Image signal processing apparatus and method thereof

Information

  • Patent Application
  • 20080055653
  • Publication Number
    20080055653
  • Date Filed
    March 28, 2007
    17 years ago
  • Date Published
    March 06, 2008
    16 years ago
Abstract
An image signal processing apparatus and a method thereof are disclosed. The image signal processing apparatus includes a random producing unit which produces seed values to a plurality of frames input for a predetermined period by using a linear feedback shift register (LFSR), and a dithering processing unit which carries out a dithering to input image signals by using the seed values produced by the random producing unit. With this construction, the apparatus can carry out the dithering without using a frame buffer, thereby allowing a high-definition image to be realized.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects of the present invention will become more apparent from the following description of exemplary embodiments, taken in conjunction with the accompanying drawings of which:



FIG. 1 is a schematic block diagram illustrating a conventional image signal processing apparatus;



FIG. 2 is a schematic block diagram Illustrating a an image signal processing apparatus according to an exemplary embodiment of the present invention;



FIGS. 3 and 4 are block diagrams illustrating an operation of a random producing unit provided in the image signal processing apparatus according to an exemplary embodiment of the present invention;



FIG. 5 is a block diagram illustrating an operation of a dithering processing unit provided in the image signal processing apparatus according to an exemplary embodiment of the present invention;



FIG. 6 is a view illustrating an output of the random producing unit provided in the image signal processing apparatus according to an exemplary embodiment of the present invention;



FIGS. 7A and 7B are views illustrating seed values of respective pixels according to a period in the image signal processing apparatus according to an exemplary embodiment of the present invention; and



FIG. 8 is a flowchart illustrating an operation of the image signal processing apparatus according to an exemplary embodiment of the present invention.





Throughout the drawings, the same drawing reference numerals will be understood to refer to the same elements, features, and structures.


DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS

The matters defined in the description such as a detailed construction and elements are provided to assist in a comprehensive understanding of the embodiment of the invention and are merely exemplary. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiment described herein can be made without departing from the scope and spirit of the invention. Also, descriptions of well-known functions and constructions are omitted for clarity and conciseness.



FIG. 2 is a schematic block diagram illustrating an image signal processing apparatus according to an exemplary embodiment of the present invention.


Referring to FIG. 2, the image signal processing apparatus includes a random producing unit 100, a dithering processing unit 150, and an adding unit 170.


The random producing unit 100 produces seed values and provides them to the dithering processing unit 150 to be described later. That is, as illustrated in FIG. 6, the random producing unit 100 provides seed values produced for every M×N position to the dithering processing unit 150 for one period T. The random producing unit 100 includes an initial value producing unit 110 to produce the same initial value for the one period, and a linear feedback shift register (LFSR) processing unit 130 to produce seed values according to position (x, y) changes of respective pixels included in one frame f by using the initial value produced by the initial value producing unit 110. Here, the period T is set by user, so that one period T includes more than one frame f.


The dithering processing unit 150 determines mask matrixes by using the seed values provided from the random producing unit 100 and counting values obtained by counting the number of input frames. In addition, the dithering processing unit 150 carries out a dithering to input image signals r, g, and b by using the determined mask matrixes.


The adding unit 170 adds the dithered image signals to the input image signals r, g, and b and outputs image signals r′, g′, and b′ with improved image quality.



FIGS. 3 and 4 are block diagrams illustrating an operation of the random producing unit 100 provided in the image signal processing apparatus according to an exemplary embodiment of the present invention.


Referring to FIG. 3, the initial value producing unit 110 includes a counting unit 111, a period determining unit 113, and a function unit 115.


The counting unit 111 counts the number of the input frames f, and outputs frame counting values fcnt. The period determining unit 113 determines whether the period T is changed to a frame, which is input at present, by using the frame counting values. That is, the period determining unit 113 determines that the period T is changed when a remainder fcnt % T is output as a value of ‘0’ after the frame counting values fcnt are divided by the period T.


