The subject matter described herein relates generally to the field of image processing and more particularly to systems and methods for image signal processor multiplexing.
Electronic devices such as mobile phones, personal digital assistants, portable computers and the like may comprise a camera to capture image images. By way of example, a mobile phone may comprise a camera disposed on the back of the phone to capture images. Electronic devices may be equipped with an image signal processing pipeline to capture images collected by the camera, process the images and store the images in memory and/or display the images.
Techniques to equip electronic devices with multiple cameras may find utility.
The detailed description is described with reference to the accompanying figures.
Described herein are exemplary systems and methods for image signal processor multiplexing. In the following description, numerous specific details are set forth to provide a thorough understanding of various embodiments. However, it will be understood by those skilled in the art that the various embodiments may be practiced without the specific details. In other instances, well-known methods, procedures, components, and circuits have not been illustrated or described in detail so as not to obscure the particular embodiments.
In some embodiments, the subject matter described herein enables an electronic device to be equipped with multiple cameras without the need for independent image signal processor channels. Thus, the systems and method described herein enable an electronic device to multiplex image signals from multiple cameras through a single image processor pipeline. The image signals may be stored in memory and/or displayed on a display device.
RF transceiver may implement a local wireless connection via a protocol such as, e.g., Bluetooth or 802.11x. IEEE 802.11a, b or g-compliant interface (see, e.g., IEEE Standard for IT-Telecommunications and information exchange between systems LAN/MAN—Part II: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band, 802.11G-2003). Another example of a wireless interface would be a general packet radio service (GPRS) interface (see, e.g., Guidelines on GPRS Handset Requirements, Global System for Mobile Communications/GSM Association, Ver. 3.0.1, December 2002).
Electronic device 110 may further include one or more processors 154 and a memory module 156. As used herein, the term “processor” means any type of computational element, such as but not limited to, a microprocessor, a microcontroller, a complex instruction set computing (CISC) microprocessor, a reduced instruction set (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, or any other type of processor or processing circuit. In some embodiments, processor 154 may be one or more processors in the family of Intel® PXA27x processors available from Intel® Corporation of Santa Clara, Calif. Alternatively, other CPUs may be used, such as Intel's Itanium®, XEON™, and Celeron® processors. Also, one or more processors from other manufactures may be utilized. Moreover, the processors may have a single or multi core design. In some embodiments, memory module 156 includes random access memory (RAM); however, memory module 156 may be implemented using other memory types such as dynamic RAM (DRAM), synchronous DRAM (SDRAM), and the like. Electronic device 110 may further include one or more input/output interfaces such as, e.g., a keypad 158 and one or more displays 160.
In some embodiments electronic device 110 comprises two or more cameras 162 and an image signal processor 164. By way of example and not limitation, a first camera 162 may be positioned on the front of electronic device 110 and a second camera may be positioned on the back of electronic device 110. Aspects of the cameras and image signal processor 164 and the associated pipeline will be explained in greater detail with reference to
In the embodiment depicted in
Operations of the electronic device will be explained with reference to
At operation 420 (
Operations 425-440 define a loop by which the raw frames in the frame buffers 240, 250 are processed to a video stream format. In some embodiments frame process is done one frame at a time from each camera source such that frame processing is interleaved. Thus, at operation 425 the contents of frame buffer A are input to the image signal processor 212 through an image signal processor interface 214, which feeds the contents of frame buffer A into an image signal processor pipeline 216. As illustrated in
If, at operation 435, the frame processing is not finished then control passes back to operation 425 and more raw frames in the frame buffers are processed in an interleaved fashion to a video stream format. By way of example, in embodiments in which two or more cameras are utilized the contents of frame buffer B are input to the image signal processor through an image signal processor interface 214, which feeds the contents of frame buffer B into an image signal processor pipeline 216. The contents of frame buffer B are processed in the pipeline, for example by converting the content of the frame buffer from raw Bayer frames into a suitable video format, e.g., a corresponding number of YUV video frames. The 3A 400 Frame B is processed based on parameters passed through Register B. At operation 430 the video stream generated from the raw video frames in the buffer are stored in memory. In some embodiments the DMA engine 226 stores the video stream generated from frame buffer B 240 in a second frame buffer B′ 252 in memory 156. In some embodiments the video streams may be stored in a picture-within-a-picture view. In some embodiments the video streams may be encoded and retained as two streams through multi-video coder/decoders (codecs), such that the video streams can be displayed on any target device.
Again, if at operation 435 the frame processing is not finished, then control passes to operation 440 and processing is switched from receiver B back to receiver A. Thus, operations 425-435 define a loop by which raw frames from multiple cameras may be multiplexed into video streams and stored in the memory of an electronic device.
By contrast, if at operation 435 the frame buffers are finished processing, then control passes to operation 445, and the video streams are fit to a display. In some embodiments the video streams are combined into a picture-within-picture view. At operation 450 the video streams may be presented on a display.
The terms “logic instructions” as referred to herein relates to expressions which may be understood by one or more machines for performing one or more logical operations. For example, logic instructions may comprise instructions which are interpretable by a processor compiler for executing one or more operations on one or more data objects. However, this is merely an example of machine-readable instructions and embodiments are not limited in this respect.
The terms “computer readable medium” as referred to herein relates to media capable of maintaining expressions which are perceivable by one or more machines. For example, a computer readable medium may comprise one or more storage devices for storing computer readable instructions or data. Such storage devices may comprise storage media such as, for example, optical, magnetic or semiconductor storage media. However, this is merely an example of a computer readable medium and embodiments are not limited in this respect.
The term “logic” as referred to herein relates to structure for performing one or more logical operations. For example, logic may comprise circuitry which provides one or more output signals based upon one or more input signals. Such circuitry may comprise a finite state machine which receives a digital input and provides a digital output, or circuitry which provides one or more analog output signals in response to one or more analog input signals. Such circuitry may be provided in an application specific integrated circuit (ASIC) or field programmable gate array (FPGA). Also, logic may comprise machine-readable instructions stored in a memory in combination with processing circuitry to execute such machine-readable instructions. However, these are merely examples of structures which may provide logic and embodiments are not limited in this respect.
Some of the methods described herein may be embodied as logic instructions on a computer-readable medium. When executed on a processor, the logic instructions cause a processor to be programmed as a special-purpose machine that implements the described methods. The processor, when configured by the logic instructions to execute the methods described herein, constitutes structure for performing the described methods. Alternatively, the methods described herein may be reduced to logic on, e.g., a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) or the like.
In the description and claims, the terms coupled and connected, along with their derivatives, may be used. In particular embodiments, connected may be used to indicate that two or more elements are in direct physical or electrical contact with each other. Coupled may mean that two or more elements are in direct physical or electrical contact. However, coupled may also mean that two or more elements may not be in direct contact with each other, but yet may still cooperate or interact with each other.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an implementation. The appearances of the phrase “in one embodiment” in various places in the specification may or may not be all referring to the same embodiment.
Although embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that claimed subject matter may not be limited to the specific features or acts described. Rather, the specific features and acts are disclosed as sample forms of implementing the claimed subject matter.