 | Adkisson | Jul 2012 | B2 |
8233071 | Takeda | Jul 2012 | B2 |
8259228 | Wei et al. | Sep 2012 | B2 |
8310577 | Neter | Nov 2012 | B1 |
8324553 | Lee | Dec 2012 | B2 |
8340407 | Kalman | Dec 2012 | B2 |
8350940 | Smith et al. | Jan 2013 | B2 |
8400546 | Itano et al. | Mar 2013 | B2 |
8456559 | Yamashita | Jun 2013 | B2 |
8508637 | Han et al. | Aug 2013 | B2 |
8514308 | Itonaga et al. | Aug 2013 | B2 |
8520913 | Dean | Aug 2013 | B2 |
8547388 | Cheng | Oct 2013 | B2 |
8575531 | Hynecek et al. | Nov 2013 | B2 |
8581992 | Hamada | Nov 2013 | B2 |
8619163 | Ogura | Dec 2013 | B2 |
8629484 | Ohri et al. | Jan 2014 | B2 |
8634002 | Kita | Jan 2014 | B2 |
8648947 | Sato et al. | Feb 2014 | B2 |
8723975 | Solhusvik | May 2014 | B2 |
8754983 | Sutton | Jun 2014 | B2 |
8755854 | Addison et al. | Jun 2014 | B2 |
8759736 | Yoo | Jun 2014 | B2 |
8803990 | Smith | Aug 2014 | B2 |
8817154 | Manabe et al. | Aug 2014 | B2 |
8902330 | Theuwissen | Dec 2014 | B2 |
8908073 | Minagawa | Dec 2014 | B2 |
8934030 | Kim et al. | Jan 2015 | B2 |
8946610 | Iwabuchi et al. | Feb 2015 | B2 |
8982237 | Chen | Mar 2015 | B2 |
9054009 | Oike et al. | Jun 2015 | B2 |
9066017 | Geiss | Jun 2015 | B2 |
9066660 | Watson et al. | Jun 2015 | B2 |
9088727 | Trumbo | Jul 2015 | B2 |
9099604 | Roy | Aug 2015 | B2 |
9100597 | Hu | Aug 2015 | B2 |
9131171 | Aoki et al. | Sep 2015 | B2 |
9232150 | Kleekajai et al. | Jan 2016 | B2 |
20030036685 | Goodman et al. | Feb 2003 | A1 |
20040207836 | Chhibber et al. | Oct 2004 | A1 |
20050026332 | Fratti et al. | Feb 2005 | A1 |
20060274161 | Ing et al. | Dec 2006 | A1 |
20070263099 | Motta et al. | Nov 2007 | A1 |
20080177162 | Bae et al. | Jul 2008 | A1 |
20080315198 | Jung | Dec 2008 | A1 |
20090096901 | Bae et al. | Apr 2009 | A1 |
20090101914 | Hirotsu et al. | Apr 2009 | A1 |
20090146234 | Luo et al. | Jun 2009 | A1 |
20090201400 | Zhang et al. | Aug 2009 | A1 |
20100134631 | Voth | Jun 2010 | A1 |
20110080500 | Wang et al. | Apr 2011 | A1 |
20110156197 | Tivarus et al. | Jun 2011 | A1 |
20110205415 | Makino et al. | Aug 2011 | A1 |
20110245690 | Watson et al. | Oct 2011 | A1 |
20120092541 | Tuulos et al. | Apr 2012 | A1 |
20120098964 | Oggier et al. | Apr 2012 | A1 |
20120147207 | Itonaga | Jun 2012 | A1 |
20120153125 | Oike et al. | Jun 2012 | A1 |
20130101006 | Mombers | Apr 2013 | A1 |
20130147981 | Wu | Jun 2013 | A1 |
20130155271 | Ishii | Jun 2013 | A1 |
20130222584 | Aoki et al. | Aug 2013 | A1 |
20140004644 | Roy | Jan 2014 | A1 |
20140049683 | Guenter | Feb 2014 | A1 |
20140071321 | Seyama | Mar 2014 | A1 |
20140240550 | Taniguchi et al. | Aug 2014 | A1 |
20140246568 | Wan | Sep 2014 | A1 |
20140247378 | Sharma et al. | Sep 2014 | A1 |
20140252201 | Li et al. | Sep 2014 | A1 |
20140253754 | Papiashvili | Sep 2014 | A1 |
20140253768 | Li | Sep 2014 | A1 |
20140263951 | Fan et al. | Sep 2014 | A1 |
20140267855 | Fan | Sep 2014 | A1 |
20140347533 | Toyoda | Nov 2014 | A1 |
20140354861 | Pang | Dec 2014 | A1 |
20150163392 | Malone et al. | Jun 2015 | A1 |
20150163422 | Fan et al. | Jun 2015 | A1 |
20150237314 | Hasegawa | Aug 2015 | A1 |
20150264241 | Kleekajai et al. | Sep 2015 | A1 |
20150264278 | Kleekajai et al. | Sep 2015 | A1 |
20150350575 | Agranov et al. | Dec 2015 | A1 |
20160050379 | Jiang et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
1842138 | Oct 2006 | CN |
101189885 | May 2008 | CN |
101233763 | Jul 2008 | CN |
101472059 | Jul 2009 | CN |
101567977 | Oct 2009 | CN |
101622859 | Jan 2010 | CN |
101803925 | Aug 2010 | CN |
102036020 | Apr 2011 | CN |
102821255 | Dec 2012 | CN |
103329513 | Sep 2013 | CN |
103546702 | Jan 2014 | CN |
2023611 | Feb 2009 | EP |
2107610 | Oct 2009 | EP |
2230690 | Sep 2010 | EP |
201149697 | Mar 2011 | JP |
2012019516 | Jan 2012 | JP |
2012513160 | Jun 2012 | JP |
20030034424 | May 2003 | KR |