The function unit 115 produces an initial value of a LFSR, which has a magnitude corresponding to the following EQN. [1], according to a clock t set therein when the value of ‘0’ corresponding to a case that the period T is changed and is output from the period determining unit 113.





2 LFSRBIT≧ImageH_size×ImageV_size   EQN. [1]


Here, the LSFR_BIT represents a bit number of the LSFR, the Image_H_size represents a horizontal magnitude of an input frame, and the Image_V_size represents a vertical magnitude of the input frame.


According to an analysis, EQN. [1] means that a magnitude of the LFSR should be larger than or identical to that of one frame of input images.


An example of an operation of the initial value producing unit 110 as described above is as follows. Assuming that the period T is ‘3’, if 0 frames are input, the remainder comes to ‘0’ and thus the function unit 115 produces an initial value. If 1 frame is input, the remainder comes to ‘1’ and thus the function unit 115 does not produce an initial value. If 2 frames are input, the remainder comes to ‘2’ and thus the function unit 115 also does not produce an initial value. Also, if 3 frames are input, the remainder comes to ‘0 and thus the function unit 115 produces an initial value. That is, the initial value of the LFSR is updated and output.


Referring to FIG. 4, the LFSR processing unit 130 includes a position change sensing unit 131, a start point detecting unit 133, a switching unit 135, and a LFSR 137.


The start point detecting unit 133 detects a start position of the input frame f, so that the switching unit 135 is turned on or off. That is, whenever a new frame f is input, the start point detecting unit 133 detects a start position of the input frame. At this time, preferably, but not necessarily, the start position of the input frame is detected before a picture displaying area is input.


The switching unit 135 switches the initial value produced by the initial value producing unit 110 explained with reference to FIG. 3 to deliver to the LFSR 137. To be more specific, when the start point detecting unit 133 outputs a signal indicating the start position of the frame f, the switching unit 135 is turned on, so that the initial value output from the initial value producing unit 110 is registered in the LFSR 137.


At this time, since the initial value producing unit 110 produces and outputs an initial value only when the period is changed, the LFSR 137 registers the same initial value for one period. For instance, assuming that a period T is ‘3’, an initial value produced by the function unit 115 when 0 frames are input is registered in the LFSR 137 while 0 frames, 1 frame and 2 frames are input. Also, while 3 frames, 4 frames and 5 frames are input, an initial value updated by the function unit 115 when 3 frames are input is registered in the LFSR 137.


The position change sensing unit 131 senses position (x, y) changes of pixels included in an input frame, and transmits a value to the LFSR 137. That is, the position change sensing unit 131 outputs ‘1’ if the position (x, y) of each of the pixels included in the input frame is determined as changed, and outputs ‘0’ if the position (x, y) of each of the pixels is determined as not changed.


The LFSR 137 registers the initial value produced by the initial value producing unit 110, and carries out an operation represented as the following EQN. [2] according to the outputs from the position change sensing unit 131 to produce seed values.






LFSR_STATE=(LFSR_STATE<<1)+F(x0,x2,xn-4,xn-1)   EQN. [2]


Here, the LFSR_STATE<<1 represents that the LFSR 137 is shifted, and the F( ) represents an exclusive OR (XOR) function. Also, the x0,x2,xn-4, and xn-1 are taps, which are calculated by the XOR function. The number of the taps is set by a user.


The LFSR 137 carries out the operation of the mathematical formula 2 to produce a seed value whenever the position change sensing unit 131 outputs ‘1’. At this time, an output bit number of the LFSR 137 is determined by the following EQN. [3].






O_BIT=Round(log2(M×N))   EQN. [3]


Here, the O_BIT represents the output bit number of the LFSR 137, that is, a magnitude of the seed value, and the Round( ) means a rounding off to the nearest integer. Also, the M×N represents a magnitude of the mask matrix.



FIG. 5 is a block diagram illustrating an operation of the dithering processing unit 150 according to an exemplary embodiment of the present invention.


