This application claims the benefit of Taiwan application Serial No. 92108991, filed Apr. 17, 2003.
1. Field of the Invention
The invention relates to an image signal processing method and device, and more particularly to an image signal processing method and device for a LCD (liquid crystal display) monitor.
2. Description of the Related Art
The cathode ray tube (CRT) display technology is always the mainstream of display for a long time, and its associated technology is well developed after several tens of years of improvements. Recently, the display technology has been greatly modified owing to the trend of digitalization. Thus, the digital display tends to replace the CRT monitor.
Unlike the operation method of the conventional analog display, the digital signals of the digital display replace the electron beams of the CRT monitor. So, the digital display may be made thinner and lighter, and makes it possible to get rid of the problems of radiation and frame flickers. The liquid crystal display (LCD) and the plasma display panel (PDP) is representative of the mainstreams of the present digital display technology. At present, because the LCD technology is suitable for the small-scale display and the domestic televisions are mainly the CRT monitors, the application field of the LCD technology in the market is wider than that of the PDP technology.
In the applications of the personal computers, because the display cards (VGA cards) of many computer systems can only output analog image signals, the LCD has to convert the analog signals into digital signals for display. Therefore, the image processing device of the LCD must have an analog front end (AFE) device and a scalar for performing operations of signal conversion and scaling, wherein the AFE device is for converting analog image signals into digital image signals, while the scalar is for computing the digital image signals so as to obtain images with various resolutions.
The function of the AFE device is to convert analog image signals, which are composed of three primary colors of red (R), green (G), and blue (B), into digital image signals. A typical AFE device has three sets of ADCs (analog-to-digital converters) 110, 130 and 150 for converting red analog signals RA, green analog signals GA and blue analog signals BA into red digital signals RD, green digital signals GD and blue digital signals BD, respectively, as shown in
The required clock of the ADC will get higher and higher as the resolution of the liquid crystal panel gets higher and higher. However, owing to the support limitation of the manufacturing process, it is difficult to implement the ADC having a working clock higher than a certain extreme value. In order to overcome such a problem, the interleaved circuit architecture having increased speed but large area is adopted during the design phase. In such methods, an ADC working at the frequency f may be equivalent to an odd converter and an even converter both working at the frequency f/2, and the analog signals are converted into an odd signal and an even signal. Thereafter, a selector (e.g., a multiplexer) working at the frequency f is adopted to alternatively output the odd signal and the even signal, both of which may be combined into the desired digital signal.
Simply speaking, in the interleaved architecture, the analog signals of the three primary colors may be converted into the digital signals with the frequency f if each ADC works at the frequency f/2. Consequently, the circuit design difficulty may be greatly reduced, but a larger circuit area is required.
In the high-frequency mode, digital signals of the three primary colors are combined by the odd and even signals generated from the odd and even converters, respectively. Therefore, if the odd and even converters have unsymmetrical circuit architectures caused by the differences of manufacturing processes or other reasons, fine ripples with different brightness will be caused in the gray-scale frame.
Of course, such a problem directly influences the image quality. The influence will become more significant in the display mode of lower frequency or the frame with the simpler background, and will be found by the user. Hence, it is necessary to find and solve the source of the problem in order to improve the display effect of the monitor and to enhance the display quality.
It is therefore an object of the invention to provide an image signal processing method and device capable of eliminating the phenomenon of fine ripples with different brightness.
The invention achieves the above-identified object by providing an image signal processing method and device adapted to an AFE device, which respectively generates a first color of digital signal and a second color of digital signal according to a first color of analog signal and a second color of analog signal. The method includes the following steps.
First, the first color of odd signal and the first color of even signal are generated according to the first color of analog signal, and the second color of odd signal and the second color of even signal are generated according to the second color of analog signal. In a single channel mode, the first color of odd signal or first color of even signal serves as the first color of digital signal for output, and the second color of odd signal or second color of even signal serves as the second color of digital signal for output. In a dual channel mode, the first color of odd signal and second color of even signal are synchronously outputted, and the first color of even signal and second color of odd signal are also synchronously outputted. The first color of odd signal and the first color of even signal are combined to form the first color of digital signal, and the second color of odd signal and the second color of even signal are combined to form the second color of digital signal.
Other objects, features, and advantages of the invention will become apparent from the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.
After the reason of distortion is found, the solutions for the problems in the low-frequency display mode and the high-frequency display mode will be proposed.
In the low-frequency mode, the circuit operation speed is high enough, so the circuit may be caused to operate in a single channel mode and to disable one of the odd and even converters and enable the other one of the converters to perform the analog-to-digital conversion process. At this time, three sets (RGB) of odd (or even) duty converters operate at full speed, and its equivalent circuit may be illustrated in
In the high-frequency mode, because the operation speed of the single converter is not high enough, signals outputted from the odd and even converters have to be alternatively and rapidly combined, and then the mode is the dual channel mode. However, the unsymmetrical problem does exist between the odd and even signals. The invention utilizes a compensation method to reduce the influence level and improve the quality.
In order to achieve the above-mentioned idea, it is possible to add a control module to the circuit, wherein the control module selects the operation mode (single or dual channel mode) of the ADC according to a mode parameter, and compensates for the red, green, and blue digital signals with respect to one another in order to achieve the object of decreasing the distortion.
In the high-frequency mode, the mode parameter MODE may be set to 0 and fed to the control module 670. The control module 670 may divide the clock signal CLK by 2 to get the clock signal HCLK, which is fed to the ADCs 610, 630 and 650, and the control signal CS1 is utilized to enable the odd converters 611, 631 and 651 and even converters 613, 633 and 653 to operate. On the other hand, the control signal CS2 may control the multiplexers 620, 640 and 660 to synchronously output the red odd signal RDO, the green even signal GDE and the blue odd signal BDO, and to synchronously output the red even signal RDE, the green odd signal GDO and the blue even signal BDE so as to achieve the object of compensating for the odd and even signals with respect to each other.
In addition, this circuit may be implemented by some other methods. For example, the divider circuit by 2 may be disposed in the ADC, the mode parameter MODE may be implemented in the multiplexers 620, 640 and 660. Furthermore, in the dual channel mode, it is also possible to add a delta sigma modulator to the control module 670 or randomly select the odd or even signal for output so that the naked eyes cannot distinguish the difference between the two signals.
The image signal processing method of the embodiment of the invention at least has the following advantages.
1. In the low-frequency mode, the fine ripples with uneven brightness may be completely avoided by outputting digital signals of three primary colors according to the single channel mode.
2. In the high-frequency state, synchronously outputting the odd and even signals may effectively compensate for the error therebetween and reduce the frame distortion.
While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
92108991 A | Apr 2003 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5964708 | Freeman et al. | Oct 1999 | A |
6014258 | Naka et al. | Jan 2000 | A |
6414611 | Nagaraj | Jul 2002 | B1 |
6545626 | Nakada | Apr 2003 | B1 |
20030034984 | Murata | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
475333 | Feb 2002 | TW |
Number | Date | Country | |
---|---|---|---|
20040207585 A1 | Oct 2004 | US |