20030061157 | Jul 2003 | KR |
20080069851 | Jul 2008 | KR |
20100008239 | Jan 2010 | KR |
20100065084 | Jun 2010 | KR |
20130074459 | Jul 2013 | KR |
201301881 | Jan 2013 | TW |
WO 2010120945 | Oct 2010 | WO |
WO 2012053363 | Apr 2012 | WO |
WO 2012088338 | Jun 2012 | WO |
WO 2012122572 | Sep 2012 | WO |
WO 2013008425 | Jan 2013 | WO |
WO 2013179018 | Dec 2013 | WO |
WO 2013179020 | Dec 2013 | WO |
Entry |
---|
U.S. Appl. No. 14/462,032, filed Aug. 18, 2014, Jiang et al. |
Aoki et al., “Rolling-Shutter Distortion-Free 3D Stacked Image Sensor with—160dB Parasitic Light Sensitivity In-Pixel Storage Node,” ISSCC 2013, Session 27, Image Sensors, 27.3 27.3 A, Feb. 20, 2013, retrieved on Apr. 11, 2014 from URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6487824. |
U.S. Appl. No. 13/782,532, filed Mar. 1, 2013, Sharma et al. |
U.S. Appl. No. 13/783,536, filed Mar. 4, 2013, Wan. |
U.S. Appl. No. 13/785,070, filed Mar. 5, 2013, Li. |
U.S. Appl. No. 13/787,094, filed Mar. 6, 2013, Li et al. |
U.S. Appl. No. 13/797,851, filed Mar. 12, 2013, Li. |
U.S. Appl. No. 13/830,748, filed Mar. 14, 2013, Fan. |
U.S. Appl. No. 14/098,504, filed Dec. 5, 2013, Fan et al. |
U.S. Appl. No. 14/207,150, filed Mar. 12, 2014, Kleekajai et al. |
U.S. Appl. No. 14/207,176, filed Mar. 12, 2014, Kleekajai et al. |
U.S. Appl. No. 14/292,599, filed May 30, 2014, Agranov et al. |
Schwarzer, et al., On the determination of film stress from substrate bending: Stoney'S formula and its limits, Jan. 2006, 19 pages. |
U.S. Appl. No. 14/481,806, filed Sep. 9, 2014, Kleekajai et al. |
U.S. Appl. No. 14/481,820, filed Sep. 9, 2014, Lin et al. |
U.S. Appl. No. 14/501,429, filed Sep. 30, 2014, Malone et al. |
U.S. Appl. No. 14/503,322, filed Sep. 30, 2014, Molgaard. |
U.S. Appl. No. 14/569,346, filed Dec. 12, 2014, Kestelli et al. |
U.S. Appl. No. 14/611,917, filed Feb. 2, 2015, Lee et al. |
Elgendi, “On the Analysis of Fingertip Photoplethysmogram Signals,” Current Cardiology Reviews, 2012, vol. 8, pp. 14-25. |
Fu, et al., “Heart Rate Extraction from Photoplethysmogram Waveform Using Wavelet Multui-resolution Analysis,” Journal of Medical and Biological Engineering, 2008, vol. 28, No. 4, pp. 229-232. |
Han, et al., “Artifacts in wearable photoplethysmographs during daily life motions and their reduction with least mean square based active noise cancellation method,” Computers in Biology and Medicine, 2012, vol. 42, pp. 387-393. |
Lopez-Silva, et al., “Heuristic Algorithm for Photoplethysmographic Heart Rate Tracking During Maximal Exercise Test,” Journal of Medical and Biological Engineering, 2011, vol. 12, No. 3, pp. 181-188. |
Santos, et al., “Accelerometer-assisted PPG Measurement During Physical Exercise Using the LAVIMO Sensor System,” Acta Polytechnica, 2012, vol. 52, No. 5, pp. 80-85. |
Sarkar, et al., “Fingertip Pulse Wave (PPG signal) Analysis and Heart Rate Detection,” International Journal of Emerging Technology and Advanced Engineering, 2012, vol. 2, No. 9, pp. 404-407. |
Yan, et al., “Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution,” Journal of Neuro Engineering and Rehabilitation, 2005, vol. 2, No. 3, pp. 1-9. |
Yousefi, et al., “Adaptive Cancellation of Motion Artifact in Wearable Biosensors,” 34th Annual International Conference of the IEEE EMBS, San Diego, California, Aug./Sep. 2012, pp. 2004-2008. |
Feng, et al., “On the Stoney Formula for a Thin Film/Substrate System with Nonuniform Substrate Thickness,” Journal of Applied Mechanics, Transactions of the ASME, vol. 74, Nov. 2007, pp. 1276-1281. |
Schwarzer, et al., On the determination of film stress from substrate bending: Stoney'S formula and its limits, Jan. 2006, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20150312479 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61984574 | Apr 2014 | US |