Referring to FIG. 5, the dithering processing unit 150 includes a counting unit 151, and a selecting unit 153.


The counting unit 151 counts the number of input frames f, and provides frame counting values frame cnt to the selecting unit 153.


As illustrated in FIG. 5, the selecting unit 153 selects mask matrixes by using the frame count values frame cnt and the seed values. That is, the selecting unit 153 selects a mask matrix for each of the input frames f according to the frame count values frame cnt, and selects a mask matrix every M×N position of one frame according to the seed values.


For instance, if a seed value is 2 and a frame count values frame cnt is T−1, a mask matrix corresponding thereto is selected, as illustrated in FIG. 5.



FIG. 6 is a view illustrating an output of the random producing unit 100 according to an exemplary embodiment of the present invention.


In FIG. 6 seed values are illustrated for one frame. The random producing unit 100 outputs different seed values for every M×N position of the one frame. Also, the random producing unit 100 outputs the same seed values, for example, the seed values illustrated in FIG. 6, for the same one period T. When the one period T is changed into the next period, the seed values produced and output every M×N position of the one frame are also changed and output.



FIGS. 7A and 7B are views illustrating seed values of respective pixels according the period in the image signal processing apparatus according to an exemplary embodiment of the present invention.



FIG. 7A represents seed values of respective pixels for 0˜(T1) period, and FIG. 7B represents seed values of respective pixels for T˜(2T−1) period. As illustrated in FIGS. 7A and 7B, the seed values do not have spatial implications to one another, so that a pattern is not shown. Also, the respective seed values do not have implications for the same position every period, so that they are adapted in carrying out a temporal dithering as well as a spatial dithering.



FIG. 8 is a flowchart illustrating, an operation of the image signal processing apparatus according to an exemplary embodiment of the present invention.


Referring to FIG. 8, first, conditions for the LFSR 137 are set in advance by a user (S200). For example, the magnitude of the LFSR 137 is determined by EQN. [1], and an output bit number of the LFSR 137 is set having an output bit number such as the output bit number determined by the above-explained EQN [3]. Also, a tap number of LFSR 137 to be calculated by the XOR function is also set in advance by user.


After that, when image signals are input, the counting unit 111 counts the number of input frames f, and outputs frame counting values fcnt (S210). At this time, the period determining unit 113 determines whether a period T is changed, by using a remainder fcnt % T obtained by dividing the frame counting values fcnt by the period T (S220).


That is, if the remainder fcnt % T is ‘0’, the period determining unit 113 determines that the period T is changed, and the function unit 115 produces a new initial value (S230). To the contrary, if the remainder fcnt % T is not ‘0’, the period determining unit 113 determines that the period T is not changed, and the function unit 115 does not produce a new initial value, but outputs an existing initial value as it is (S235).


Next, the start point detecting unit 133 determines whether a new frame is input (S240). That is, if the start point detecting unit 133 detects a start position of frame and determines that a new frame is input, the switching unit 135 is turned on, so that the LFSR 137 registers the initial value produced by the function unit 115 (S250)


At this time, the position change sensing unit 131 senses whether positions of pixels are changed (S260). That is, if the position change sensing unit 131 senses a position (x, y) change of each of the pixels included in input one frame and determines that the position (x, y) of each of the pixels is changed, the position change sensing unit 131 outputs ‘1’. To the contrary, if the position change sensing unit 131 determines that the position (x, y) of each of the pixels is not changed, the position change sensing unit 131 outputs ‘0’.


When the position change sensing unit 131 outputs ‘1’, the LFSR 137 carries out the operation represented as the above-described mathematical formula 2 according to the output from the position change sensing unit 131, and updates seed values (S270).


Next, the dithering processing unit 150 selects mask matrixes by using the seed values and the frame counting values counted by the counting unit 151 (S280), and carries out a dithering (S290).


With the process as described above, the image signal processing apparatus according to the exemplary embodiment of the present invention can carry out the temporal and the spatial dithering without using a frame buffer.


As apparent from the foregoing description, according to the exemplary embodiment of the present invention, the image signal processing apparatus and the method thereof carry out the dithering using the LFSR instead of the frame buffer, thereby allowing fabrication costs to be-reduced and allowing a high-definition image to be realized.


Although representative embodiment of the present invention has been shown and described in order to exemplify the principle of the present invention, the present invention is not limited to the specific embodiment. It will be understood that various modifications and changes can be made by one skilled in the art without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, it shall be considered that such modifications, changes and equivalents thereof are all included within the scope of the present invention.

Claims
  • 1. An image signal processing apparatus, comprising: a random producing unit which produces seed values for a plurality of frames input for a predetermined period, by using a linear feedback shift register (LFSR); anda dithering processing unit which carries out a dithering to input image signals by using the seed values produced by the random producing unit.
  • 2. The apparatus of claim 1, wherein the random producing unit produces the seed values for the plurality of frames input for the predetermined period to be identical to one another.
  • 3. The apparatus of claim 1, wherein the random producing unit changes the seed values by updating an initial value of the LFSR.
  • 4. The apparatus of claim 3, wherein the random producing unit updates the initial value of the LFSR if the predetermined period is changed.
  • 5. The apparatus of claim 1, wherein the random producing unit updates an initial value of the LFSR if a remainder is output as a value of ‘0’ after frame counting values obtained by counting a number of the plurality of frames of the input image signals are divided by the predetermined period.
  • 6. The apparatus of claim 3, wherein the random producing unit updates the initial value of the LFSR if a new frame is determined to be input.
  • 7. The apparatus of claim 1, wherein the random producing unit controls the LFSR to carry out an exclusive OR (XOR) function and to output the seed values according to position changes of pixels included in at least one frame.
  • 8. The apparatus of claim 1, wherein the dithering processing unit selects mask matrixes for dithering the input image signals by using frame counting values obtained by counting a number of the plurality of frames of the input image signals, and the seed values.
  • 9. The apparatus of claim 1, wherein the random producing unit comprises: an initial value producing unit which produces the same initial value for one period; anda register processing unit which registers the initial value produced by the initial value producing unit in the LFSR and produces seed values according to position changes of respective pixels included in one frame.
  • 10. An image signal processing method comprising: producing seed values for a plurality of frames input for a predetermined period, by using a linear feedback shift register; andcarrying out a dithering to input image signals by using the produced seed values.
  • 11. The method of claim 10, wherein the producing the seed values comprises producing the seed values for the plurality of frames input for the predetermined period to be identical to one another.
  • 12. The method of claim 10, wherein the producing the seed values comprises changing the seed values by updating an initial value of the linear feedback shift register.
  • 13. The method of claim 12, wherein the producing the seed values comprises updating the initial value of the linear feedback shift register if the predetermined period is changed.
  • 14. The method of claim 10, wherein the producing the seed values comprises updating an initial value of the linear feedback shift register if a remainder is output as a value of ‘0’ after frame counting values obtained by counting a number of the plurality of frames of the input image signals are divided by the predetermined period.
  • 15. The method of claim 12, wherein the producing the seed values comprises updating the initial value of the linear feedback shift register if a new frame is determined as input.
  • 16. The method of claim 10, wherein the producing the seed values comprises controlling the linear feedback shift register to carry out an exclusive OR (XOR) function and to output the seed values according to position changes of pixels included in at least one frame.
  • 17. The method of claim 10, wherein the carrying out the dithering comprises selecting mask matrixes for dithering the input image signals by using frame counting values obtained by counting a number of the plurality of frames of the input image signals and the seed values.
  • 18. The method of claim 10, wherein the producing the seed values comprises: producing the same initial value for one period; andregistering the produced initial value in the linear feedback shift register and producing seed values according to position changes of respective pixels included in one frame.
Priority Claims (1)
Number Date Country Kind
10-2006-0083049 Aug 2006 KR national